F60 Feeder Protection System

UR Series Instruction Manual

F60 Revision: 7.2x

Manual P/N: 1601-0093-AA1 (GEK-119559)

832762A2.CDR

GE Digital Energy 650 Markland Street Markham, Ontario Canada L6C 0M1

Tel: +1 905 927 7070 Fax: +1 905 927 5098 Internet: http://www.GEDigitalEnergy.com

GE Multilin's Quality Management System is registered to ISO 9001:2008 QMI # 005094 UL # A3775 Copyright © 2013 GE Multilin Inc. All rights reserved.

F60 Feeder Protection System UR Series Instruction Manual revision 7.2x.

FlexLogic, FlexElement, FlexCurve, FlexAnalog, FlexInteger, FlexState, EnerVista, CyberSentry, HardFiber, Digital Energy, Multilin, and GE Multilin are trademarks or registered trademarks of GE Multilin Inc.

The contents of this manual are the property of GE Multilin Inc. This documentation is furnished on license and may not be reproduced in whole or in part without the permission of GE Multilin. The content of this manual is for informational use only and is subject to change without notice.

Part number: 1601-0093-AA1 (August 2013)

1.	GETTING STARTED	1.1 IMPORTANT PROCEDURES 1.1.1 CAUTIONS AND WARNINGS	
		1.2 UR OVERVIEW 1.2.1 INTRODUCTION TO THE UR	1-3 1-3
		1.3 ENERVISTA UR SETUP SOFTWARE 1.3.1 SYSTEM REQUIREMENTS	1-5 1-6 1-9 1-14 1-15 1-17 1-17 1-18 1-18 1-18 1-18 1-19
2.	PRODUCT DESCRIPTION	2.1 INTRODUCTION 2.1.1 OVERVIEW	2-2 2-7 2-8 2-8 2-11
		2.3 SPECIFICATIONS 2.3.1 PROTECTION ELEMENTS 2.3.2 USER-PROGRAMMABLE ELEMENTS 2.3.3 MONITORING 2.3.4 METERING 2.3.5 INPUTS 2.3.6 POWER SUPPLY 2.3.7 OUTPUTS 2.3.8 COMMUNICATIONS 2.3.9 INTER-RELAY COMMUNICATIONS 2.3.10 ENVIRONMENTAL 2.3.11 TYPE TESTS 2.3.12 PRODUCTION TESTS 2.3.13 APPROVALS 2.3.14 MAINTENANCE	2-17 2-20 2-21 2-22 2-23 2-24 2-26 2-26 2-27 2-28 2-29
3.	HARDWARE	3.1 DESCRIPTION 3.1.1 PANEL CUTOUT	
		3.2 WIRING 3.2.1 TYPICAL WIRING	

		3.2.2	DIELECTRIC STRENGTH	3-10
		3.2.3	CONTROL POWER	3-10
		3.2.4	CT AND VT MODULES	3-11
		3.2.5	PROCESS BUS MODULES	
		3.2.6	CONTACT INPUTS AND OUTPUTS	3-14
		3.2.7	TRANSDUCER INPUTS/OUTPUTS	
		3.2.8	RS232 FACEPLATE PORT	3-22
		3.2.9	CPU COMMUNICATION PORTS	3-22
			IRIG-B	
			T INPUT/OUTPUT COMMUNICATIONS	
		3.3 DIREC 3.3.1	DESCRIPTION	3-26
		3.3.2	FIBER: LED AND ELED TRANSMITTERS	
		3.3.3	FIBER-LASER TRANSMITTERS	
		3.3.4	G.703 INTERFACE	
		3.3.5	RS422 INTERFACE	
		3.3.6	RS422 AND FIBER INTERFACE	
		3.3.7	G.703 AND FIBER INTERFACE	
		3.3.8	IEEE C37.94 INTERFACE	
		3.3.9	C37.94SM INTERFACE	
I. HUMAN IN	TERFACES		/ISTA UR SETUP SOFTWARE INTERFACE	
		4.1.1	INTRODUCTION	
		4.1.2	CREATING A SITE LIST	
		4.1.3	ENERVISTA UR SETUP OVERVIEW	
		4.1.4	ENERVISTA UR SETUP MAIN WINDOW	
		4.1.5	SETTINGS TEMPLATES	
		4.1.6	SECURING AND LOCKING FLEXLOGIC EQUATIONS	
		4.1.7	SETTINGS FILE TRACEABILITY	4-10
			PLATE INTERFACE	
		4.2.1	FACEPLATE	
		4.2.2	LED INDICATORS	
		4.2.3	CUSTOM LABELING OF LEDS	4-17
		4.2.4	DISPLAY	4-23
		4.2.5	BREAKER CONTROL	4-23
		4.2.6	KEYPAD	4-24
		4.2.7	MENUS	4-24
		4.2.8	CHANGING SETTINGS	4-27
S. SETTINGS		5.1 OVER		- 4
		5.1.1	SETTINGS MENU	
		5.1.2		
		5.1.3	INTRODUCTION TO AC SOURCES	5-5
			UCT SETUP	
		5.2.1	SECURITY	
		5.2.2	DISPLAY PROPERTIES	
		5.2.3	CLEAR RELAY RECORDS	
		5.2.4	COMMUNICATIONS	
		5.2.5	MODBUS USER MAP	
		5.2.6	REAL TIME CLOCK	
		5.2.7	FAULT REPORTS	
		5.2.8	OSCILLOGRAPHY	
		5.2.9	DATA LOGGER	
		5.2.10		
		5.2.11		
			USER-PROGRAMMABLE SELF-TESTS	
			CONTROL PUSHBUTTONS	
			USER-PROGRAMMABLE PUSHBUTTONS	
			FLEX STATE PARAMETERS	
			USER-DEFINABLE DISPLAYS	
		5.2.17	DIRECT INPUTS/OUTPUTS	5-89
		5.2.18	TELEPROTECTION	5-96

5.3 REMOTE RESOURCES 5.31 REMOTE RESOURCES CONFIGURATION 5.98 5.4 SYSTEM SETUP 5.41 AC INPUTS 5.99 5.4.1 AC INPUTS 5.99 5.4.2 POWER SYSTEM 5.100 5.4.3 SIGNAL SOURCES 5.101 5.4.4 BREAKERS 5.104 5.4.5 DISCONNECT SWITCHES 5.101 5.4.6 FLEXUCIPUS 5.111 5.4.7 PHASOR MEASUREMENT UNIT 5.11 5.5.7 PIASOR MEASUREMENT UNIT 5.11 5.5.7 PIASOR MEASUREMENT UNIT 5.11 5.5.7 PIASOR MEASUREMENT UNIT 5.11 5.5.8 INTRODUCTION TO FLEXLOGIC 5.13 5.5.7 FLEXLOGIC CRULES 5.150 5.5.8 FLEXLOGIC CRULES 5.150 5.5.5 FLEXLOGIC RULES 5.150 5.5.6 FLEXLOGIC RULES 5.150 5.5.7 FLEXLOGIC RULES 5.150 5.5.8 NON-VOLATILE LATCHES 5.150 5.5.8 NON-VOLATILE LATCHES <		5.2.19	INSTALLATION	5-97
5.3.1 REMOTE RESOURCES CONFIGURATION 5-98 5.4 SYSTEM SETUP 5.41 AC INPUTS 5-90 5.4.2 POWER SYSTEM 5-100 5.4.3 SIGNAL SOURCES 5-101 5.4.5 DISCONNECT SWITCHES 5-104 5.4.6 FLEXCURVES 5-111 5.4.7 PHASOR MEASUREMENT UNIT 5-118 5.5.7 PHASOR MEASUREMENT UNIT 5-118 5.5.7 PHASOR MEASUREMENT UNIT 5-118 5.5.2 FLEXLOGIC GULES 5-150 5.5.3 TIEXLOGIC CAVALUATION 5-150 5.5.4 FLEXLOGIC CEVALUATION 5-150 5.5.5 FLEXLOGIC CEVALUATION 5-155 5.5.6 FLEXLOGIC CEVALUATION 5-155 5.5.6 FLEXLOGIC CEVALUATION 5-155 5.5.7 FLEXLEMENTS 5-155 5.5.8 FLEXLEMENTS 5-155 5.5.8 FLEXLEMENTS 5-162 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162	5.3	REMO	TE RESOURCES	
S.4 SYSTEM SETUP	0.0			5-98
5.4.1 AC INPUTS. 5.4.2 POWER SYSTEM. 5.100 5.4.3 SIGNAL SOURCES. 5.101 5.4.4 BREAKERS. 5.104 5.4.5 DISCONNECT SWITCHES. 5.108 5.4.6 FLEXCURVES. 5.111 5.4.7 PHASOR MEASUREMENT UNIT. 5.118 5.5.7 LEXLOGIC 5.5.1 INTRODUCTION TO FLEXLOGIC 5.5.1 INTRODUCTION TO FLEXLOGIC 5.5.2 FLEXLOGIC EVALUATION. 5.5.3 FLEXLOGIC EVALUATION. 5.5.4 FLEXLOGIC EVALUATION. 5.5.5 FLEXLOGIC EVALUATION. 5.5.5.6 FLEXLOGIC EVALUATION. 5.5.6 FLEXLOGIC EVALUATION. 5.5.6 FLEXLOGIC EVALUATION. 5.5.7 FLEXLEMENTS. 5.5.8 NON-VOLATILE LATCHES. 5.5.8 NON-VOLATILE LATCHES. 5.5.8 NON-VOLATILE LATCHES. 5.6 GROUPED ELEMENTS. 5.6.1 OVERVIEW. 5.6.2 SETTING GROUP. 5.6.2 SETTING GROUP. 5.6.3 LOAD ENGROACHMENT. 5.6.4 PHASE CURRENT. 5.6.5 S.6 NEUTRAL CURRENT. 5.6.6 WATTMETRIC GROUND FAULT. 5.6.8 WATTMETRIC GROUND FAULT. 5.6.9 BREAKER FAILURE. 5.6.9 DREAKER FAILURE. 5.6.9 DREAKER FAILURE. 5.6.10 VOLTAGE ELEMENTS. 5.6.11 SENSITIVE DIRECTIONAL POWER. 5.7.1 OVERVIEW. 5.7.2 TRIP BUS. 5.6.11 SENSITIVE DIRECTIONAL POWER. 5.7.2 TRIP BUS. 5.7.3 SETTING GROUPS. 5.7.4 SELECTOR SWITCH. 5.7.5 SETTING GROUPS. 5.7.6 OVERFREQUENCY. 5.7.7 FREQUENCY. 5.7.8 SETTING GROUPS. 5.7.1 DIGITAL ELEMENTS. 5.7.1 DIGITAL COUNTERS. 5.7.2 TRIP BUS. 5.7.1 DIGITAL ELEMENTS. 5.7.3 SETTING GROUPS. 5.7.1 DIGITAL ELEMENTS. 5.7.1 DIGITAL COUNTERS. 5.7.2 TRIP BUS. 5.7.1 DIGITAL ELEMENTS. 5.7.3 SETTING GROUPS. 5.7.1 DIGITAL ELEMENTS. 5.7.1 DIGITAL COUNTERS. 5.7.2 TRIP BUS. 5.7.1 DIGITAL COUNTERS. 5.7.2 TRIP BUS. 5.7.3 SETTING GROUPS. 5.7.4 SELECTOR SWITCH. 5.7.5 SELECTOR SWITCH. 5.7.5 SELECTOR SWITCH. 5.7.6 OVERFREQUENCY. 5.7.2 SELECTOR SWITCH. 5.7.2 SELECTOR SWITCH. 5.7.3 SETTING GROUPS. 5.7.1 DIGITAL ELEMENTS. 5.7.2 TRIP BUS. 5.7.1 DIGITAL COUNTERS. 5.7.2 TRIP BUS. 5.7.1 DIGITAL COUNTERS. 5.7.2 SELECTOR SWITCH. 5.7.3 SETTING GROUPS. 5.7.1 SELECTOR SWITCH. 5.7.1 SELECTOR SWITCH. 5.7.2 SELECTOR SWITCH. 5.7.3 COUNTERCLEMENTS. 5.7.1 SELECTOR SWITCH. 5.7.2 SELECTOR SWITCH. 5.7.3 SELECTOR SWITCH. 5.7.3 SELECTOR SWITCH. 5.7.3 SELECTOR SWITCH. 5.7.1 SELECTOR SWITCH. 5.7.2 SELECTOR SWITCH. 5.7.3 SELECTOR SW	_			0 00
5.4.2 POWER SYSTEM 5-100 5.4.3 SIGNAL SOURCES 5-101 5.4.4 BREAKERS. 5-104 5.4.5 DISCONNECT SWITCHES 5-108 5.4.6 DISCONNECT SWITCHES 5-108 5.4.7 PHASOR MEASUREMENT UNIT 5-118 5.4.7 PHASOR MEASUREMENT UNIT 5-118 5.5.7 LEXLOGIC SULES 5-150 5.5.2 FLEXLOGIC RULES 5-150 5.5.3 FLEXLOGIC EVALUATION 5-150 5.5.4 FLEXLOGIC EVALUATION 5-150 5.5.5 FLEXLOGIC EVALUATION 5-150 5.5.6 FLEXLOGIC EVALUATION 5-150 5.5.7 FLEXLOGIC EVALUATION 5-150 5.5.8 NON-VOLATILE LATCHES 5-155 5.5.8 NON-VOLATILE LATCHES 5-150 5.5.8 NON-VOLATILE LATCHES 5-160 5.6.1 OVERVIEW. 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-165 5.6.6 WAITMETRIC ROOLUD FAULT 5-175 5.6.6 WAITMETRIC ROOLUD FAULT 5-175 5.6.6 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 NEARER FAILURE 5-186 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-122 5.7 CONTROL ELEMENTS 5-212 5.7 CONTROL ELEMENTS 5-212 5.7.1 OVERVIEW. 5-215 5.7.2 TIPP BUS 5-217 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-218 5.7.5 SYNCHROCHECK 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLIENTS 5-226 5.7.7 FEQUENCY 5-226 5.7.8 SYNCHROCHECK 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLIENTS 5-226 5.7.1 DIGITAL ELEMENTS 5-226 5.7.2 WONTROTHER STATUS 5-226 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-218 5.7.5 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-223 5.7.10 DIGITAL ELEMENTS 5-226 5.7.10 DIGITAL ELEMENTS 5-226 5.7.11 DIGITAL COUNTERS 5-226 5.7.12 DIGITAL ELEMENTS 5-226 5.7.13 SETTING GLOBEN 5-227 5.8 SYNCHROCHECK 5-227 5.8 SYNCHROC	5.4			
5.4.3 SIGNAL SOURCES				
5.4.4 BREAKERS. 5-104 5.4.5 DISCONNECT SWITCHES 5-108 5.4.6 FLEXCURVES 5-111 5.4.7 PHASOR MEASUREMENT UNIT. 5-118 5.5.7 LEXLOGIC STATE OF CHARLES 5-119 5.5.2 FLEXLOGIC RULES 5-150 5.5.2 FLEXLOGIC EVALUATION 5-150 5.5.4 FLEXLOGIC EVALUATION 5-150 5.5.5 FLEXLOGIC EVALUATION 5-150 5.5.5 FLEXLOGIC EVALUATION 5-150 5.5.6 FLEXLOGIC TIMERS 5-151 5.5.6 FLEXLOGIC TIMERS 5-155 5.5.7 FLEXELEMENTS 5-156 5.5.8 NON-VOLATILE LATCHES 5-151 5.6.8 NON-VOLATILE LATCHES 5-161 5.6.9 SETTING GROUP 5-162 5.6.8 WAITMETRIC GROUND FAULT 5-163 5.6.9 BREAKER FAILURE 5-163 5.6.10 VOLTAGE ELEMENTS 5-166 5.6.11 SENSITIVE DIRECTIONAL POWER 5-162 5.6.22 TRIP BUS 5-163 5.6.3 NEGATIVE-SEQUENCE CURRENT 5-168 5.6.11 SENSITIVE DIRECTIONAL POWER 5-121 5.7 CONTROL ELEMENTS 5-212 5.7 CONTROL ELEMENTS 5-214 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-216 5.7.3 SETTING GROUPS 5-216 5.7.4 SELECTOR SWITCH 5-217 5.7.5 UNDERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHEKY 5-228 5.7.1 DIGITAL ELEMENTS 5-240 5.8.1 CONTROL ELEMENTS 5-240 5.8.1 CONTROL ELEMENTS 5-240 5.8.1 CONTROL ELEMENTS 5-240 5.8.1 CONTROL ELEMENTS 5-240 5.8.1 DIGITAL CURRENT 5-228 5.7.1 DIGITAL ELEMENTS 5-240 5.8.1 CONTROL ELEMENTS 5-241 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.4 SELECTOR SWITCH 5-216 5.7.5 UNDERFREQUENCY 5-225 5.7.6 NORTHER SURGENERY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.8.8 SYNCHROCHECK 5-229 5.7.10 DIGITAL ELEMENTS 5-230 5.7.11 DIGITAL CUNTERS 5-240 5.8.12 CONTRACT INPUTS 5-267 5.8.13 CONTACT INPUTS 5-267 5.8.14 CONTACT INPUTS 5-267 5.8.15 CONTROL ELEMENTS 5-240 5.8.10 DIGITAL ELEMENTS 5-240 5.8.11 TELEPROTECTION INPUTS 5-277 5.8.1 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.1 INPUTS 5-278 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-228 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-228 5.8.13 IECG 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-228 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-228 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-228 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-227 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-228 5.9 TRANSDUCER INPUT				
5.4.5 DISCONNECT SWITCHES 5-108 5.4.6 FLEXCURVES 5-111 5.4.7 PHASOR MEASUREMENT UNIT 5-118 5.5.7 PHASOR MEASUREMENT UNIT 5-118 5.5.8 INTRODUCTION TO FLEXLOGIC 5-139 5.5.2 FLEXLOGIC RULES 5-150 5.5.3 FLEXLOGIC EVALUATION 5-150 5.5.4 FLEXLOGIC EVALUATION 5-150 5.5.5 FLEXLOGIC EVALUATION 5-150 5.5.5 FLEXLOGIC EVALUATION 5-150 5.5.6 FLEXLOGIC EQUATION EDITOR 5-155 5.5.7 FLEXLEMENTS 5-155 5.5.8 NON-VOLATILE LATCHES 5-156 5.5.8 NON-VOLATILE LATCHES 5-161 5.6 GROUPED ELEMENTS 5-162 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-163 5.6.5 NEUTRAL CURRENT 5-163 5.6.6 WAITMETRIC GROUND FAULT 5-163 5.6.7 GROUND CURRENT 5-163 5.6.9 BREAKER FAILURE 5-163 5.6.10 SULTAGE ELEMENTS 5-163 5.6.11 SENSITIVE DIRECTIONAL POWER 5-129 5.7 CONTROL ELEMENTS 5-163 5.6.10 VOLTAGE ELEMENTS 5-163 5.6.11 SENSITIVE DIRECTIONAL POWER 5-162 5.7.7 FREQUENCY 5-226 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-215 5.7.1 OVERVIEW 5-216 5.7.2 TRIP BUS 5-216 5.7.3 SETTING GROUPS 5-216 5.7.4 SELECTOR SWITCH 5-226 5.7.7 FREQUENCY 5-226 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-23 5.7.10 DIGITAL ELEMENTS 5-240 5.7.11 DIGITAL CURVIEW 5-226 5.7.12 MONITORING ELEMENTS 5-240 5.7.13 COLO LOAD PICKUP 5-226 5.7.14 MONITORING ELEMENTS 5-240 5.7.15 CONTROL ELEMENTS 5-226 5.7.16 DIGITAL ELEMENTS 5-226 5.7.17 FREQUENCY 5-225 5.7.18 SYNCHROCHECK 5-229 5.7.19 DIGITAL ELEMENTS 5-226 5.7.10 DIGITAL ELEMENTS 5-226 5.7.11 DIGITAL CURVIEW 5-226 5.7.12 MONITORING ELEMENTS 5-226 5.7.13 COLO LOAD PICKUP 5-256 5.8.14 VIRTUAL INPUTS 5-267 5.8.15 CONTACT INPUTS 5-277 5.8.17 REMOTE OUTPUTS 5-226 5.8.10 DIGITAL PUTPUTS 5-227 5.8.11 TELEPROTECTION INPUTS NAD OUTPUTS 5-226 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-226 5.9 TRANSDUCER INPUTS AND OUTPUTS				
5.4.6 FLEXCURVES 5.11 5.4.7 PHASOR MEASUREMENT UNIT 5.118 5.5 FLEX.OGIC 5.5.1 INTRODUCTION TO FLEXLOGIC 5.5.1 5.5.2 FLEXLOGIC EVALUATION 5.150 5.5.3 FLEXLOGIC EVALUATION 5.150 5.5.4 FLEXLOGIC EVALUATION 5.150 5.5.5 FLEXLOGIC EVALUATION 5.150 5.5.6 FLEXLOGIC EVALUATION 5.150 5.5.6 FLEXLOGIC EVALUATION EDITOR 5.155 5.5.7 FLEXLOGIC EQUATION EDITOR 5.155 5.5.8 NON-VOLATILE LATCHES 5.155 5.5.8 NON-VOLATILE LATCHES 5.155 5.5.8 NON-VOLATILE LATCHES 5.161 5.6.6 GROUPED ELEMENTS 5.162 5.6.2 SETTING GROUP 5.162 5.6.3 LOAD ENCROACHMENT 5.163 5.6.4 PHASE CURRENT 5.163 5.6.5 NEUTRAL CURRENT 5.163 5.6.6 WAITMETRIC GROUND FAULT 5.163 5.6.7 GROUND CURRENT 5.163 5.6.8 NEGATIVE-SEQUENCE CURRENT 5.163 5.6.9 BREAKER FAILURE 5.195 5.6.10 VOLTAGE ELEMENTS 5.202 5.10 VOLTAGE ELEMENTS 5.202 5.11 SENSITIVE DIRECTIONAL POWER 5.212 5.12 TRIP BUS 5.212 5.13 SETTING GROUPS 5.215 5.14 SELECTOR SWITCH 5.219 5.15 SENSITIVE DIRECTIONAL POWER 5.215 5.16 SELECTOR SWITCH 5.219 5.17 FREQUENCY ATTEM 5.229 5.18 SYNCHROCHECK 5.229 5.19 AUTORECLOSE 5.220 5.19 AUTORECLOSE 5.220 5.10 DIGITAL ELEMENTS 5.220 5.11 DIGITAL CUNTERS 5.220 5.12 TRIP BUS 5.216 5.13 SETTING GROUPS 5.221 5.14 SELECTOR SWITCH 5.229 5.15 SELECTOR SWITCH 5.229 5.16 SELECTOR SWITCH 5.229 5.17 FREQUENCY ATTE OF CHANGE 5.227 5.18 SYNCHROCHECK 5.229 5.19 AUTORECLOSE 5.220 5.11 DIGITAL CUNTERS 5.220 5.12 MONITORING ELEMENTS 5.220 5.13 SETTING GROUPS 5.221 5.14 CONTACT INPUTS 5.221 5.15 SENDETS 5.224 5.15 CONTACT INPUTS 5.221 5.16 CONTACT INPUTS 5.221 5.17 REMOTE DOUBLE-POINT STATUS INPUTS 5.227 5.24 SENDET SOURCE S.227 5.25 REMOTE DEVICES 5.227 5.26 REMOTE DEVICES 5.227 5.27 SEMPLY SOURCE S.5.227 5.28 REMOTE DEVICES 5.227 5.29 SENDET SALD INPUTS 5.227 5.20 INDURENT SAND OUTPUTS 5.228 5.21 ELECTOR SUPLYS AND OUTPUTS 5.228 5.22 REMOTE DEVICES 5.228 5.23 TRANSDUCER INPUTS AND OUTPUTS 5.228 5.24 TRANSDUCER INPUTS AND OUTPUTS 5.228 5.24 TRANSDUCER INPUTS AND OUTPUTS 5.228				
5.4.7 PHASOR MEASUREMENT UNIT 5-118 5.5 FLEXLOGIC 5-13 5.5.2 FLEXLOGIC RULES 5-150 5.5.3 FLEXLOGIC EVALUATION 5-150 5.5.4 FLEXLOGIC EVAMPLE 5-151 5.5.5 FLEXLOGIC EQUATION EDITOR 5-155 5.5.5 FLEXLOGIC TIMERS 5-155 5.5.6 FLEXLOGIC TIMERS 5-155 5.5.7 FLEXELEMENTS 5-160 5.5.8 NON-VOLATILE LATCHES 5-161 5.6 GROUPED ELEMENTS 5-162 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-163 5.6.5 NEUTRAL CURRENT 5-163 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-185 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 </td <td></td> <td></td> <td></td> <td></td>				
5.5 FLEXLOGIC 5.5.1 INTRODUCTION TO FLEXLOGIC 5.138 5.5.2 FLEXLOGIC RULES 5.150 5.5.3 FLEXLOGIC EVALUATION 5.150 5.5.4 FLEXLOGIC EVALUATION 5.155 5.5.5 FLEXLOGIC EQUATION EDITOR 5.155 5.5.6 FLEXLOGIC TIMERS 5.155 5.5.7 FLEXLOGIC TIMERS 5.156 5.5.8 NON-VOLATILE LATCHES 5.161 5.5.8 NON-VOLATILE LATCHES 5.161 5.6.1 OVERVIEW 5.162 5.6.2 SETTING GROUP 5.162 5.6.3 LOAD ENCROACHMENT 5.163 5.6.4 PHASE CURRENT 5.163 5.6.5 NEUTRAL CURRENT 5.163 5.6.6 WATTMETRIC GROUND FAULT 5.183 5.6.7 ROUND CURRENT 5.183 5.6.8 NEGATIVE-SEQUENCE CURRENT 5.183 5.6.9 REALKER FAILURE 5.194 5.6.11 SENSITIVE DIRECTIONAL POWER 5.215 5.6.11 SENSTING GROUPS 5.215				
5.5.1 INTRODUCTION TO FLEXLOGIC 5.138 5.5.2 FLEXLOGIC RULES 5.150 5.5.3 FLEXLOGIC EVALUATION 5.150 5.5.4 FLEXLOGIC EVALUATION 5.155 5.5.5 FLEXLOGIC FUNTION EDITOR 5.155 5.5.6 FLEXLOGIC TIMERS 5.155 5.5.7 FLEXLEMENTS 5.156 5.5.8 NON-VOLATILE LATCHES 5.161 5.6.1 OVERVIEW 5.162 5.6.2 SETTING GROUP 5.162 5.6.3 LOAD ENCROACHMENT 5.163 5.6.4 PHASE CURRENT 5.163 5.6.5 NEUTRAL GURRENT 5.165 5.6.6 WATTMETRIC GROUND FAULT 5.183 5.6.7 GROUND CURRENT 5.183 5.6.8 NEGATIVE-SCOUENCE CURRENT 5.186 5.6.9 BREAKER FAILURE 5.195 5.6.10 VOLTAGE ELEMENTS 5.204 5.7.1 OVERVIEW 5.215 5.7.2 TRIP BUS 5.217 5.7.2 TRIP BUS		5.4.7	PHASOR MEASUREMENT UNIT	5-118
5.5.2 FLEXLOGIC RULES 5.150 5.5.3 FLEXLOGIC EVALUATION 5.150 5.5.4 FLEXLOGIC EQUATION EDITOR 5.151 5.5.5 FLEXLOGIC EQUATION EDITOR 5.155 5.5.6 FLEXLOGIC TIMERS 5.156 5.5.7 FLEXLEMENTS 5.156 5.5.7 FLEXLEMENTS 5.156 5.5.8 NON-VOLATILE LATCHES 5.162 5.6.7 FLEXLEMENTS 5.161 5.6.8 NON-VOLATILE LATCHES 5.162 5.6.1 OVERVIEW 5.162 5.6.2 SETTING GROUP 5.162 5.6.3 LOAD ENCROACHMENT 5.163 5.6.4 PHASE CURRENT 5.163 5.6.5 NEUTRAL CURRENT 5.163 5.6.6 MATTMETRIC GROUND FAULT 5.183 5.6.7 GROUND CURRENT 5.183 5.6.8 NEGATIVE-SEQUENCE CURRENT 5.183 5.6.9 BREAKER FAILURE 5.194 5.6.10 VOENVIEW 5.215 5.6.11 SENSITIVE DIR	5.	FLEXL	OGIC	
5.5.2 FLEXLOGIC RULES 5.150 5.5.3 FLEXLOGIC EVALUATION 5.150 5.5.4 FLEXLOGIC EQUATION EDITOR 5.151 5.5.5 FLEXLOGIC EQUATION EDITOR 5.155 5.5.6 FLEXLOGIC TIMERS 5.156 5.5.7 FLEXLEMENTS 5.156 5.5.7 FLEXLEMENTS 5.156 5.5.8 NON-VOLATILE LATCHES 5.162 5.6.7 FLEXLEMENTS 5.161 5.6.8 NON-VOLATILE LATCHES 5.162 5.6.1 OVERVIEW 5.162 5.6.2 SETTING GROUP 5.162 5.6.3 LOAD ENCROACHMENT 5.163 5.6.4 PHASE CURRENT 5.163 5.6.5 NEUTRAL CURRENT 5.163 5.6.6 MATTMETRIC GROUND FAULT 5.183 5.6.7 GROUND CURRENT 5.183 5.6.8 NEGATIVE-SEQUENCE CURRENT 5.183 5.6.9 BREAKER FAILURE 5.194 5.6.10 VOENVIEW 5.215 5.6.11 SENSITIVE DIR		5.5.1	INTRODUCTION TO FLEXLOGIC	5-139
5.5.4 FLEXLOGIC EXAMPLE 5-151 5.5.5 FLEXLOGIC TIMERS 5-155 5.5.6 FLEXLEMENTS 5-156 5.5.7 FLEXELEMENTS 5-160 5.5.8 NON-VOLATILE LATCHES 5-161 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-162 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-165 5.6.6 WATTMERTIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-212 5.7 CONTROL ELEMENTS 5-212 5.7 OCONTROL ELEMENTS 5-212 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217		5.5.2	FLEXLOGIC RULES	5-150
5.5.5 FLEXLOGIC EQUATION EDITOR. 5-155 5.5.6 FLEXLOGIC TIMERS 5-155 5.5.7 FLEXELMENTS 5-165 5.5.8 NON-VOLATILE LATCHES 5-161 5.6.8 NON-VOLATILE LATCHES 5.6.1 OVERVIEW. 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-163 5.6.5 NEUTRAL CURRENT 5-165 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-183 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BERAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.1 OVERVIEW. 5-215 5.7.2 TRIP BUS 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-219 5.7.4 SELECTOR SWITCH 5-		5.5.3	FLEXLOGIC EVALUATION	5-150
5.5.6 FILEXLOGIC TIMERS 5-155 5.5.7 FLEXELEMENTS 5-156 5.5.8 NON-VOLATILE LATCHES 5-161 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-165 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 SYDCHROCHECK 5-229 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK		5.5.4	FLEXLOGIC EXAMPLE	5-151
5.5.7 FLEXELEMENTS 5-156 5.5.8 NON-VOLATILE LATCHES 5-161 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-163 5.6.5 NEUTRAL CURRENT 5-163 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-226 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY ARTE OF CHANGE 5-227 5.7.8 SYNCHROCHECK		5.5.5	FLEXLOGIC EQUATION EDITOR	5-155
5.5.8 NON-VOLATILE LATCHES 5-161 5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-188 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.4 SELECTOR SWITCH 5-219 5.7.5 JUNDERFREQUENCY 5-226 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 <td></td> <td>5.5.6</td> <td>FLEXLOGIC TIMERS</td> <td>5-155</td>		5.5.6	FLEXLOGIC TIMERS	5-155
5.6 GROUPED ELEMENTS 5.6.1 OVERVIEW		5.5.7		
5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-226 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY ARTE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5		5.5.8	NON-VOLATILE LATCHES	5-161
5.6.1 OVERVIEW 5-162 5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-226 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY ARTE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5	5.6	GROU	PED ELEMENTS	
5.6.2 SETTING GROUP 5-162 5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-186 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7 TOWERVEW 5-215 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-217 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 OVERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-225 5.7.7 FREQUENCY RATE OF CHANGE 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL ELEMENTS 5-242 5.7.12 MONITORING ELEMENTS 5-242	5.0			5 162
5.6.3 LOAD ENCROACHMENT 5-163 5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.2 TRIP BUS 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-226 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-242 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-245 5.7.12 MONITORING ELEMENTS				
5.6.4 PHASE CURRENT 5-165 5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-215 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 INDERFREQUENCY 5-226 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-233 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-242 5.7.13 COLD LOAD PICKUP 5-269 5.8.1 CONTACT INPUTS 5-275 </td <td></td> <td></td> <td></td> <td></td>				
5.6.5 NEUTRAL CURRENT 5-175 5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-242 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5-215 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-226 5.7.6 OVERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-239 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-				
5.6.6 WATTMETRIC GROUND FAULT 5-183 5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-186 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-233 5.7.10 DIGITAL ELEMENTS 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 TOIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-242 5.7.13 COLD LOAD PICKUP 5-267 5.8.1 NOTACT INPUTS 5-275 5.8.2 VIRTUAL INPUTS 5-275				
5.6.7 GROUND CURRENT 5-186 5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-225 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-249 5.7.11 DIGITAL ELEMENTS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-279 5.8.6 REMOTE DEVICES 5-275				
5.6.8 NEGATIVE-SEQUENCE CURRENT 5-188 5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-249 5.7.11 DIGITAL ELEMENTS 5-249 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8.1 CONTACT INPUTS 5-267 5.8.2 VIRTUAL INPUTS 5-271 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5				
5.6.9 BREAKER FAILURE 5-195 5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL ELEMENTS 5-242 5.7.12 MONITORING ELEMENTS 5-242 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.6 REMOTE INPUTS 5-275 5.8.7 REMOTE				
5.6.10 VOLTAGE ELEMENTS 5-204 5.6.11 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-215 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL ELEMENTS 5-244 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-274 5.8.3 CONTACT OUTPUTS 5-275 5.8.4 VIRTUAL INPUTS 5-276 5.8.5 REMOTE DUILE-POINT STATUS INPUTS 5-276 5.8.1				
5.6.1.1 SENSITIVE DIRECTIONAL POWER 5-212 5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL ELEMENTS 5-244 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-275 5.8.3 CONTACT OUTPUTS 5-275 5.8.4 VIRTUAL OUTPUTS 5-275 5.8.6 REMOTE DEVICES 5-275 5.8.7 REMOTE DUBLE-POINT STATUS INPUTS 5-276 5.8.10 DIRECT INPUTS AND OU				
5.7 CONTROL ELEMENTS 5.7.1 OVERVIEW. 5-215 5.7.2 TRIP BUS. 5-215 5.7.3 SETTING GROUPS. 5-217 5.7.4 SELECTOR SWITCH. 5-219 5.7.5 UNDERFREQUENCY. 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE. 5-227 5.7.8 SYNCHROCHECK. 5-229 5.7.9 AUTORECLOSE. 5-233 5.7.10 DIGITAL ELEMENTS. 5-239 5.7.11 DIGITAL COUNTERS. 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP. 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-270 5.8.3 CONTACT OUTPUTS. 5-271 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS. 5-277 5.8.9 RESETTING 5-278 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-278 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 <				
5.7.1 OVERVIEW 5-215 5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-219 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8.1 NPUTS/OUTPUTS 5-267 5.8.2 VIRTUAL INPUTS 5-269 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-272 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE DOUBLE-POINT STATUS INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-286				
5.7.2 TRIP BUS 5-215 5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL COUNTERS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-272 5.8.6 REMOTE DEVICES 5-275 5.8.6 REMOTE DOUBLE-POINT STATUS INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS	5.			
5.7.3 SETTING GROUPS 5-217 5.7.4 SELECTOR SWITCH 5-219 5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-272 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.10 DIRECT INPUTS AND OUTPUTS 5-278 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS <t< td=""><td></td><td></td><td></td><td></td></t<>				
5.7.4 SELECTOR SWITCH				
5.7.5 UNDERFREQUENCY 5-225 5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-270 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-278 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-284 5.8.12 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS				
5.7.6 OVERFREQUENCY 5-226 5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-270 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-278 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.9.1 DCMA INPUTS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.2 RTD INPUTS 5-287 <td></td> <td></td> <td></td> <td></td>				
5.7.7 FREQUENCY RATE OF CHANGE 5-227 5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-271 5.8.4 VIRTUAL OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-276 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.91 DCMA INPUTS 5-287 </td <td></td> <td></td> <td></td> <td></td>				
5.7.8 SYNCHROCHECK 5-229 5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-275 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-276 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-282 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287 <td></td> <td></td> <td></td> <td></td>				
5.7.9 AUTORECLOSE 5-233 5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-276 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.2 RTD INPUTS 5-287				
5.7.10 DIGITAL ELEMENTS 5-239 5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-267 5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-274 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-276 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-278 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.2 RTD INPUTS 5-287				
5.7.11 DIGITAL COUNTERS 5-242 5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-269 5.8.1 CONTACT INPUTS 5-271 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287			AUTORECLOSE	
5.7.12 MONITORING ELEMENTS 5-244 5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-269 5.8.1 CONTACT INPUTS 5-271 5.8.2 VIRTUAL INPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287		5.7.10	DIGITAL ELEMENTO	
5.7.13 COLD LOAD PICKUP 5-267 5.8 INPUTS/OUTPUTS 5-269 5.8.1 CONTACT INPUTS 5-271 5.8.2 VIRTUAL INPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287		E 7 11		5-239
5.8 INPUTS/OUTPUTS 5-269 5.8.1 CONTACT INPUTS 5-271 5.8.2 VIRTUAL INPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287			DIGITAL COUNTERS	5-239 5-242
5.8.1 CONTACT INPUTS 5-269 5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287		5.7.12	DIGITAL COUNTERS MONITORING ELEMENTS	5-239 5-242 5-244
5.8.2 VIRTUAL INPUTS 5-271 5.8.3 CONTACT OUTPUTS 5-272 5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287		5.7.12 5.7.13	DIGITAL COUNTERS	5-239 5-242 5-244
5.8.3 CONTACT OUTPUTS. 5-272 5.8.4 VIRTUAL OUTPUTS. 5-274 5.8.5 REMOTE DEVICES. 5-275 5.8.6 REMOTE INPUTS. 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS. 5-277 5.8.9 RESETTING. 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS. 5-282 5.8.12 IEC 61850 GOOSE ANALOGS. 5-284 5.8.13 IEC 61850 GOOSE INTEGERS. 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5-285 5.9.1 DCMA INPUTS. 5-286 5.9.2 RTD INPUTS. 5-287	5.8	5.7.12 5.7.13	DIGITAL COUNTERS MONITORING ELEMENTS COLD LOAD PICKUP	5-239 5-242 5-244 5-267
5.8.4 VIRTUAL OUTPUTS 5-274 5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 S INPUT	DIGITAL COUNTERS MONITORING ELEMENTS COLD LOAD PICKUP	5-239 5-242 5-244 5-267
5.8.5 REMOTE DEVICES 5-275 5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1	DIGITAL COUNTERS MONITORING ELEMENTS COLD LOAD PICKUP S/OUTPUTS CONTACT INPUTS	5-239 5-242 5-244 5-267 5-269
5.8.6 REMOTE INPUTS 5-276 5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2	DIGITAL COUNTERS MONITORING ELEMENTS COLD LOAD PICKUP	5-239 5-242 5-244 5-267 5-269 5-271
5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS 5-277 5.8.8 REMOTE OUTPUTS 5-277 5.8.9 RESETTING 5-278 5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272
5.8.8 REMOTE OUTPUTS	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4	DIGITAL COUNTERS MONITORING ELEMENTS COLD LOAD PICKUP S/OUTPUTS CONTACT INPUTS VIRTUAL INPUTS VIRTUAL OUTPUTS VIRTUAL OUTPUTS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274
5.8.9 RESETTING	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-276
5.8.10 DIRECT INPUTS AND OUTPUTS 5-279 5.8.11 TELEPROTECTION INPUTS AND OUTPUTS 5-282 5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-276 5-277
5.8.11 TELEPROTECTION INPUTS AND OUTPUTS. 5-282 5.8.12 IEC 61850 GOOSE ANALOGS. 5-284 5.8.13 IEC 61850 GOOSE INTEGERS. 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS. 5-286 5.9.2 RTD INPUTS. 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-276 5-277
5.8.12 IEC 61850 GOOSE ANALOGS 5-284 5.8.13 IEC 61850 GOOSE INTEGERS 5-285 5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-276 5-277 5-277 5-278
5.8.13 IEC 61850 GOOSE INTEGERS	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-277 5-277 5-278 5-279
5.9 TRANSDUCER INPUTS AND OUTPUTS 5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10 5.8.11	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-277 5-277 5-278 5-279 5-282
5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10 5.8.11 5.8.12	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-279 5-272 5-274 5-275 5-277 5-277 5-278 5-279 5-282 5-284
5.9.1 DCMA INPUTS 5-286 5.9.2 RTD INPUTS 5-287	5.8	5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10 5.8.11 5.8.12	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-279 5-272 5-274 5-275 5-277 5-277 5-278 5-279 5-282 5-284
5.9.2 RTD INPUTS		5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10 5.8.11 5.8.12 5.8.13	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-279 5-272 5-274 5-275 5-277 5-277 5-278 5-279 5-282 5-284
		5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10 5.8.11 5.8.12 5.8.13	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-279 5-271 5-272 5-274 5-275 5-277 5-278 5-279 5-282 5-284 5-285
J-200		5.7.12 5.7.13 3 INPUT 5.8.1 5.8.2 5.8.3 5.8.4 5.8.5 5.8.6 5.8.7 5.8.8 5.8.9 5.8.10 5.8.11 5.8.12 5.8.13 9 TRANS	DIGITAL COUNTERS	5-239 5-242 5-244 5-267 5-269 5-271 5-272 5-274 5-275 5-277 5-278 5-279 5-282 5-284 5-285

5.10 TESTING

		TEST MODEFORCE CONTACT INPUTS	
		FORCE CONTACT OUTPUTS	
	5.10.4	PHASOR MEASUREMENT UNIT TEST VALUES	5-295
6. ACTUAL VALUES	6.1 OVER		
	6.1.1	ACTUAL VALUES MENU	6-1
	6.2 STATU		
	6.2.1	CONTACT INPUTS	
	6.2.2	VIRTUAL INPUTS	
	6.2.3 6.2.4	REMOTE INPUTSREMOTE DOUBLE-POINT STATUS INPUTS	
	6.2.5	TELEPROTECTION INPUTS	
	6.2.6	CONTACT OUTPUTS	6-5
	6.2.7	VIRTUAL OUTPUTS	
	6.2.8	AUTORECLOSE	
	6.2.9 6.2.10	REMOTE DEVICES DIGITAL COUNTERS	
		SELECTOR SWITCHES	
	6.2.12	FLEX STATES	6-8
		ETHERNET	
		REAL TIME CLOCK SYNCHRONIZING	
		HI-Z STATUS	
		DIRECT DEVICES STATUS	
		IEC 61850 GOOSE INTEGERS	
		EGD PROTOCOL STATUS	
		TELEPROTECTION CHANNEL TESTS	
		INCIPIENT FAULT DETECTOR REMAINING CONNECTION STATUS	
		PARALLEL REDUNDANCY PROTOCOL (PRP)	
	6.3 METEI 6.3.1	METERING CONVENTIONS	6 14
	6.3.2	SOURCES	
	6.3.3	SENSITIVE DIRECTIONAL POWER	
	6.3.4	SYNCHROCHECK	
	6.3.5	TRACKING FREQUENCY	
	6.3.6	FREQUENCY RATE OF CHANGE	
	6.3.7 6.3.8	FLEXELEMENTSIEC 61580 GOOSE ANALOG VALUES	
	6.3.9	WATTMETRIC GROUND FAULT	
	6.3.10	PHASOR MEASUREMENT UNIT	6-25
		PMU AGGREGATOR	
	6.3.12	TRANSDUCER INPUTS AND OUTPUTS	6-26
	6.4 RECO	RDS	
	6.4.1	FAULT REPORTS	
	6.4.2	EVENT RECORDS	
	6.4.3 6.4.4	OSCILLOGRAPHYDATA LOGGER	
	6.4.5	PHASOR MEASUREMENT UNIT RECORDS	
	6.4.6	BREAKER MAINTENANCE	
	6.4.7	HI-Z RECORDS	6-30
	6.5 PROD	UCT INFORMATION	
	6.5.1	MODEL INFORMATION	6-31
	6.5.2	FIRMWARE REVISIONS	6-31
7. COMMANDS AND	7.4.00	IANDS	
TARGETS	7.1 COMM 7.1.1	COMMANDS MENU	7 4
IARGEIS	7.1.1 7.1.2	VIRTUAL INPUTS	
	7.1.2		

	7.1.3 CLEAR RECORDS	7-2 7-3 7-3
	7.2 TARGETS 7.2.1 TARGETS MENU 7.2.2 TARGET MESSAGES 7.2.3 RELAY SELF-TESTS	7-6
8. THEORY OF OPERATION	8.1 HIGH-IMPEDANCE (HI-Z) FAULT DETECTION 8.1.1 DESCRIPTION	0.1
	8.1.2 ENERGY ALGORITHM	
	8.1.3 RANDOMNESS ALGORITHM	
	8.1.4 EXPERT ARC DETECTOR ALGORITHM	8-2
	8.1.5 SPECTRAL ANALYSIS ALGORITHM	
	8.1.6 LOAD EVENT DETECTOR ALGORITHM	
	8.1.7 LOAD ANALYSIS ALGORITHM	
	8.1.8 LOAD EXTRACTION ALGORITHM	
	8.1.10 ARCING SUSPECTED ALGORITHM	
	8.1.11 OVERCURRENT DISTURBANCE MONITORING	
	8.1.12 HI-Z EVEN HARMONIC RESTRAINT ALGORITHM	8-3
	8.1.13 HI-Z VOLTAGE SUPERVISION ALGORITHM	8-4
	8.2 FAULT LOCATOR	
	8.2.1 FAULT TYPE DETERMINATION	8-5
9. COMMISSIONING	9.1 TESTING 9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME	NTS 9-1
9. COMMISSIONING 10. MAINTENANCE		
	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES	
	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-1
10. MAINTENANCE	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-1
10. MAINTENANCE A. FLEXANALOG AND	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-1 10-3 10-5
10. MAINTENANCE	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-310-5
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-310-5
A. FLEXANALOG AND FLEXINTEGER PARAMETERS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-310-5
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3A-1A-17B-1B-1B-1B-1
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3A-1A-17B-1B-1B-1B-1B-1B-1B-1
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3A-1A-17B-1B-1B-1B-2B-3 H)B-3
10. MAINTENANCE A. FLEXANALOG AND FLEXINTEGER PARAMETERS B. MODBUS	9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEME 10.1 MODULES 10.1.1 REPLACE A MODULE	10-110-3

	B.2.6	EXCEPTION RESPONSES	B-5
	B.3 FILE 1	RANSFERS	
	B.3.1	OBTAINING RELAY FILES VIA MODBUS	B-6
	B.3.2	MODBUS PASSWORD OPERATION	
			D 0
		DRY MAPPING	
	B.4.1	MODBUS MEMORY MAP	
	B.4.2	DATA FORMATS	B-81
C. IEC 61850	C.1 OVER		
COMMUNICATIONS	C.1.1	INTRODUCTION	
	C.1.2	COMMUNICATION PROFILES	C-1
	C.2 SERV	ER DATA ORGANIZATION	
	C.2.1	OVERVIEW	C-2
	C.2.2	GGIO1: DIGITAL STATUS VALUES	C-2
	C.2.3	GGIO2: DIGITAL CONTROL VALUES	C-2
	C.2.4	GGIO3: DIGITAL STATUS AND ANALOG VALUES FROM GOOSE DATA	C-2
	C.2.5	GGIO4: GENERIC ANALOG MEASURED VALUES	C-2
	C.2.6	MMXU: ANALOG MEASURED VALUES	C-3
	C.2.7	PROTECTION AND OTHER LOGICAL NODES	C-3
		ER FEATURES AND CONFIGURATION	
	C.3.1	BUFFERED/UNBUFFERED REPORTING	
	C.3.2	FILE TRANSFER	
	C.3.3	TIMESTAMPS AND SCANNING	
	C.3.4	LOGICAL DEVICE NAME	
	C.3.5	LOCION MODE NAME PREFIXES	
	C.3.6	LOGICAL NODE NAME PREFIXES	
	C.3.7	CONNECTION TIMING	
	C.3.8 C.3.9	NON-IEC 61850 DATA COMMUNICATION SOFTWARE UTILITIES	
		RIC SUBSTATION EVENT SERVICES: GSSE AND GOOSE	C-0
	C.4.1	OVERVIEW	C-7
	C.4.2	GSSE CONFIGURATION	C-7
	C.4.3	FIXED GOOSE	C-7
	C.4.4	CONFIGURABLE GOOSE	C-7
	C.4.5	ETHERNET MAC ADDRESS FOR GSSE/GOOSE	C-10
	C.4.6	GSSE ID AND GOOSE ID SETTINGS	
		850 IMPLEMENTATION VIA ENERVISTA UR SETUP	
	C.5.1	OVERVIEW	
	C.5.2	CONFIGURING IEC 61850 SETTINGS	
	C.5.3	ABOUT ICD FILES	
	C.5.4	CREATING AN ICD FILE WITH ENERVISTA UR SETUP	
	C.5.5	ABOUT SCD FILES	
	C.5.6	IMPORTING AN SCD FILE WITH ENERVISTA UR SETUP	C-20
	C.6 ACSI	CONFORMANCE	
	C.6.1	ACSI BASIC CONFORMANCE STATEMENT	C-22
	C.6.2	ACSI MODELS CONFORMANCE STATEMENT	C-22
	C.6.3	ACSI SERVICES CONFORMANCE STATEMENT	
	0.71.001	NAL NODEO	
		CAL NODES	
	C.7.1	LOGICAL NODES TABLE	U-2b
D. IEC 60870-5-103		0870-5-103	
COMMUNICATIONS	D.1.1	OVERVIEW	
	D.1.2		
	D.1.3	INTEROPERABILITY DOCUMENT	D-2

E. IEC 60870-5-104 COMMUNICATIONS	E.1 IEC 60870-5-104 E.1.1 INTEROPERABILITY DOCUMENT E.1.2 IEC 60870-5-104 POINT LIST	
F. DNP COMMUNICATIONS	F.1 DEVICE PROFILE DOCUMENT F.1.1 DNP V3.00 DEVICE PROFILE	
	F.2 DNP POINT LISTS F.2.1 BINARY INPUT POINTS	F-9
G. RADIUS SERVER	G.1 RADIUS SERVER CONFIGURATION G.1.1 RADIUS SERVER CONFIGURATION	G-1
H. MISCELLANEOUS	H.1 CHANGE NOTES H.1.1 REVISION HISTORYH.1.2 CHANGES TO THE F60 MANUAL	
	H.2 ABBREVIATIONS H.2.1 STANDARD ABBREVIATIONS	H-{
	H.3.1 GE MULTILIN WARRANTY	H-7

INDEX

Use this chapter for initial setup of your new F60 Feeder Protection System.

1.1.1 CAUTIONS AND WARNINGS

Before attempting to install or use the device, review all safety indicators in this document to help prevent injury, equipment damage, or downtime.

The following safety and equipment symbols are used in this document.

△DANGER △WARNING

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Indicates practices not related to personal injury.

a) GENERAL CAUTIONS AND WARNINGS

The following general safety precautions and warnings apply.

Ensure that all connections to the product are correct so as to avoid accidental risk of shock and/or fire, for example such as can arise from high voltage connected to low voltage terminals.

Follow the requirements of this manual, including adequate wiring size and type, terminal torque settings, voltage, current magnitudes applied, and adequate isolation/clearance in external wiring from high to low voltage circuits.

Use the device only for its intended purpose and application.

Ensure that all ground paths are uncompromised for safety purposes during device operation and service.

Ensure that the control power applied to the device, the AC current, and voltage input match the ratings specified on the relay nameplate. Do not apply current or voltage in excess of the specified limits.

Only qualified personnel are to operate the device. Such personnel must be thoroughly familiar with all safety cautions and warnings in this manual and with applicable country, regional, utility, and plant safety regulations.

Hazardous voltages can exist in the power supply and at the device connection to current transformers, voltage transformers, control, and test circuit terminals. Make sure all sources of such voltages are isolated prior to attempting work on the device.

Hazardous voltages can exist when opening the secondary circuits of live current transformers. Make sure that current transformer secondary circuits are shorted out before making or removing any connection to the current transformer (CT) input terminals of the device.

For tests with secondary test equipment, ensure that no other sources of voltages or currents are connected to such equipment and that trip and close commands to the circuit breakers or other switching apparatus are isolated, unless this is required by the test procedure and is specified by appropriate utility/plant procedure.

When the device is used to control primary equipment, such as circuit breakers, isolators, and other switching apparatus, all control circuits from the device to the primary equipment must be isolated while personnel are working on or around this primary equipment to prevent any inadvertent command from this device.

Use an external disconnect to isolate the mains voltage supply.

LED transmitters are classified as IEC 60825-1 Accessible Emission Limit (AEL) Class 1M. Class 1M devices are considered safe to the unaided eye. Do not view directly with optical instruments.

This product is rated to Class A emissions levels and is to be used in Utility, Substation Industrial environments. Not to be used near electronic devices rated for Class B levels.

1.1.2 INSPECTION PROCEDURE

- 1. Open the relay packaging and inspect the unit for physical damage.
- 2. View the rear nameplate and verify that the correct model has been ordered and delivered. The model number is at the top right.

Figure 1–1: REAR NAMEPLATE (EXAMPLE)

- 3. Ensure that the following items are included:
 - Instruction manual (if ordered)
 - GE EnerVista™ DVD (includes the EnerVista UR Setup software and manuals in PDF format)
 - · Mounting screws
- 4. If there is any noticeable physical damage, or any of the contents listed are missing, contact GE Digital Energy as follows.

GE DIGITAL ENERGY CONTACT INFORMATION AND CALL CENTER FOR PRODUCT SUPPORT:

GE Digital Energy 650 Markland Street Markham, Ontario Canada L6C 0M1

TELEPHONE: Worldwide +1 905 927 7070

Europe/Middle East/Africa +34 94 485 88 54 North America toll-free 1 800 547 8629

FAX: +1 905 927 5098

E-MAIL: Worldwide multilin.tech@ge.com

Europe multilin.tech.euro@ge.com

HOME PAGE: http://www.gedigitalenergy.com/multilin

For updates to the instruction manual, firmware, and software, visit the GE Digital Energy website.

1 GETTING STARTED 1.2 UR OVERVIEW

1.2.1 INTRODUCTION TO THE UR

The GE Universal Relay (UR) series is a new generation of digital, modular, and multifunction equipment that is easily incorporated into automation systems, at both the station and enterprise levels.

1.2.2 HARDWARE ARCHITECTURE

a) UR BASIC DESIGN

The UR is a digital-based device containing a central processing unit (CPU) that handles multiple types of input and output signals. The UR device can communicate over a local area network (LAN) with an operator interface, a programming device, or another UR device.

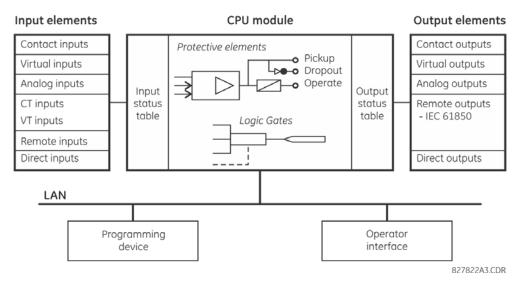


Figure 1-2: UR BLOCK DIAGRAM

The **CPU module** contains firmware that provides protection elements in the form of logic algorithms, as well as programmable logic gates, timers, and latches for control features.

Input elements accept a variety of analog or digital signals from the field. The UR isolates and converts these signals into logic signals used by the relay.

Output elements convert and isolate the logic signals generated by the relay into digital or analog signals that are used to control field devices.

The unit and software are backwards-compatible with UR devices.

b) UR SIGNAL TYPES

The **contact inputs** and **outputs** are digital signals associated with connections to hard-wired contacts. Both 'wet' and 'dry' contacts are supported.

The **virtual inputs and outputs** are digital signals associated with UR-series internal logic signals. Virtual inputs include signals generated by the local user interface. The virtual outputs are outputs of FlexLogic™ equations used to customize the device. Virtual outputs can also serve as virtual inputs to FlexLogic equations.

The **analog inputs and outputs** are signals that are associated with transducers, such as Resistance Temperature Detectors (RTDs).

The **CT and VT inputs** are analog current transformer and voltage transformer signals used to monitor AC power lines. The UR-series relays support 1 A and 5 A CTs.

The **remote inputs and outputs** provide a means of sharing digital point state information between remote UR-series devices. The remote outputs interface to the remote inputs of other UR-series devices. Remote outputs are FlexLogic operands inserted into IEC 61850 GSSE and GOOSE messages.

The **direct inputs and outputs** provide a means of sharing digital point states between a number of UR-series intelligent electronic devices (IEDs) over dedicated fiber, RS422, or G.703 interface. No switching equipment is required as the IEDs are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for pilot-aided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.

1.2.3 SOFTWARE ARCHITECTURE

Firmware is the software embedded in the relay in functional modules that can be installed in any relay as required. This is achieved with object-oriented design and programming (OOD/OOP) techniques.

Object-oriented techniques involve the use of *objects* and *classes*. An object is defined as "a logical entity that contains both data and code that manipulates data." A class is the generalized form of similar objects. By using this approach, one can create a protection class with the protection elements as objects of the class, such as time overcurrent, instantaneous overcurrent, current differential, undervoltage, overvoltage, underfrequency, and distance. These objects represent completely self-contained software modules. The same object-class concept can be used for metering, input/output control, software interface, communications, or any functional entity in the system.

Employing OOD/OOP in the software architecture of the F60 achieves the same features as the hardware architecture: modularity, scalability, and flexibility. The application software for any UR-series device (for example, feeder protection, transformer protection, distance protection) is constructed by combining objects from the various functional classes. This results in a common interface across the UR series.

GE Multilin

1.3.1 SYSTEM REQUIREMENTS

The relay front panel or the EnerVista UR Setup software can be used to communicate with the relay. The software interface is the preferred method to edit settings and view actual values because the computer monitor can display more information.

The minimum system requirements for the EnerVista UR Setup software are as follows:

- Pentium 4 (Core Duo recommended)
- Windows XP with Service Pack 2 (Service Pack 3 recommended), Windows 7, or Windows Server 2008 Release 2 64-bit
- 1 GB of RAM (2 GB recommended)
- 500 MB free hard drive space (1 GB recommended)
- 1024 x 768 display (1280 x 800 recommended)

The following gualified modems have been tested to be compatible with the F60 and the EnerVista UR Setup software:

- US Robotics external 56K FaxModem 5686
- US Robotics external Sportster 56K X2
- PCTEL 2304WT V.92 MDC internal modem

1.3.2 INSTALLATION

After ensuring that the requirements for using EnerVista UR Setup software are met, install the software from the GE EnerVista DVD. Or download the UR EnerVista software from http://www.gedigitalenergy.com/multilin and install it.

If you are upgrading from version 7.0 or 7.1 to 7.2 or later, some CPU modules require a new boot version. Update this first in EnerVista under **Maintenance > Update Firmware**.

To install the UR EnerVista software from the DVD:

- 1. Insert the GE EnerVista DVD into the DVD drive of your computer.
- 2. Click the Install Now button and follow the instructions.
- 3. When installation is complete, start the EnerVista Launchpad application.
- 4. Click the IED Setup section of the Launch Pad window.

Figure 1-3: ADDING A UR DEVICE IN LAUNCHPAD WINDOW

5. In the EnerVista Launch Pad window, click the **Add Product** button and select the appropriate product as follows. Select the **Web** option to ensure the most recent software release, or select **CD** if you do not have an Internet connec-

tion, then click the **Add Now** button to list software items for the product. EnerVista Launchpad obtains the software from the Internet or DVD and automatically starts the installation program.

Figure 1-4: IDENTIFYING THE UR DEVICE TYPE

- 6. Select the complete path, including the new directory name, where the EnerVista UR Setup software is to be installed.
- 7. Click the **Next** button to begin the installation. The files are installed in the directory indicated, and the installation program automatically creates icons and adds an entry to the Windows start menu.
- 8. Click **Finish** to complete the installation. The UR device is added to the list of installed intelligent electronic devices (IEDs) in the EnerVista Launchpad window, as shown.

Figure 1-5: UR DEVICE ADDED TO LAUNCHPAD WINDOW

1.3.3 CONFIGURING THE F60 FOR SOFTWARE ACCESS

a) OVERVIEW

You connect remotely to the F60 through the rear RS485 or Ethernet port with a computer running the EnerVista UR Setup software. The F60 can also be accessed locally with a laptop computer through the front panel RS232 port or the rear Ethernet port using the *Quick Connect* feature.

- To configure the F60 for remote access via the rear RS485 port, see the Configuring Serial Communications section.
- To configure the F60 for remote access via the rear Ethernet port, see the *Configuring Ethernet Communications* section. An Ethernet module must be specified at the time of ordering.
- To configure the F60 for local access with a laptop through either the front RS232 port or rear Ethernet port, see the
 Using the Quick Connect Feature section.

b) CONFIGURING SERIAL COMMUNICATIONS

A GE Multilin F485 converter (or compatible RS232-to-RS485 converter) is required. See the F485 instruction manual for details.

- 1. Connect a serial cable to the RS485 terminal on the back of the UR device.
- 2. In the EnerVista Launchpad software on the computer, select the UR device to start the software.
- 3. Click the **Device Setup** button to open the Device Setup window, and click the **Add Site** button to define a new site.
- 4. Enter a site name in the Site Name field. Optionally add a short description of the site along with the display order of devices defined for the site. This example uses "Location 1" as the site name. When done, click the OK button. The new site appears in the upper-left list in the EnerVista UR Setup window.
- 5. Click the **Device Setup** button, then select the new site to re-open the Device Setup window.
- 6. Click the Add Device button to define the new device.
- 7. Enter a name in the "Device Name" field and a description (optional) of the site.
- 8. Select "Serial" from the **Interface** drop-down list. This displays a number of interface parameters that must be entered for serial communications.

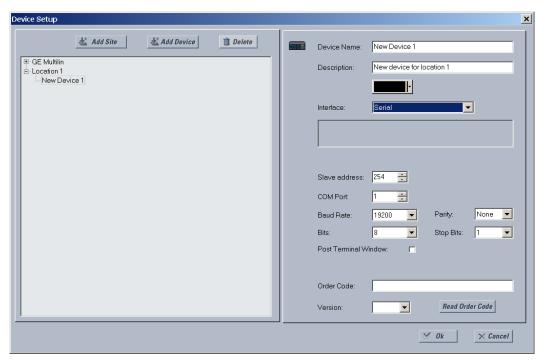


Figure 1-6: CONFIGURING SERIAL COMMUNICATIONS

- 9. Enter the relay slave address, COM port, baud rate, and parity settings from the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COM-MUNICATIONS ⇒ ⊕ SERIAL PORTS menu in their respective fields.
- 10. Click the Read Order Code button to connect to the F60 device and upload the order code. If a communications error occurs, ensure that the EnerVista UR Setup serial communications values entered in the previous step correspond to the relay setting values.
- 11. Click the **OK** button when the relay order code has been received. The new device is added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.

The device has now been configured for RS232 communications. Proceed to the *Connecting to the F60* section to begin communication.

c) CONFIGURING ETHERNET COMMUNICATIONS

Before starting, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay. To setup the relay for Ethernet communications, you define a Site, then add the relay as a Device at that site. The computer and UR device must be on the same subnet.

- 12. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.
- 13. Click the **Device Setup** button to open the Device Setup window, then click the **Add Site** button to define a new site.
- 14. Enter the desired site name in the "Site Name" field. If desired, a short description of site can also be entered along with the display order of devices defined for the site. In this example, we use "Location 2" as the site name. Click the **OK** button when complete.
- 15. The new site appears in the upper-left list in the EnerVista UR Setup window. Click the **Device Setup** button then select the new site to re-open the Device Setup window.
- 16. Click the **Add Device** button to define the new device.
- 17. Enter the desired name in the "Device Name" field and a description (optional) of the site.
- 18. Select "Ethernet" from the **Interface** drop-down list. This displays a number of interface parameters that must be entered for proper Ethernet functionality.

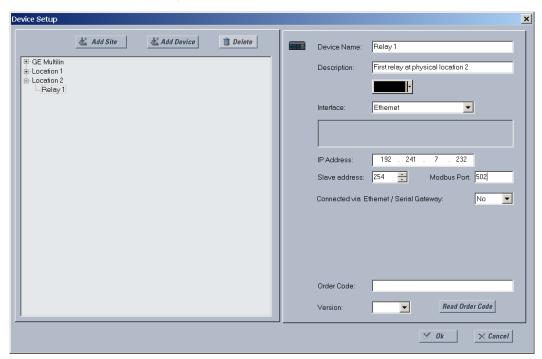


Figure 1-7: CONFIGURING ETHERNET COMMUNICATIONS

- 19. Enter the relay IP address specified in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS in the "IP Address" field.
- 20. Enter the relay slave address and Modbus port address values from the respective settings in the SETTINGS ⇒ PROD-UCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ MODBUS PROTOCOL menu.
- 21. Click the Read Order Code button to connect to the F60 device and upload the order code. If an communications error occurs, ensure that the three EnerVista UR Setup values entered in the previous steps correspond to the relay setting values.
- 22. Click **OK** when the relay order code has been received. The new device is added to the Site List window (or Online window) located in the top left corner of the main EnerVista UR Setup window.

The Site Device has now been configured for Ethernet communications. Proceed to the *Connecting to the F60* section to begin communications.

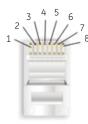
1.3.4 USING THE QUICK CONNECT FEATURE

a) USING QUICK CONNECT VIA THE FRONT PANEL RS232 PORT

Before starting, verify that the serial cable is properly connected from the computer to the front panel RS232 port with a straight-through 9-pin to 9-pin RS232 cable.

- Verify that the latest version of the EnerVista UR Setup software is installed (available from the GE EnerVista CD or online from http://www.gedigitalenergy.com/multilin). See the Software Installation section if not already installed.
- 2. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.
- Click the Quick Connect button to open the Quick Connect dialog box.

- 4. Select the Serial interface and the correct COM Port, then click Connect.
- 5. The EnerVista UR Setup software creates a site named "Quick Connect" with a corresponding device also named "Quick Connect" and displays them at the upper-left of the screen. Expand the sections to view data directly from the F60 device.


Each time that the EnerVista UR Setup software is initialized, click the **Quick Connect** button to establish direct communications to the F60 device. This ensures that configuration of the EnerVista UR Setup software matches the F60 model number.

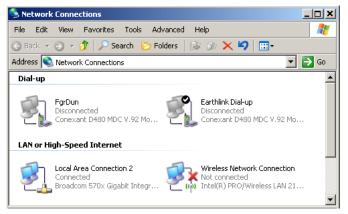
b) USING QUICK CONNECT VIA THE REAR ETHERNET PORTS

To use the Quick Connect feature to access the F60 from a computer through Ethernet, first assign an IP address to the relay from the front panel keyboard.

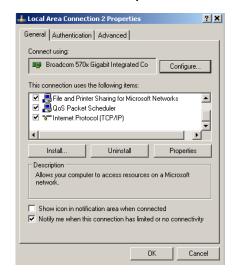
- 1. Press the MENU key until the SETTINGS menu displays.
- 2. Navigate to the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS setting.
- 3. Enter an IP address, for example "1.1.1.1," and select the ENTER key to save the value.
- 4. In the same menu, select the SUBNET IP MASK setting.
- 5. Enter a subnet IP address, for example "255.0.0.0," and press the ENTER key to save the value.

Next, use an Ethernet cross-over cable to connect the computer to the rear Ethernet port. In case you need it, the figure shows the pinout for an Ethernet cross-over cable.

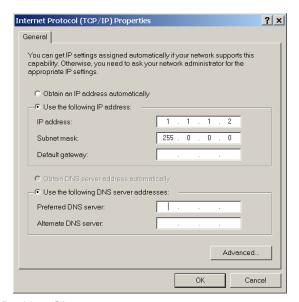
END	END 1		
Pin	Wire color	Diagram	
1	White/orange		
2	Orange		
3	White/green		
4	Blue		
5	White/blue		
6	Green		
7	White/brown		
8	Brown		


END	END 2		
Pin	Wire color	Diagram	
1	White/green		
2	Green		
3	White/orange		
4	Blue		
5	White/blue		
6	Orange		
7	White/brown		
8	Brown		

842799A1.CDR


Figure 1-8: ETHERNET CROSS-OVER CABLE PIN LAYOUT

Now, assign the computer an IP address compatible with the relay's IP address.


From the Windows desktop, right-click the My Network Places icon and select Properties to open the network connections window.

2. Right-click the Local Area Connection icon and select Properties.

3. Select the Internet Protocol (TCP/IP) item from the list, and click the Properties button.

4. Click the "Use the following IP address" box.

- 5. Enter an **IP address** with the first three numbers the same as the IP address of the F60 relay and the last number different (in this example, 1.1.1.2).
- 6. Enter a subnet mask equal to the one set in the F60 (in this example, 255.0.0.0).
- 7. Click the **OK** button to save the values.

Before continuing, test the Ethernet connection.

- 1. Open a Windows console window by selecting Start > Run from the Windows Start menu and typing "cmd".
- 2. Type the following command, substituting the IP address of 1.1.1.1 with yours:

```
C:\WINNT>ping 1.1.1.1
```

3. If the connection is successful, the system returns four replies similar to the following:

```
Pinging 1.1.1.1 with 32 bytes of data:

Reply from 1.1.1.1: bytes=32 time<10ms TTL=255

Ping statistics for 1.1.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip time in milliseconds:

Minimum = 0ms, Maximum = 0ms, Average = 0 ms
```

- 4. Note that the values for time and TTL vary depending on local network configuration.
- 5. If the following sequence of messages appears when entering the C:\winnt>ping 1.1.1.1 command:

```
Pinging 1.1.1.1 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 1.1.1.1:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Approximate round trip time in milliseconds:

Minimum = Oms, Maximum = Oms, Average = 0 ms

Pinging 1.1.1.1 with 32 bytes of data:
```

verify the physical connection between the F60 and the laptop computer, and double-check the programmed IP address in the PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS setting, then repeat step 2.

6. If the following sequence of messages appears when entering the C:\WINNT>ping 1.1.1.1 command:

```
Pinging 1.1.1.1 with 32 bytes of data:

Hardware error.

Hardware error.

Hardware error.

Ping statistics for 1.1.1.1:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Approximate round trip time in milliseconds:

Minimum = 0ms, Maximum = 0ms, Average = 0 ms

Pinging 1.1.1.1 with 32 bytes of data:
```

verify the physical connection between the F60 and the laptop computer, and double-check the programmed IP address in the PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ NETWORK ⇒ IP ADDRESS setting, then repeat step 2.

7. If the following sequence of messages appears when entering the C:\winnt>ping 1.1.1.1 command:

```
Pinging 1.1.1.1 with 32 bytes of data:
   Destination host unreachable.
   Destination host unreachable.
   Destination host unreachable.
   Destination host unreachable.
   Ping statistics for 1.1.1.1:
       Packets: Sent = 4, Received = 0, Lost = 4 (100\% loss),
   Approximate round trip time in milliseconds:
       Minimum = Oms, Maximum = Oms, Average = O ms
   Pinging 1.1.1.1 with 32 bytes of data:
verify the IP address is programmed in the local computer by entering the ipconfig command in the command window.
   C:\WINNT>ipconfig
   Windows IP Configuration
   Ethernet adapter <F4FE223E-5EB6-4BFB-9E34-1BD7BE7F59FF>:
          Connection-specific DNS suffix. . :
          Default Gateway . . . . . . . :
   Ethernet adapter Local Area Connection:
          Connection-specific DNS suffix .:
          IP Address. . . . . . . . . . : 1.1.1.2
          Subnet Mask . . . . . . . . . . . . . . . . . 255.0.0.0
          Default Gateway . . . . . . . :
   C:\WINNT>
```

Before using the Quick Connect feature through the Ethernet port, disable any configured proxy settings in Internet Explorer.

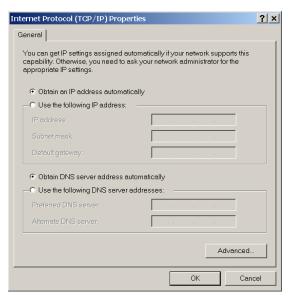
- Start the Internet Explorer software.
- 2. Select the **Tools > Internet Options** menu item and click the **Connections** tab.
- Click on the LAN Settings button to open the following window.

4. Ensure that the "Use a proxy server for your LAN" box is not checked.

If this computer is used to connect to the Internet, re-enable any proxy server settings after the laptop has been disconnected from the F60 relay.

- 1. Start the Internet Explorer software.
- 2. Select the "UR" device from the EnerVista Launchpad to start EnerVista UR Setup.

3. Click the Quick Connect button to open the Quick Connect dialog box.



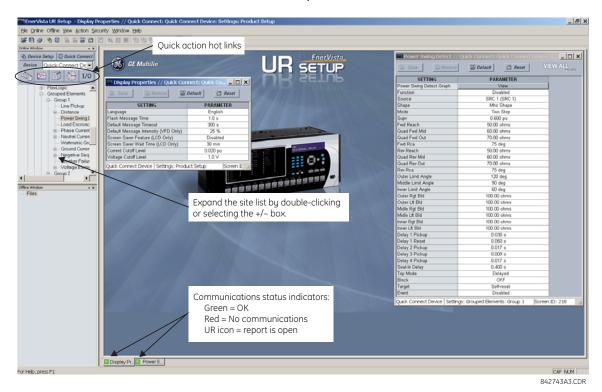
- 4. Select the **Ethernet** interface and enter the IP address assigned to the F60, then click the **Connect** button. The EnerVista UR Setup software creates a site named "Quick Connect" with a corresponding device also named "Quick Connect" and displays them at the upper-left of the screen.
- 5. Expand the sections to view data directly from the F60 device.

Each time the EnerVista UR Setup software is initialized, click the **Quick Connect** button to establish direct communications to the F60. This ensures that configuration of the EnerVista UR Setup software matches the F60 model number.

When direct communications with the F60 via Ethernet is complete, make the following changes:

- From the Windows desktop, right-click the My Network Places icon and select Properties to open the network connections window.
- Right-click the Local Area Connection icon and select the Properties item.
- 3. Select the Internet Protocol (TCP/IP) item from the list provided and click the Properties button.
- 4. Set the computer to "Obtain a relay address automatically" as shown.

If this computer is used to connect to the Internet, re-enable any proxy server settings after the computer has been disconnected from the F60 relay.


AUTOMATIC DISCOVERY OF ETHERNET DEVICES

The EnerVista UR Setup software can automatically discover and communicate to all UR-series IEDs located on an Ethernet network.

Using the Quick Connect feature, a single click of the mouse triggers the software to automatically detect any UR-series relays located on the network. The EnerVista UR Setup software then proceeds to configure all settings and order code options in the **Device Setup** menu. This feature allows the user to identify and interrogate all UR-series devices at a location.

1.3.5 CONNECTING TO THE F60 RELAY

 Open the Display Properties window through the Site List tree as shown. The Display Properties window opens with a status indicator on the lower left of the EnerVista UR Setup window.

If the status indicator is red, verify that the Ethernet network cable is properly connected to the Ethernet port on the back of the relay and that the relay has been properly setup for communications (steps A and B earlier).

If a relay icon appears in place of the status indicator, than a report (such as an oscillography or event record) is open. Close the report to re-display the green status indicator.

3. The Display Properties settings can now be edited, printed, or changed.

See chapter 4 in this manual or the EnerVista UR Setup Help File for information about the using the EnerVista UR Setup software interface.

QUICK ACTION HOT LINKS

The EnerVista UR Setup software has several quick action buttons to provide instant access to several functions that are often performed when using F60 relays. From the online window, users can select the relay to interrogate from a pull-down window, then click the button for the action they want to perform. The following quick action functions are available:

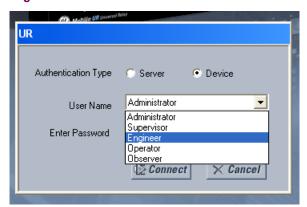
- · View the F60 event record
- · View the last recorded oscillography record
- View the status of all F60 inputs and outputs
- View all of the F60 metering values
- View the F60 protection summary
- · Generate a service report

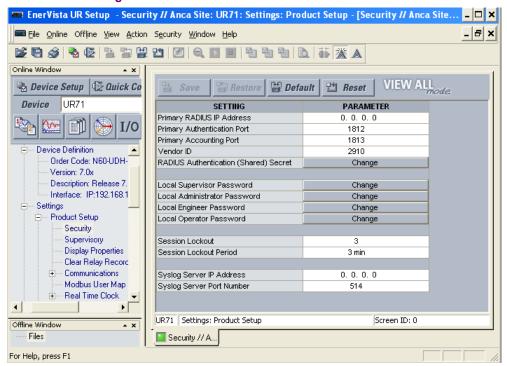
1.3.6 SETTING UP CYBERSENTRY AND CHANGING DEFAULT PASSWORD

If and when first using CyberSentry security, use the following procedure for set up.

- Log in to the relay as Administrator by using the Value keys on the front panel or through EnerVista connected serially (so that no IP address is required). If logging in through EnerVista choose Device authentication. Enter the default password "ChangeMe1#". Note that the "Lock relay" setting needs to be disabled in the **Security > Supervisory** menu. When this setting is disabled, configuration and firmware upgrade are possible. By default, this setting is disabled.
- 2. Enable the Supervisor role if you have a need for it.
- Make any required changes in configuration, such as setting a valid IP address for communication over Ethernet.
- 4. Log out of the Administrator account by choosing None.

Next, device or server authentication can be chosen on the login screen, but the choice is available only in EnerVista. Use device authentication to log in using the five pre-configured roles (Administrator, Supervisor, Engineer, Operator, Observer). When using a serial connection, only device authentication is supported. When server authentication is required, characteristics for communication with a RADIUS server must be configured on the UR. This is possible only through the EnerVista software. The RADIUS server itself also must be configured. The appendix called RADIUS Server gives an example of how to setup a simple RADIUS server. Once both the RADIUS server and the parameters for connecting UR to the server have been configured, you can choose server authentication on the login screen of EnerVista.




Figure 1-9: LOGIN SCREEN FOR CYBERSENTRY

During the commissioning phase, you have the option to bypass the use of passwords. Do so by enabling the Bypass Access setting under **SETTINGS > PRODUCT SETUP > SECURITY > SUPERVISORY**. Be sure to disable this bypass setting after commissioning the device.

You can change the password for any role either from the front panel or through EnerVista.

If using EnerVista, navigate to **Settings > Product Setup > Security**. Change the **Local Administrator Password**, for example. It is strongly recommended that the password for the Administrator be changed from the default. Changing the passwords for the other three roles is optional.

Figure 1-10: CHANGING THE DEFAULT PASSWORD

1.4.1 MOUNTING AND WIRING

See Chapter 3: Hardware for mounting and wiring instructions.

1.4.2 COMMUNICATIONS

The EnerVista UR Setup software communicates to the relay via the faceplate RS232 port or the rear panel RS485 / Ethernet ports. To communicate via the faceplate RS232 port, a standard straight-through serial cable is used. The DB-9 male end is connected to the relay and the DB-9 or DB-25 female end is connected to the computer COM2 port as described in the *CPU Communication Ports* section of chapter 3.

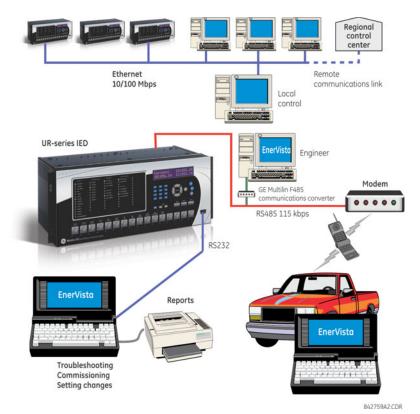


Figure 1-11: RELAY COMMUNICATION OPTIONS

To communicate through the F60 rear RS485 port from a computer RS232 port, the GE Multilin RS232/RS485 converter box is required. This device (catalog number F485) connects to the computer using a straight-through serial cable. A shielded twisted-pair (20, 22, or 24 AWG) connects the F485 converter to the F60 rear communications port. The converter terminals (+, –, GND) are connected to the F60 communication module (+, –, COM) terminals. See the *CPU Communication Ports* section in chapter 3 for details. The line is terminated with an R-C network (that is, 120 Ω , 1 nF) as described in the chapter 3.

1.4.3 FACEPLATE DISPLAY

All messages are displayed on a backlit liquid crystal display (LCD) to make them visible under poor lighting conditions. While the keypad and display are not actively being used, the display defaults to user-defined messages. Any high-priority event-driven message automatically overrides the default message and appears on the display.

1.5.1 FACEPLATE KEYPAD

Display messages are organized into pages under the following headings: actual values, settings, commands, and targets. The MENU key navigates through these pages. Each heading page is divided further into logical subgroups.

The MESSAGE keys navigate through the subgroups. The VALUE keys increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values can be entered with the numeric keypad.

The decimal key initiates and advances to the next character in text edit mode or enters a decimal point.

The HELP key can be pressed at any time for context-sensitive help messages.

The ENTER key stores altered setting values.

When entering an IP address on the front panel, key in the first sequence of the number, then press the • key for the decimal place. For example, for 127.0.0.1, press 127, then •, then 0, then •, then 0, then •, then 1. To save the address, press the ENTER key.

1.5.2 MENU NAVIGATION

Press the MENU key to select a header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the following main heading pages:

- · Actual values
- Settings
- Commands
- Targets
- User displays (when enabled)

1.5.3 MENU HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (\blacksquare), while sub-header pages are indicated by single scroll bar characters (\blacksquare). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE UP and DOWN keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE RIGHT key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE LEFT key from a setting value or actual value display returns to the header display.

HIGHEST LEVEL (SETTING VALUE) SETTINGS PRODUCT SETUP PASSWORD SECURITY ACCESS LEVEL: Restricted SETTINGS SYSTEM SETUP

1.5.4 RELAY ACTIVATION

The relay is in the default "Not Programmed" state when it leaves the factory. When powered up successfully, the Trouble LED is on and the In Service LED off. The relay in the "Not Programmed" state blocks signaling of any output relay. These conditions remain until the relay is explicitly put in the "Programmed" state.

Select the menu message SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Pi\$ INSTALLATION ⇒ RELAY SETTINGS

RELAY SETTINGS: Not Programmed

1. To put the relay in the "Programmed" state, press either of the VALUE keys once and then press ENTER. The faceplate Trouble LED turns off and the In Service LED turns on.

The settings for the relay can be programmed manually (see *Chapter 5*) via the faceplate keypad or remotely via the EnerVista UR Setup software (see the EnerVista UR Setup help file).

1.5.5 RELAY PASSWORDS

a) PASSWORD SECURITY

It is recommended that passwords be set for each security level and assigned to specific personnel. There are two user security access levels, COMMAND and SETTING.

1. COMMAND

The COMMAND access level restricts the user from making any settings changes, but allows the user to perform the following operations:

- Operate breakers via faceplate keypad
- · Change state of virtual inputs
- · Clear event records
- · Clear oscillography records
- · Operate user-programmable pushbuttons

2. SETTING

The SETTING access level allows the user to make any changes to any of the setting values.

See the Changing Settings section in Chapter 4 for complete instructions on setting security-level passwords.

b) CYBERSENTRY

When the CyberSentry option is purchased, advanced security services are available, using either device authentication or server authentication using RADIUS. When this option is purchased, the basic password security is disabled automatically. For more information, see the CyberSentry content in the *Security* section of the next chapter.

1.5.6 FLEXLOGIC CUSTOMIZATION

FlexLogic equation editing is required for setting user-defined logic for customizing the relay operations. See the *FlexLogic* section in Chapter 5.

1.5.7 COMMISSIONING

The F60 requires minimal maintenance after it is commissioned into service. Since the F60 is a microprocessor-based relay, its characteristics do not change over time. As such, no further functional tests are required.

The F60 performs a number of continual self-tests and takes the necessary action in case of any major errors (see the *Relay Self-tests* section in chapter 7). However, it is recommended that F60 maintenance be scheduled with other system maintenance. This maintenance can involve in-service, out-of-service, or unscheduled maintenance.

In-service maintenance:

- Visual verification of the analog values integrity, such as voltage and current (in comparison to other devices on the corresponding system).
- 2. Visual verification of active alarms, relay display messages, and LED indications.
- 3. LED test.
- 4. Visual inspection for any damage, corrosion, dust, or loose wires.
- Event recorder file download with further events analysis.

Out-of-service maintenance:

- Check wiring connections for firmness.
- 2. Analog values (currents, voltages, RTDs, analog inputs) injection test and metering accuracy verification. Calibrated test equipment is required.
- Protection elements setting verification (analog values injection or visual verification of setting file entries against relay settings schedule).
- Contact inputs and outputs verification. This test can be conducted by direct change of state forcing or as part of the system functional testing.
- 5. Visual inspection for any damage, corrosion, or dust.
- 6. Event recorder file download with further events analysis.
- 7. LED Test and pushbutton continuity check.

Unscheduled maintenance, such as a disturbance causing system interruption:

1. View the event recorder and oscillography or fault report for correct operation of inputs, outputs, and elements.

If it is concluded that the relay or one of its modules is of concern, contact GE Multilin for service.

The F60 Feeder Protection System is a microprocessor based relay designed for feeder protection.

Overvoltage and undervoltage protection, overfrequency and underfrequency protection, breaker failure protection, directional current supervision, fault diagnostics, RTU, and programmable logic functions are provided. This relay also provides phase, neutral, ground and negative sequence, instantaneous and time overcurrent protection. The time overcurrent function provides multiple curve shapes or FlexCurvesTM for optimum co-ordination. Automatic reclosing, synchrocheck, and line fault locator features are also provided. When equipped with a type 8Z CT/VT module, an element for detecting high impedance faults is provided.

Voltage, current, and power metering is built into the relay as a standard feature. Current parameters are available as total waveform RMS magnitude, or as fundamental frequency only RMS magnitude and angle (phasor).

Diagnostic features include a sequence of records capable of storing 1024 time-tagged events. The internal clock used for time-tagging can be synchronized with an IRIG-B signal or via the SNTP protocol over the Ethernet port. This precise time stamping allows the sequence of events to be determined throughout the system. Events can also be programmed (via FlexLogic™ equations) to trigger oscillography data capture which may be set to record the measured parameters before and after the event for viewing on a personal computer (PC). These tools significantly reduce troubleshooting time and simplify report generation in the event of a system fault.

Several options are available for communication. A faceplate RS232 port can be used to connect to a computer for the programming of settings and the monitoring of actual values. The RS232 port has a fixed baud rate of 19.2 kbps. The rear RS485 port allows independent access by operating and engineering staff. It can be connected to system computers with baud rates up to 115.2 kbps. All serial ports use the Modbus RTU protocol. The IEC 60870-5-103 protocol is supported on the RS485 interface. IEC 60870-5-103, DNP, and Modbus cannot be enabled simultaneously on this interface. Also only one of the DNP, IEC 60870-5-103, and IEC 60870-5-104 protocols can be enabled at any time on the relay. When the IEC 60870-5-103 protocol is chosen, the RS485 port has a fixed even parity and the baud rate can be either 9.6 kbps or 19.2 kbps. The 100Base-FX Ethernet interface provides fast, reliable communications in noisy environments. The Ethernet port supports IEC 61850, IEC 61850-90-5, Modbus/TCP, and TFTP protocols, PTP (according to IEEE Std. 1588-2008 or IEC 61588), and allows access to the relay via any standard web browser (F60 web pages). The IEC 60870-5-104 protocol is supported on the Ethernet port, and DNP and IEC 60870-5-104 cannot be enabled at the same time. The Ethernet port also supports the Parallel Redundancy Protocol (PRP) of IEC 62439-3 (clause 4, 2012) when purchased as a CPU module option.

The F60 IEDs use flash memory technology which allows field upgrading as new features are added. The following single line diagram illustrates the relay functionality using ANSI (American National Standards Institute) device numbers.

Table 2-1: ANSI DEVICE NUMBERS AND FUNCTIONS

DEVICE NUMBER	FUNCTION
25 (2)	Synchrocheck
27P (2)	Phase undervoltage
27X	Auxiliary undervoltage
32	Sensitive directional power
32N	Wattmetric zero-sequence directional
50BF/50NBF	Breaker failure
50DD	Disturbance detector
50G	Ground instantaneous overcurrent
50N	Neutral instantaneous overcurrent
50P	Phase instantaneous overcurrent
50_2	Negative-sequence instantaneous overcurrent
51G	Ground time overcurrent
51N	Neutral time overcurrent

DEVICE NUMBER	FUNCTION
51P	Phase time overcurrent
51_2	Negative-sequence time overcurrent
52	AC circuit breaker
59N	Neutral overvoltage
59P	Phase overvoltage
59X	Auxiliary overvoltage
59_2	Negative-sequence overvoltage
67N	Neutral directional overcurrent
67P	Phase directional
67_2	Negative-sequence directional overcurrent
79	Automatic recloser
810	Overfrequency
81U	Underfrequency

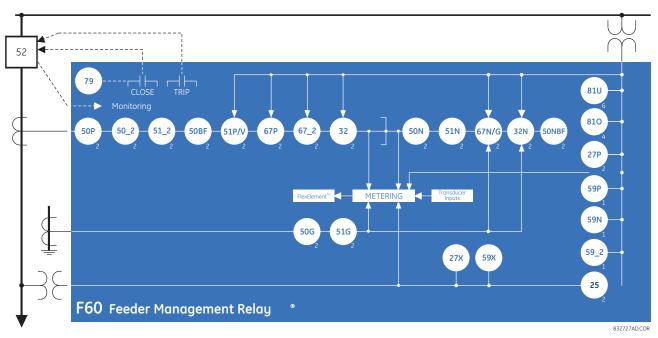


Figure 2-1: SINGLE LINE DIAGRAM

Table 2-2: OTHER DEVICE FUNCTIONS

FUNCTION	FUNCTION	FUNCTION
Breaker arcing current (I ² t)	Disconnect switches (8)	Oscillography
Breaker control (2)	Event recorder	Phasor measurement unit
Breaker flashover	Fault detector and fault report	Setting groups (6)
Breaker restrike	Fault locator	Thermal overload protection
Broken conductor detection	FlexElements™ (8)	Time synchronization over IRIG-B or IEEE 1588
Cold load pickup (2)	FlexLogic equations	Time synchronization over SNTP
Contact inputs (up to 96)	High impedance fault detection (Hi-Z)	Transducer inputs and outputs
Contact outputs (up to 64)	IEC 60870-5-103 communications (optional)	User-definable displays
Control pushbuttons	IEC 61850 communications (optional)	User-programmable LEDs
CyberSentry™ security	Incipient cable fault detection	User-programmable pushbuttons
Data logger	Load encroachment	User-programmable self-tests
Demand	Metering: current, voltage, power, PF, energy, frequency, harmonics, THD	Virtual inputs (64)
Digital counters (8)	Modbus user map	Virtual outputs (96)
Digital elements (48)	Non-volatile latches	VT fuse failure
Direct inputs and outputs (32)	Non-volatile selector switch	一

2.1.2 SECURITY

The following security features are available:

- · Password security Basic security present in the default offering of the product
- EnerVista security Role-based access to various EnerVista software screens and configuration elements. The feature is available in the default offering of the product and only in the EnerVista software.
- CyberSentry security Advanced security options available as a software option. When purchased, the options are
 automatically enabled, and the default Password security and EnerVista security are disabled.

a) ENERVISTA SECURITY

The EnerVista security management system is a role-based access control (RBAC) system that allows an administrator to manage the privileges of multiple users. This allows for access control of UR devices by multiple personnel within a substation and conforms to the principles of RBAC as defined in ANSI INCITS 359-2004. The EnerVista security management system is disabled by default to allow the administrator direct access to the EnerVista software after installation. It is recommended that security be enabled before placing the device in service.

Basic password or enhanced CyberSentry security applies, depending on purchase.

b) PASSWORD SECURITY

Password security is a basic security feature present in the default offering of the product.

Two levels of password security are provided: command and setting.

The following operations are under command password supervision:

- · Operating the breakers via faceplate keypad
- Changing the state of virtual inputs
- · Clearing the event records
- Clearing the oscillography records
- · Clearing fault reports
- · Changing the date and time
- Clearing the breaker arcing current
- Clearing energy records
- Clearing the data logger
- Clearing the user-programmable pushbutton states

The following operations are under setting password supervision:

- · Changing any setting
- Test mode operation

The command and setting passwords are defaulted to "0" when the relay is shipped from the factory. When a password is set to "0", the password security feature is disabled. As shown in the figures, the window indicates when the password is at the default and when the password has been set.

Figure 2-2: WINDOW INDICATES DEFAULT PASSWORD (LEFT) AND PASSWORD SET (RIGHT)

The F60 supports password entry from a local or remote connection. Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the through the faceplate RS232 port. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

When entering a settings or command password via EnerVista or any serial interface, the user must enter the corresponding connection password. If the connection is to the back of the F60, the remote password must be used. If the connection is to the RS232 port of the faceplate, the local password applies.

Events are logged in the Event Recorder. The FlexLogic operands and events are updated every five seconds.

c) CYBERSENTRY SECURITY

CyberSentry Embedded Security is a software option that provides advanced security services. When this option is purchased, the basic password security is disabled automatically.

CyberSentry provides security through the following features:

An Authentication, Authorization, Accounting (AAA) Remote Authentication Dial-In User Service (RADIUS) client that
is centrally managed, enables user attribution, provides accounting of all user activities, and uses secure standardsbased strong cryptography for authentication and credential protection.

- A Role-Based Access Control (RBAC) system that provides a permission model that allows access to UR device operations and configurations based on specific roles and individual user accounts configured on the AAA server (that is, Administrator, Supervisor, Engineer, Operator, Observer).
- Security event reporting through the Syslog protocol for supporting Security Information Event Management (SIEM) systems for centralized cybersecurity monitoring.
- Strong encryption of all access and configuration network messages between the EnerVista software and UR devices
 using the Secure Shell (SSH) protocol, the Advanced Encryption Standard (AES), and 128-bit keys in Galois Counter
 Mode (GCM) as specified in the U.S. National Security Agency Suite B extension for SSH and approved by the
 National Institute of Standards and Technology (NIST) FIPS-140-2 standards for cryptographic systems.

Example: Administrative functions can be segmented away from common operator functions, or engineering type access, all of which are defined by separate roles, as shown in the following figure, so that access of UR devices by multiple personnel within a substation is allowed. Permission for each role are outlined in the next section.

Administrator

Engineer

Operator

Observer

Supervisor

Figure 2-3: CYBERSENTRY USER ROLES

There are two types of authentication supported by CyberSentry that can be used to access the UR device:

- Device Authentication (local UR device authenticates)
- Server Authentication (RADIUS server authenticates)

The EnerVista software allows access to functionality that is determined by the user role, which comes either from the local UR device or RADIUS server.

The EnerVista software has a device authentication option on the login screen for accessing the UR device. When the "Device" button is selected, the UR uses its local authentication database and not the RADIUS server to authenticate the user. In this case, it uses its built-in roles (Administrator, Engineer, Supervisor, Observer, Operator) as login names and the associated passwords are stored on the UR device. As such, when using the local accounts, access is not user-attributable.

In cases where user attributable access is required especially to facilitate auditable processes for compliance reasons, use RADIUS authentication only.

When the "Server" Authentication Type option is selected, the UR uses the RADIUS server and not its local authentication database to authenticate the user.

No password or security information are displayed in plain text by the EnerVista software or UR device, nor are they ever transmitted without cryptographic protection.

CYBERSENTRY USER ROLES

CyberSentry user roles (Administrator, Engineer, Operator, Supervisor, Observer) limit the levels of access to various UR device functions. This means that the EnerVista software allows for access to functionality based on the user's logged in role.

Example: Observer cannot write any settings.

The table lists the roles that are supported and their corresponding capabilities.

Table 2-3: PERMISSIONS BY USER ROLE FOR CYBERSENTRY

Roles	Administrator	Engineer	Operator	Supervisor	Observer
	Complete access	Complete access except for CyberSentry Security	Command menu	Authorizes writing	Default role
Device Definition	R	R	R	R	R
Settings					
Product Setup					
Security (CyberSentry)	RW	R	R	R	R
Supervisory	see table notes	R	R	see table notes	R
Display Properties	RW	RW	R	R	R
Clear relay records	RW	RW	R	R	R
Communications	RW	RW	R	R	R
Modbus user map	RW	RW	R	R	R
Real Time Clock	RW	RW	R	R	R
Oscillography	RW	RW	R	R	R
Data Logger	RW	RW	R	R	R
Demand	RW	RW	R	R	R
User Programmable LEDs	RW	RW	R	R	R
User Programmable	RW	RW	R	R	R
Control Pushbuttons	RW	RW	R	R	R
User programmable Pushbuttons	RW	RW	R	R	R
Flex states	RW	RW	R	R	R
User definable dis- plays	RW	RW	R	R	R
Direct I/O	RW	RW	R	R	R
Tele-protection	RW	RW	R	R	R
Installation	RW	RW	R	R	R
System Setup	RW	RW	R	R	R
FlexLogic	RW	RW	R	R	R
Grouped Elements	RW	RW	R	R	R
Control Elements	RW	RW	R	R	R
Inputs / Outputs	RW	RW	R	R	R
Contact Input	RW	RW	R	R	R
Contact Input thresh-	RW	RW	R	R	R
Virtual Inputs	RW	RW	R	R	R
Contact Output	RW	RW	R	R	R
Virtual Output	RW	RW	R	R	R
Remote Devices	RW	RW	R	R	R

Roles	Administrator	Engineer	Operator	Supervisor	Observer
Remote Inputs	RW	RW	R	R	R
Remote DPS input	RW	RW	R	R	R
Remote Output DNA	RW	RW	R	R	R
Remote Output user	RW	RW	R	R	R
Resetting	RW	RW	R	R	R
Direct Inputs	RW	RW	R	R	R
Direct Outputs	RW	RW	R	R	R
Teleprotection	RW	RW	R	R	R
Direct Analogs	RW	RW	R	R	R
Direct Integers	RW	RW	R	R	R
IEC61850 GOOSE	RW	RW	R	R	R
IEC61850 GOOSE	RW	RW	R	R	R
Transducer I/O	RW	RW	R	R	R
Testing	RW	RW	R	R	R
Front Panel Labels Designer	NA	NA	NA	NA	NA
Protection Summary	NA	NA	NA	NA	NA
Commands	RW	RW	RW	R	R
Virtual Inputs	RW	RW	RW	R	R
Clear Records	RW	RW	RW	R	R
Set date and time	RW	RW	RW	R	R
User Displays	R	R	R	R	R
Targets	R	R	R	R	R
Actual Values	R	R	R	R	R
Front Panel Labels Designer	R	R	R	R	R
Status	R	R	R	R	R
Metereing	R	R	R	R	R
Transducer I/O	R	R	R	R	R
Records	R	R	R	R	R
Product Info	R	R	R	R	R
Maintenance	RW	RW	R	R	R
Modbus Analyzer	NA	NA	NA	NA	NA
Change Front Panel	RW	RW	RW	R	R
Update Firmware	Yes	No	No	No	No
Retrieve File	Yes	No	No	No	No

Table Notes:

- 1. RW = read and write access
- 2. R = read access
- 3. Supervisor = RW (default), Administrator = R (default), Administrator = RW (only if Supervisor role is disabled)
- 4. NA = the permission is not enforced by CyberSentry Security

CYBERSENTRY SERVER AUTHENTICATION

The UR has been designed to automatically direct authentication requests based on user names. In this respect, local account names on the UR are considered as reserved, and not used on a RADIUS server.

The UR automatically detects whether an authentication request is to be handled remotely or locally. As there are only five local accounts possible on the UR, if the user ID credential does not match one of the five local accounts, the UR automatically forwards the request to a RADIUS server when one is provided.

If a RADIUS server is provided, but is unreachable over the network, server authentication requests are denied. In this situation, use local UR accounts to gain access to the UR system.

2.1.3 IEC 870-5-103 PROTOCOL

IEC 870-5-103 is a companion standard to IEC 870-5 suit of standards for transmission protocols. It defines messages and procedures for interoperability between protection equipment and devices of a control system in a substation for communicating on a serial line.

The IEC 60870-5-103 is an unbalanced (master-slave) protocol for coded-bit serial communication, exchanging information with a control system. In the context of this protocol, the protection equipment is the slave and the control system is the master. The communication is based on a point to point principle. The master must be able to interpret the IEC 60870-5-103 communication messages.

The UR implementation of IEC 60870-5-103 consists of the following functions:

- Report binary inputs
- Report analog values (measurands)
- Commands
- Time synchronization

The RS485 port supports IEC 60870-5-103.

2.2.1 OVERVIEW

The F60 is available as a 19-inch rack horizontal mount or reduced-size (¾) vertical unit and consists of the following modules: power supply, CPU, CT/VT, digital input and output, transducer input and output, and inter-relay communications. Each of these modules can be supplied in a number of configurations specified at the time of ordering. The information required to completely specify the relay is provided in the following tables (see chapter 3 for full details of relay modules).

Order codes are subject to change without notice. See the ordering page at http://www.gedigitalenergy.com/multilin/order.htm for the latest ordering options.

The order code structure is dependent on the mounting option (horizontal or vertical) and the type of CT/VT modules (enhanced diagnostic CT/VT modules or HardFiberTM process bus modules). The order code options are described in the following sub-sections.

2.2.2 ORDER CODES WITH ENHANCED CT/VT MODULES

The order codes for the horizontal mount units are shown below.

Table 2-4: F60 ORDER CODES (HORIZONTAL UNITS)

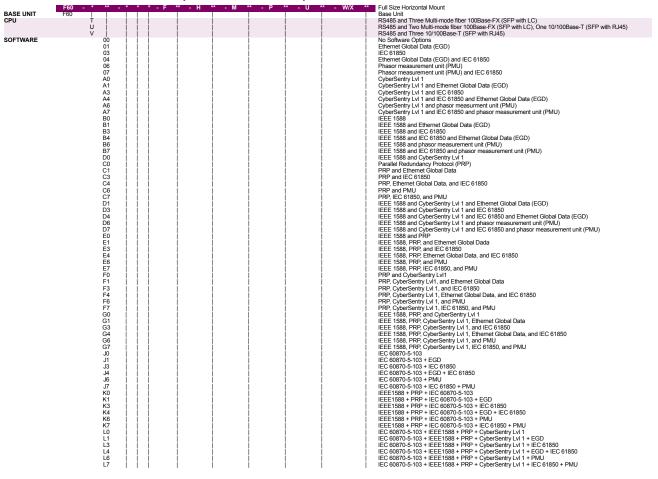


Table 2-4: F60 ORDER CODES (HORIZONTAL UNITS)

Table 2-4: F60 ORDER	CODES (II	OKIZONI	AL UN	113)		
MOUNT/COATING H						Horizontal (10" rack) - Standard Horizontal (10" rack) - With harsh environmental coating
FACEPLATE/ DISPLAY	C					English display Russian display Russian display Russian display Russian display English display with 4 small and 12 large programmable pushbuttons French display with 4 small and 12 large programmable pushbuttons Russian display with 4 small and 12 large programmable pushbuttons Russian display with 4 small and 12 large programmable pushbuttons Chinese display with 4 small and 12 large programmable pushbuttons Enhanced front panel with English display Enhanced front panel with Enthered display Enhanced front panel with Russian display Enhanced front panel with Enthere display Enhanced front panel with Ensien display Enhanced front panel with Ensies display Enhanced front panel with Ensies display and user-programmable pushbuttons Enhanced front panel with Exissian display and user-programmable pushbuttons Enhanced front panel with Chinese display and user-programmable pushbuttons Enhanced front panel with Chinese display and user-programmable pushbuttons Enhanced front panel with Chinese display and user-programmable pushbuttons Enhanced front panel with Existin display Enhanced front panel with Turkish display Enhanced front panel with Turkish display
POWER SUPPLY (redundant supply must	H H				RH	Enhanced front panel with German display and user-programmable pushbuttons 125 / 250 V ACI/DC power supply 125 / 250 V ACI/DC with redundant 125 / 250 V ACI/DC power supply 241 / 250 V ACI/DC with redundant 125 / 250 V ACI/DC power supply 241 / 250 V ACI/DC power supply 250
be same type as main supply) ENHANCED DIAGNOSTICS CT/VT DSP	i			l XX	RL	24 to 48 V (DC only) power supply 24 to 48 V (DC only) with redundant 24 to 48 V DC power supply No DSP module (slots M and U only)
(8L, 8M, 8N, 8R require DSP to be enhanced	diagnostic) 8L 8M 8N 8N 8R		XX 8L 8M 8N 8R 8Z			Standard 4CT/4VT with enhanced diagnostics Sensitive Ground 4CT/4VT with enhanced diagnostics Standard 8CT with enhanced diagnostics Sensitive Ground 8CT with enhanced diagnostics Sensitive Ground 8CT with enhanced diagnostics Hit2 4CT (required for high-impedance fault detection element)
DIGITAL INPUTS/OUTPUTS TRANSDUCER		4B 4C 4D	4AA 4 4AB 4 4AB 4AB 4AB 4AB 4AB 4AB 4AB	XX	XXX 4A 4B 4BC 4DD 4BC 4BC 4BC 4BC 6BC 6BC 6BC 6BC 6BC 6BC 6BC 6BC 6BC 6	No Module 4 Solid-State (no monitoring) MOSFET outputs 4 Solid-State (voltage with optional current) MOSFET outputs 4 Solid-State (current with optional voltage) MOSFET outputs 5 didgital inputs with Auto-Burnishing (maximum of three modules within a case) 14 Form-A (no monitoring) autputs 8 Form-A (not monitoring) autputs 9 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs 1 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs 6 digital inputs 1 Form-C outputs 8 Form-C outputs 9 Form-C outputs 1 Form-C outputs 9 Form-C outputs 1 Form-C outputs 2 Form-C outputs 3 Form-C outputs 4 Form-C outputs 5 Form-C outputs 5 Form-C outputs 6 Form-C outputs 7 Form-C outputs 8 digital inputs 9 Form-C outputs 9 Form-C outpu
INPUTS/OUTPUTS (select a maximum of 3 per unit)		5C 5D 5E 5E	5C 5 5D 5 5E 5	5C 5C 5D 5D 5E 5E 5F 5F	5C 5D 5E 5F	4 dom/nipuls, 4 dom/n dutpuls 8 RTD inpuls 4 RTD inpuls, 4 dom/n outpuls 4 RTD inpuls, 4 dom/nipuls 8 dom/nipuls
INTER-RELAY COMMUNICATIONS (select a maximum of 1 per unit)			V	. J	2A 2B 2E 2E 2G 2H 21 2J 27 73 74 76 76 76 76 77 77 71 71 71 71 71 71 71 71 71 71 71	C37 94SM, 1300 ms single-mode, ELED, 2 channel single-mode C37 94SM, 1300 ms single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel BEEC C37 94, 820 mn, 128 kbps, multimode, LED, 1 Channel BEEC C37 94, 820 mn, 128 kbps, multimode, LED, 2 channels Channel - I-EEE C37 94, MM, 641/28 kbps; Channel 2 - 1300 mm, single-mode, Laser Channel - I-EEE C37 94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel B550 nm, single-mode, Laser, 2 Channel Channel - R5422; Channel 2 - 1550 nm, single-mode, Laser Channel - R703; Channel 2 - 1550 nm, single-mode, Laser Channel - R703; Channel 2 - 1550 nm, single-mode, Laser BEEC C37 94, 820 nm, 64 kbps, multimode, LED, 1 Channel BEEC C37 94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, miltimode Channel 1 - G703; Channel 2 - 1300 nm, single-mode ELED 820 nm, multimode, LED, 2 Channels 1300 nm, single-mode, LED, 2 Channels

The order codes for the reduced size vertical mount units are shown below.

Table 2–5: F60 ORDER CODES (REDUCED SIZE VERTICAL UNITS)

BASE UNIT	F60 - *	** - *	•	* - F	** - Н	** - M *	* - P/R **	Reduced Size Vertical Mount (see note regarding P/R slot below) Base Unit
CPU	Ť							RS485 and Three Multi-mode fiber 100Base-FX (SFP with LC)
	U V		-	1				RS485 and Two Multi-mode fiber 100Base-FX (SFP with LC), One 10/100Base-T (SFP with RJ45) RS485 and Three 10/100Base-T (SFP with RJ45)
SOFTWARE	(00		1				No Software Options
		01 03	- !	!			!!!	Ethernet Global Data (EGD) IEC 61850
		04	- 1	ł				Ethernet Global Data (EGD) and IEC 61850
	(06 j	į	į	į	į į	i i	Phasor measurement unit (PMU)
		07 A0	-	}				Phasor measurement unit (PMU) and IEC 61850 CyberSentry Lvl 1
		A1 j	i	i	İ	i	i i	CyberSentry Lvl 1 and Ethernet Global Data (EGD)
		A3 A4	-	-				CyberSentry Lvl 1 and IEC 61850 CyberSentry Lvl 1 and IEC 61850 and Ethernet Global Data (EGD)
		46 j	i	i	i	i	i i	CyberSentry Lvl 1 and phasor measurment unit (PMU)
		A7 B0	!	!	!	!	!!!	CyberSentry Lvl 1 and IEC 61850 and phasor measurement unit (PMU) IEEE 1588
	E	В1 ј	l	1				IEEE 1588 and Ethernet Global Data (EGD)
		B3 B4	į	ļ			!!!	IEEE 1588 and IEC 61850
		B6	-	-	 			IEEE 1588 and IEC 61850 and Ethernet Global Data (EGD) IEEE 1588 and phasor measurement unit (PMU)
		B7	į	į	į	į	į į	IEEE 1588 and IEC 61850 and phasor measurement unit (PMU)
		C0 C1	-	}				Parallel Redundancy Protocol (PRP) PRP and Ethernet Global Data
	(C3	i	i	İ		i i	PRP and IEC 61850
		C4 C6	!	!				PRP, Ethernet Global Data, and IEC 61850 PRP and PMU
	(C7	i	i			iii	PRP, IEC 61850, and PMU
		D0 j D1 i	-	-				IEEE 1588 and CyberSentry Lvl 1 IEEE 1588 and CyberSentry Lvl 1 and Ethernet Global Data (EGD)
		оз і	-					IEEE 1588 and CyberSentry Lvl 1 and IEC 61850
		D4 D6	!	!	!		!!!	IEEE 1588 and CyberSentry Lvl 1 and IEC 61850 and Ethernet Global Data (EGD) IEEE 1588 and CyberSentry Lvl 1 and phasor measurement unit (PMU)
		D7	- 1	ł				IEEE 1588 and CyberSentry Lvl 1 and IEC 61850 and phasor measurement unit (PMU)
		E0 į	į	į	į	į	į į	IEEE 1588 and PRP
		E1 E3	-	-	 			IEEE 1588, PRP, and Ethernet Global Dada IEEE 1588, PRP, and IEC 61850
		E4	į	į	į	į	į į	IEEE 1588, PRP, Ethernet Global Data, and IEC 61850
	E E	E6 E7	-	-	 			IEEE 1588, PRP, and PMU IEEE 1588, PRP, IEC 61850, and PMU
	F	F0 į	ij	į	į		i i	PRP and CyberSentry Lvl1
		F1 F3	-	!				PRP, CyberSentry Lvl1, and Ethernet Global Data PRP, CyberSentry Lvl 1, and IEC 61850
	F	F4	i	i				PRP, CyberSentry Lvl 1, Ethernet Global Data, and IEC 61850
		F6 F7	-	1				PRP, CyberSentry Lvl 1, and PMU PRP, CyberSentry Lvl 1, IEC 61850, and PMU
	(30 İ	i	ŀ	<u> </u>		i i	IEEE 1588, PRP, and CyberSentry Lyl 1
		G1 G3	į	1	İ			IEEE 1588, PRP, CyberSentry Lvl 1, Ethernet Global Data IEEE 1588, PRP, CyberSentry Lvl 1, and IEC 61850
	(34 j	- 1	ł				IEEE 1588, PRP, CyberSentry Lvl 1, Ethernet Global Data, and IEC 61850
		36 37	į	į	į		!	IEEE 1588, PRP, CyberSentry Lvl 1, and PMU IEEE 1588, PRP, CyberSentry Lvl 1, IEC 61850, and PMU
		J0	-		 			IEC 60870-5-103
		J1 J3	į	į	į		i i	IEC 60870-5-103 + EGD IEC 60870-5-103 + IEC 61850
		J3 J4	-	1	 			IEC 60870-5-103 + IEC 61850 IEC 60870-5-103 + EGD + IEC 61850
		J6 į	į	į	į	į į	į į	IEC 60870-5-103 + PMU
	ř	J7 K0	-	-				IEC 60870-5-103 + IEC 61850 + PMU IEEE1588 + PRP + IEC 60870-5-103
	ŀ	K1 j	į	į	į	į		IEEE1588 + PRP + IEC 60870-5-103 + EGD
	ŀ	K3 K4	-	-				IEEE1588 + PRP + IEC 60870-5-103 + IEC 61850 IEEE1588 + PRP + IEC 60870-5-103 + EGD + IEC 61850
	ŀ	K6 j	į	į	į	į		IEEE1588 + PRP + IEC 60870-5-103 + PMU
		K7 L0	-					IEEE1588 + PRP + IEC 60870-5-103 + IEC 61850 + PMU IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1
	l	L1 j	- [į	į		i i	IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lyl 1 + EGD
		L3 L4	-	-				IEC 60870-5-103 + IEEE1588 + PRP + CýberSentrý Lvl 1 + IEC 61850 IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + EGD + IEC 61850
	l	L6 j	i	i	i	i	i	IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + PMU
MOUNT/COATING		L7 V	-				İ	IEC 60870-5-103 + IEEE1588 + PRP + CýberSentrý Lvl 1 + IEC 61850 + PMU Vertical (3/4 rack) - Standard
		В						Vertical (3/4 rack) - With harsh environmental coating
FACEPLATE/ DISE	PLAY		F K	!				English display Enhanced front panel with English display
			M					Enhanced front panel with French display
			Q	!	!		ļ į	Enhanced front panel with Russian display
			U L					Enhanced front panel with Chinese display Enhanced front panel with English display and user-programmable pushbuttons
			N T	!	!	!	ļ į	Enhanced front panel with French display and user-programmable pushbuttons
			V					Enhanced front panel with Russian display and user-programmable pushbuttons Enhanced front panel with Chinese display and user-programmable pushbuttons
			W	į	į		İ	Enhanced front panel with Turkish display
			Y	1	!			Enhanced front panel with Turkish display and user-programmable pushbuttons Enhanced front panel with German display
			j	i	i	i	i i	Enhanced front panel with German display and user-programmable pushbuttons

Table 2-5: F60 ORDER CODES (REDUCED SIZE VERTICAL UNITS)

POWER SUPPLY H				125 / 250 V AC/DC power supply 24 to 48 V (DC only) power supply
ENHANCED DIAGNOSTICS CT/VT DSP	xx j	хх	i	No DSP module (slots M and U only)
8L, 8M, 8N, 8R require DSP to be enhanced diagnostic)	8L* 8M*	8L* 8M*		Standard 4CT/4VT with enhanced diagnostics Sensitive Ground 4CT/4VT with enhanced diagnostics
	8N*	8N*		Standard 8CT with enhanced diagnostics
	8R*	8R*	- 1	Sensitive Ground 8CT with enhanced diagnostics
	i i	8Z	i	Hi-Z 4CT (required for high-impedance fault detection element)
IGITAL INPUTS/OUTPUTS	XX	XX	XX	No Module
	4A	4A	4A	4 Solid-State (no monitoring) MOSFET outputs
	4B 4C	4B 4C	4B 4C	Solid-State (voltage with optional current) MOSFET outputs Solid-State (current with optional voltage) MOSFET outputs
	4D	4D	4D	16 digital inputs with Auto-Burnishing (maximum of three modules within a case)
	4L	4L	4L	14 Form-A (no monitoring) Latching outputs
	67	67	67	8 Form-A (no monitoring) outputs
	6A	6A	6A	2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs
	6B 6C	6B 6C	6B 6C	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs 8 Form-C outputs
	6D	6D	6D	16 digital inputs
	6E	6E	6E	4 Form-C outputs, 8 digital inputs
	6F	6F	6F	8 Fast Form-C outputs
	6G	6G	6G	4 Form-A (voltage with optional current) outputs, 8 digital inputs
	6H 6K	6H 6K	6H 6K	6 Form-A (voltage with optional current) outputs, 4 digital inputs 4 Form-C and 4 Fast Form-C outputs
	6L	6L	6L	2 Form-C and 4 Fast Form-C outputs 2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs
	6M	6M	6M	2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
	6N	6N	6N	4 Form-A (current with optional voltage) outputs, 8 digital inputs
	6P	6P	6P	6 Form-A (current with optional voltage) outputs, 4 digital inputs
	6R	6R 6S	6R	2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs 2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs
	6S 6T	6T	6S 6T	4 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs
	6U	6U	6U	6 Form-A (no monitoring) outputs, 4 digital inputs
	6V	6V	6V	2 Form-A outputs, 1 Form-C output, 2 Form-A (no monitoring) latching outputs, 8 digital inputs
RANSDUCER	5A	5A	5A	4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed)
NPUTS/OUTPUTS	5C	5C	5C	8 RTD inputs
select a maximum of 3 per unit)	5D 5E	5D 5E	5D 5E	4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed) 4 RTD inputs, 4 dcmA inputs
	5F	5F	5F	8 dcmA inputs
NTER-RELAY			2A	C37.94SM, 1300 nm single-mode, ELED, 1 channel single-mode
COMMUNICATIONS			2A 2B	C37.94SM, 1300 nm single-mode, ELED, 2 channel single-mode
COMMUNICATIONS select a maximum of 1 per unit)			2A 2B 2E	C37.94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel
COMMUNICATIONS select a maximum of 1 per unit) For the last module, slot P is used for digital and transduc	cer		2A 2B 2E 2F	C37.94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G	C37.94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 Channel
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel BI-EEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - 1300 nm, single-mode, Laser
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1500 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J 72	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel EEEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 64128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64128 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J 72 73	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel EEEE C37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 2 Channel
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J 72 73 74	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel EEEC 637,94, 820 nm, 128 kbps, multimode, LED, 1 Channels IEEE 637,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1- IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1- IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1- R5422; Channel 2- 1550 nm, single-mode, Laser
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J 72 73	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-EE C379,4, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1500 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R\$422; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R53422; Channel 2 - 1550 nm, single-mode, Laser
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2J 72 73 74 75 76 77	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-EEC 637,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1500 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R54/22; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R54/22; Channel 2 - 1550 nm, single-mode, Laser IEEE 637,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE 637,94, 820 nm, 64 kbps, multimode, LED, 2 Channels
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J 72 73 74 75 76 77	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R342; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode Laser IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2I 2J 72 73 74 75 76 77 7A 7B	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE C37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 64128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64128 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R5422; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R5422; Channel 2 - 1550 nm, single-mode Laser IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel
OMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2E 2F 2G 2H 2l 2J 72 73 74 75 76 77 7A 7B 7C	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R542; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode Laser IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, multimode, LED, 1 Channel
OMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2B 2F 2G 2H 2J 72 73 74 75 76 77 7A 7B 7D	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R54/22; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R54/22; Channel 2 - 1550 nm, single-mode, Laser IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, multimode, LED, 1 Channel 1300 nm, single-mode, Laser, 1 Channel
OMMUNICATIONS select a maximum of 1 per unit) or the last module, slot P is used for digital and transduc iput/output modules; slot R is used for inter-relay	cer		2A 2B 2F 2G 2H 2J 73 74 75 76 77 7A 7D 7F	C37,945M, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE C37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R34/22; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R34/22; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R362 nm, 64 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, multimode, LED, 1 Channel 1300 nm, single-mode, Laser, 1 Channel 1300 nm, single-mode, LECD, 1 Channel 1300 nm, single-mode, LECD, 1 Channel Channel 1 - G703; Channel 2 - 820 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode
OMMUNICATIONS select a maximum of 1 per unit) or the last module, slot P is used for digital and transduc iput/output modules; slot R is used for inter-relay	cer		2A 2BE 2F 2GH 2I 2J 73 74 75 76 77 7A 7B 7C 7D 7E 7F	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G47,03; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode Laser IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1800 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode
OMMUNICATIONS select a maximum of 1 per unit) or the last module, slot P is used for digital and transduc iput/output modules; slot R is used for inter-relay	cer		2A 2BE 2F 2G 2H 2I 273 74 75 76 77 7A 7D 7F 7G 7H	C37,94.SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEE C37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R50 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R54/22, Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R703, Channel 2 - 1550 nm, single-mode, Laser IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, mintimode, LED, 1 Channel 1300 nm, single-mode, Laser, 1 Channel 1300 nm, single-mode, Laser, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, single-mode, LED, 1 Ronnel Channel 1 - G703; Channel 2 - 1300 nm, single-mode, LED, 8 channels 820 nm, multimode, LED, 1 Channel
OMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2BE 2F 2GH 2I 2J 73 74 75 76 77 7A 7B 7C 7D 7F 7G 71	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G47,03; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1650 nm, single-mode, LED, 1 Channel IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, mignle-mode ELED 820 nm, multimode, LED, 2 Channels
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2BE 2F 2G 2H 2I J 72 73 74 75 76 77 7A 7 7D 7F 7F 7H 7J	C37,94.SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-EE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MB, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MB, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R50 nm, single-mode, Laser 1 Channel 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - R54/22, Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R703, Channel 2 - 1550 nm, single-mode, Laser IEEE C37,94, 820 nm, 04 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 04 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, Laser, 1 Channel 1300 nm, single-mode, Laser, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, single-mode, LED, 1 Roannels 1300 nm, multimode, LED, 2 Channels
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2BE 2F 2GH 2I 2J 73 74 75 76 77 7A 7B 7C 7D 7F 7G 71	C37,94SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEE G37,94, 820 nm, 128 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G4703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode Laser IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 1 Channel IEEE G37,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, migle-mode ELED 820 nm, multimode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, migle-mode, ELED, 2 Channels 1300 nm, migle-mode, ELED, 2 Channels 1300 nm, migle-mode, ELED, 2 Channels 1300 nm, migle-mode, ELED, 2 Channels 1300 nm, migle-mode, ELED, 2 Channels
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2BE 2FF 2G 2H 2J 72 73 74 75 76 77 78 7D 7FF 7G 71 77 7K	C37,94.SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-EE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MR, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MR, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R50 nm, single-mode, Laser 1 Channel 1550 nm, single-mode, Laser; 1 Channel 1550 nm, single-mode, Laser; 2 Channel Channel 1 - R54/22, Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R703, Channel 2 - 1550 nm, single-mode, Laser IEEE C37,94, 820 nm, 04 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 04 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703, Channel 2 - 1300 nm, multimode Channel 1 - G703, Channel 2 - 1300 nm, single-mode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels
	cer		2A 2EE 2FG 2H 2J 27 73 74 75 76 77 75 76 77 76 77 77 77 77 77 77 77 77 77 77	C37,94.SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1, EEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MR, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MR, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, RM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - R5422; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - 67/03; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - 67/03; Channel 2 - 1550 nm, single-mode, Laser IEEE C37,94, 820 nm, 04 kbps, multimode, LED, 1 Channel IEEE C37,94, 820 nm, 04 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, single-mode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, single-mode, ELSO, 2 Channels 1300 nm, single-mode, ELSO, 2 Channels 1300 nm, single-mode, ELSO, 2 Channels 1300 nm, single-mode, ELSO, 2 Channels 1300 nm, single-mode, ELSO, 2 Channels 1400 nm, single-mode, ELSO, 2 Channels 1500 nm, single-mode, ELSO, 2 Channels 1500 nm, single-mode, ELSO, 2 Channels 1500 nm, multimode, ELSO, 2 Channels 1500 nm, single-mode, ELSO, 2 Channels
COMMUNICATIONS select a maximum of 1 per unit) for the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2EE 2F 2G 2H 2J 73 75 76 77 77 78 77 77 77 77 77 77 77 77 77 77	C37,945M, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEC 637,94, 820 nm, 128 kbps, multimode, LED, 2 Channels IEEE 637,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1650 nm, single-mode, LED, 1 Channel IEEE 637,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, mignle-mode, LED, 2 Channels 1300 nm, mignle-mode, LED, 2 Channels 1300 nm, mignle-mode, LED, 2 Channels 1300 nm, single-mode, LED, 2 Channels 1300 nm, single-mode, LESE, 2 Channels 1300 nm, single-mode, LESE, 2 Channels 1300 nm, mignle-mode, LESE, 2 Channels 1300 nm, mignle-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels
COMMUNICATIONS select a maximum of 1 per unit) For the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	Cer		2A 2EE 2F 2H 2J 73 74 75 76 77 77 78 77 71 71 71 71 71 71 71 71 71 71 71 71	C37,945M, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel Bi-phase, dual channel Bi-phase, dual channel Bi-EE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, M8, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, M8, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, M8, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G47,04, Channel 1550 nm, single-mode, Laser, 1 Channel 1550 nm, single-mode, Laser, 2 Channel Channel 1 - G47/35; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G47/35; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G47/35; Channel 2 - 1550 nm, single-mode, LED, 2 Channels 1200 nm, multimode, LED, 1 Channel 1300 nm, millimode, LED, 1 Channel 1300 nm, single-mode, Laser, 1 Channel 1300 nm, single-mode, Laser, 1 Channel Channel 1 - G47/35; Channel 2 - 1300 nm, multimode Channel 1 - G47/35; Channel 2 - 1300 nm, multimode Channel 1 - G47/35; Channel 2 - 1300 nm, single-mode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, single-mode, LESer, 2 Channels 1300 nm, single-mode, LESer, 2 Channels 1300 nm, single-mode, LESer, 2 Channels 1300 nm, single-mode, LESer, 2 Channels 1300 nm, single-mode, LESer, 2 Channels 1500 nm, single-mode, LESer, 2 Channels 1500 nm, single-mode, LESer, 2 Channels 1500 nm, single-mode, LESer, 2 Channels 1500 nm, single-mode, LESer, 2 Channels 1500 nm, single-mode, LESER, 2 Channel 2 - 1300 nm, multimode, LED Channel 1 - R\$422; Channel 2 - 1300 nm, multimode, LED Channel 1 - R\$422; Channel 2 - 1300 nm, single-mode, LESER 1500 nm, single-mode, LESER, 2 - 1300 nm, single-mode, LESER 1500 nm, single-mode, LESER, 2 - 1300 nm, single-mode, LESER 1500 nm, single-mode, LESER, 2 - 1300 nm, single-mode, LESER 1500 nm, single-mode, LESER, 2 - 1300 nm, single-mode, LESER
COMMUNICATIONS select a maximum of 1 per unit) For the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2EE 2G 2H 2 2J 2 73 75 77 A 78 C D 7E F 7G H 71 J 7K L 7M 7N P 7Q R	C37,94.SM, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEEC 637,94, 820 nm, 128 kbps, multimode, LED, 2 Channels IEEE 637,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 641/28 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G703; Channel 2 - 1550 nm, single-mode, LED, 1 Channel IEEE 637,94, 820 nm, 64 kbps, multimode, LED, 2 Channels 820 nm, multimode, LED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel 1300 nm, single-mode, ELED, 1 Channel Channel 1 - G703; Channel 2 - 1300 nm, multimode Channel 1 - G703; Channel 2 - 1300 nm, mignle-mode ELED 820 nm, multimode, LED, 2 Channels 1300 nm, mignle-mode, LED, 2 Channels 1300 nm, mignle-mode, LED, 2 Channels 1300 nm, single-mode, LED, 2 Channels 1300 nm, single-mode, LESE, 2 Channels 1300 nm, mignle-mode, LED, 2 Channels 1300 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LED, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1500 nm, single-mode, LESE, 2 Channels 1
COMMUNICATIONS select a maximum of 1 per unit) For the last module, slot P is used for digital and transduc nput/output modules; slot R is used for inter-relay	cer		2A 2EE 2F 2H 2J 73 74 75 76 77 77 78 77 71 71 71 71 71 71 71 71 71 71 71 71	C37,945M, 1300 nm single-mode, ELED, 2 channel single-mode Bi-phase, single channel Bi-phase, dual channel EEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels IEEE C37,94, 820 nm, 128 kbps, multimode, LED, 2 Channels Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - IEEE C37,94, MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G4780; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G4780; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G4780; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G4780; Channel 2 - 1550 nm, single-mode, Laser Channel 1 - G4780; Channel 2 - 1580 nm, single-mode, LED, 2 Channels 1300 nm, multimode, LED, 1 Channel 1300 nm, single-mode, EEE, 1 Channel 1300 nm, single-mode, EEE, 1 Channel 1300 nm, single-mode, EEE, 1 Channel Channel 1 - G4780; Channel 2 - 820 nm, multimode Channel 1 - G4780; Channel 2 - 1300 nm, single-mode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, multimode, LED, 2 Channels 1300 nm, miltimode, LED, 2 Channels 1300 nm, single-mode, EEED, 2 Channels 1300 nm, single-mode, EEED, 2 Channels 1300 nm, single-mode, EEED, 2 Channels 1300 nm, single-mode, EED, 2 Channels 1300 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels 1500 nm, single-mode, EED, 2 Channels

2.2.3 ORDER CODES WITH PROCESS BUS MODULES

The order codes for the horizontal mount units with the process bus module are shown below.

Table 2-6: F60 ORDER CODES (HORIZONTAL UNITS WITH PROCESS BUS)

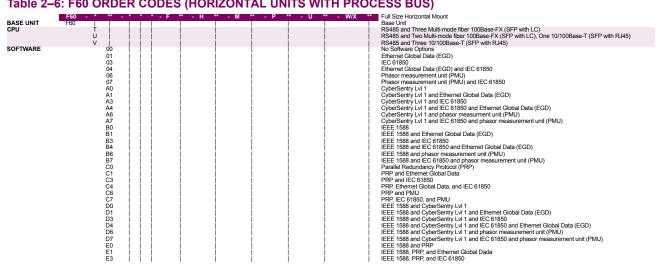
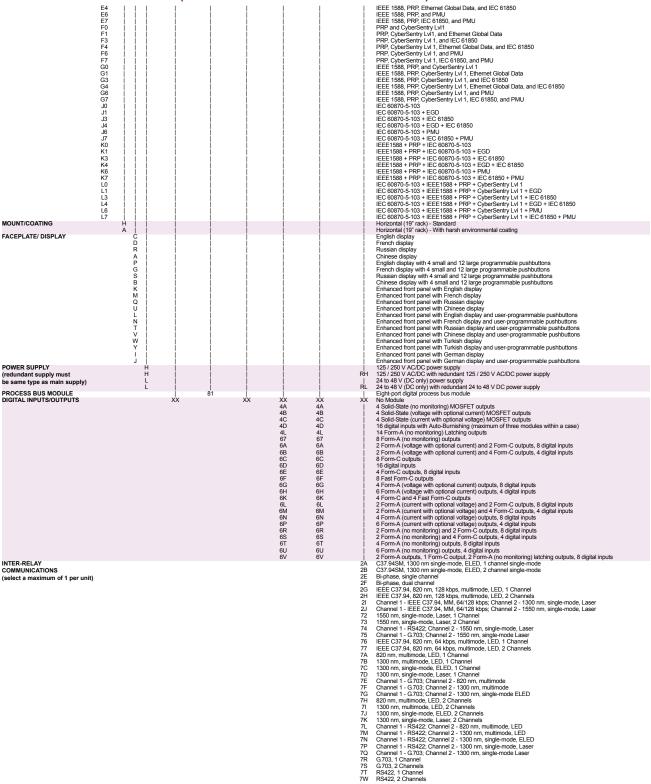
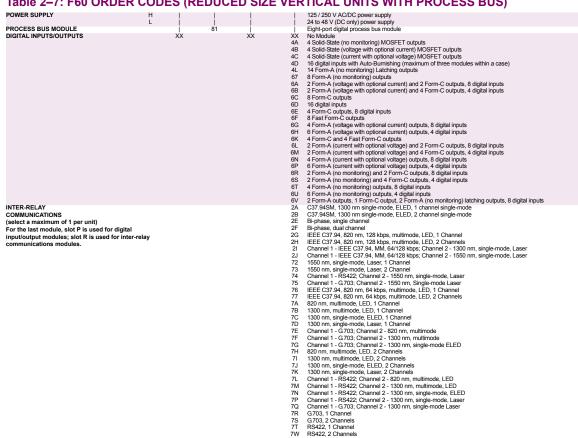



Table 2-6: F60 ORDER CODES (HORIZONTAL UNITS WITH PROCESS BUS)



The order codes for the reduced size vertical mount units with the process bus module are shown below.

Table 2–7: F60 ORDER CODES (REDUCED SIZE VERTICAL UNITS WITH PROCESS BUS)

BASE UNIT F60				H ** - M	** - P/R **	Reduced Size Vertical Mount (see note regarding P/R slot below) Base Unit
CPU	† i					RS485 and Three Multi-mode fiber 100Base-FX (SFP with LC) RS485 and Two Multi-mode fiber 100Base-FX (SFP with LC), One 10/100Base-T (SFP with RJ45)
	v į					RS485 and Three 10/100Base-T (SFP with RJ45)
OFTWARE	00 01					No Software Options Ethernet Global Data (EGD)
	03	i i i		i	i i	IEC 61850
	04 06					Ethernet Global Data (EGD) and IEC 61850 Phasor measurement unit (PMU)
	07	1 1 1		į	i	Phasor measurement unit (PMU) and IEC 61850
	A0 A1					CyberSentry Lvl 1 CyberSentry Lvl 1 and Ethernet Global Data (EGD)
	A3	i i i	i	i	i i	CyberSentry Lvl 1 and IEC 61850
	A4 A6					CyberSentry Lvl 1 and IEC 61850 and Ethernet Global Data (EGD) CyberSentry Lvl 1 and phasor measurment unit (PMU)
	A7	i i i		i	i i	CyberSentry Lvl 1 and IEC 61850 and phasor measurement unit (PMU)
	B0 B1			!	!!	IEEE 1588 IEEE 1588 and Ethernet Global Data (EGD)
	B3		i	1		IEEE 1588 and IEC 61850
	B4 B6	!!!	!	!	!!	IEEE 1588 and IEC 61850 and Ethernet Global Data (EGD) IEEE 1588 and phasor measurement unit (PMU)
	B7	1 1 1	ŀ			IEEE 1588 and IEC 61850 and phasor measurement unit (PMU)
	C0	!!!	į	į	!!	Parallel Redundancy Protocol (PRP)
	C1 C3					PRP and Ethernet Global Data PRP and IEC 61850
	C4 C6	1	į	į	į	PRP, Ethernet Global Data, and IEC 61850
	C6 C7					PRP and PMU PRP, IEC 61850, and PMU
	D0	1 1 1	į	į	į į	IEEE 1588 and CyberSentry Lvl 1
	D1 D3					IEEE 1588 and CýberSentrý Lvl 1 and Ethernet Global Data (EGD) IEEE 1588 and CyberSentry Lvl 1 and IEC 61850
	D4	i i i	ļ	į	į i	IEEE 1588 and CyberSentry Lvl 1 and IEC 61850 and Ethernet Global Data (EGD)
	D6 D7			-		IEEE 1588 and CyberSentry Lvl 1 and phasor measurement unit (PMU) IEEE 1588 and CyberSentry Lvl 1 and IEC 61850 and phasor measurement unit (PMU)
	E0	i i i	i	i	i i	IEEE 1588 and PRP
	E1 E3					IEEE 1588, PRP, and Ethernet Global Dada IEEE 1588, PRP, and IEC 61850
	E4	i i i		i	i i	IEEE 1588, PRP, Ethernet Global Data, and IEC 61850
	E6 E7					IEEE 1588, PRP, and PMU IEEE 1588, PRP, IEC 61850, and PMU
	F0			1		PRP and CyberSentry Lvl1
	F1 F3	!!!	!	!	!!	PRP, CyberSentry Lvl1, and Ethernet Global Data PRP, CyberSentry Lvl 1, and IEC 61850
	F4			1		PRP, CyberSentry Lv1 I, and PMU PRP, CyberSentry Lv1 I, and PMU PRP, CyberSentry Lv1 I, and PMU
	F6 F7		İ	- 1		PRP, CyberSentry Lvl 1, and PMU PRP, CyberSentry Lvl 1, IEC 61850, and PMU
	G0		i	i	i	IEEE 1588, PRP, and CyberSentry Lyl 1
	G1 G3		į	į		IEEE 1588, PRP, CyberSentry Lvl 1, Ethernet Global Data
	G4		ł	- 1		IEEE 1588, PRP, CyberSentry Lvl 1, and IEC 61850 IEEE 1588, PRP, CyberSentry Lvl 1, Ethernet Global Data, and IEC 61850
	G6 G7	1 1 1	į	į	į į	IEEE 1588, PRP, CyberSentry Lvl 1, and PMU
	J0					IEEE 1588, PRP, CyberSentry Lvl 1, IEC 61850, and PMU IEC 60870-5-103
	J1	<u> </u>	į	į	į į	IEC 60870-5-103 + EGD
	J3 J4					IEC 60870-5-103 + IEC 61850 IEC 60870-5-103 + EGD + IEC 61850
	J6	!!!	ļ	į	į į	IEC 60870-5-103 + PMU
	J7 K0					IEC 60870-5-103 + IEC 61850 + PMU IEEE1588 + PRP + IEC 60870-5-103
	K1	ļ ļ ļ	į	į	į į	IEEE1588 + PRP + IEC 60870-5-103 + EGD
	K3 K4					IEEE1588 + PRP + IEC 60870-5-103 + IEC 61850 IEEE1588 + PRP + IEC 60870-5-103 + EGD + IEC 61850
	K6 K7	i i i	į	į	į į	IEEE1588 + PRP + IEC 60870-5-103 + PMU IEEE1588 + PRP + IEC 60870-5-103 + IEC 61850 + PMU
	L0					IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1
	L1		į	į	į	IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + EGD
	L3 L4					IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + IEC 61850 IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + EGD + IEC 61850
	L6	1 1	į	į	ļ į	IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + PMU
OUNT/COATING	L7	V				IEC 60870-5-103 + IEEE1588 + PRP + CyberSentry Lvl 1 + IEC 61850 + PMU Vertical (3/4 rack) - Standard
		віі				Vertical (3/4 rack) - With harsh environmental coating
CEPLATE/ DISPLAY		F I				English display French display
		RΪ	į	į		Russian display
		A K				Chinese display Enhanced front panel with English display
		M i			į	Enhanced front panel with French display
		Q į				Enhanced front panel with Russian display Enhanced front panel with Chinese display
		L į				Enhanced front panel with English display and user-programmable pushbuttons
		N İ T İ	į	İ	ļ į	Enhanced front panel with French display and user-programmable pushbuttons
		v i				Enhanced front panel with Russian display and user-programmable pushbuttons Enhanced front panel with Chinese display and user-programmable pushbuttons
		w j	į	į	ļ i	Enhanced front panel with Turkish display
		Υļ				Enhanced front panel with Turkish display and user-programmable pushbuttons Enhanced front panel with German display

Table 2-7: F60 ORDER CODES (REDUCED SIZE VERTICAL UNITS WITH PROCESS BUS)

2.2.4 REPLACEMENT MODULES

Replacement modules can be ordered separately. When ordering a replacement CPU module or faceplate, provide the serial number of your existing unit.

Not all replacement modules may be applicable to the F60 relay. Only the modules specified in the order codes are available as replacement modules.

Replacement module codes are subject to change without notice. See the ordering page at http://www.gedigitalenergy.com/multilin/order.htm for the latest F60 ordering options.

The replacement module order codes for the horizontal mount units are shown below.

Table 2-8: ORDER CODES FOR REPLACEMENT MODULES, HORIZONTAL UNITS

	UR	- **	- *	
POWER SUPPLY (redundant supply only available in	\neg		H	Redundant 125 / 250 V AC/DC
horizontal units; must be same type as main supply)		RL	Ηj	Redundant 24 to 48 V (DC only)
CPU		T		RS485 with 3 100Base-FX Ethernet, multimode, SFP with LC
		U	- 1	RS485 with 1 100Base-T Ethernet, SFP RJ-45 + 2 100Base-FX Ethernet, multimode, SFP with LC
		V		RS485 with 3 100Base-T Ethernet, SFP with RJ-45
FACEPLATE/DISPLAY		3C		Horizontal faceplate with keypad and English display
		3D		Horizontal faceplate with keypad and French display
	ļ	3R		Horizontal faceplate with keypad and Russian display
	ļ	3A	. !	Horizontal faceplate with keypad and Chinese display
	!	3P	. !	Horizontal faceplate with keypad, user-programmable pushbuttons, and English display
	. !	3G 3S	. !	Horizontal faceplate with keypad, user-programmable pushbuttons, and French display
	- !	35 3B	- !	Horizontal faceplate with keypad, user-programmable pushbuttons, and Russian display
	- !	3K		Horizontal faceplate with keypad, user-programmable pushbuttons, and Chinese display Enhanced front panel with English display
	-	3M		Enhanced front panel with French display
	- 1	3Q		Enhanced front panel with Russian display Enhanced front panel with Russian display
	- 1	3U		Enhanced front panel with Chinese display
	- 1	3L	i	Enhanced front panel with English display and user-programmable pushbuttons
	i	3N	i	Enhanced front panel with French display and user-programmable pushbuttons
	i	3T	i	Enhanced front panel with Russian display and user-programmable pushbuttons
	i	3V	i	Enhanced front panel with Chinese display and user-programmable pushbuttons
	i	31	i	Enhanced front panel with German display
	i	3.1	i	Enhanced front panel with German display and user-programmable pushbuttons

Table 2-8: ORDER CODES FOR REPLACEMENT MODULES, HORIZONTAL UNITS

	JR - ** - *	
DIGITAL INPUTS AND OUTPUTS	4A	4 Solid-State (no monitoring) MOSFET outputs
	i 4B i	4 Solid-State (voltage with optional current) MOSFET outputs
	i 4C i	4 Solid-State (current with optional voltage) MOSFET outputs
	i 4D i	16 digital inputs with Auto-Burnishing (maximum of three modules within a case)
	i 4L i	14 Form-A (no monitoring) Latching outputs
	i 67 i	8 Form-A (no monitoring) outputs
	i 6A i	2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs
	i 6B i	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs
	i 6C i	8 Form-C outputs
	i 6D i	16 digital inputs
	i 6E i	4 Form-C outputs, 8 digital inputs
	i 6F i	8 Fast Form-C outputs
	6G j	4 Form-A (voltage with optional current) outputs, 8 digital inputs
	j 6H j	6 Form-A (voltage with optional current) outputs, 4 digital inputs
	j 6K j	4 Form-C and 4 Fast Form-C outputs
	[6L [2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs
	[6M [2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
	[6N [4 Form-A (current with optional voltage) outputs, 8 digital inputs
	j 6P j	6 Form-A (current with optional voltage) outputs, 4 digital inputs
	j 6R j	2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
	j 6S j	2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs
	j 6T j	4 Form-A (no monitoring) outputs, 8 digital inputs
	6U	6 Form-A (no monitoring) outputs, 4 digital inputs
	6V	2 Form-A outputs, 1 Form-C output, 2 Form-A (no monitoring) latching outputs, 8 digital inputs
CT/VT MODULES	8L	Standard 4CT/4VT with enhanced diagnostics
(NOT AVAILABLE FOR THE C30)	8N	Standard 8CT with enhanced diagnostics
	8M	Sensitive Ground 4CT/4VT with enhanced diagnostics
	8R	Sensitive Ground 8CT with enhanced diagnostics
INTER RELAY COMMUNICATIONS	8Z 2A	HI-Z 4CT
INTER-RELAY COMMUNICATIONS	1 2A 1	C37.94SM, 1300 nm single-mode, ELED, 1 channel single-mode C37.94SM, 1300 nm single-mode, ELED, 2 channel single-mode
	2E	Bi-phase, single channel
	2F	Bi-phase, dual channel
	2G	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 Channel
	2H I	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 Channels
	21	Channel 1 - IEEE C37.94, multimode, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser
	į 2J į	Channel 1 - IEEE C37.94, multimode, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser
	j 72 j	1550 nm, single-mode, Laser, 1 Channel
	73	1550 nm, single-mode, Laser, 2 Channel
	74	Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, Laser
	j 75 j	Channel 1 - G.703; Channel 2 - 1550 nm, single-mode Laser
	76	IEEE C37.94, 820 nm, multimode, LED, 1 Channel
	77	IEEE C37.94, 820 nm, multimode, LED, 2 Channels
	7A	820 nm, multimode, LED, 1 Channel
	7B	1300 nm, multimode, LED, 1 Channel
	7C 7D	1300 nm, single-mode, ELED, 1 Channel
	/D	1300 nm, single-mode, Laser, 1 Channel Channel 1 - G.703; Channel 2 - 820 nm, multimode
	/E	Channel 1 - G.703; Channel 2 - 820 nm, multimode Channel 1 - G.703; Channel 2 - 1300 nm, multimode
	7F 7G	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode ELED
	7H	820 nm, multimode, LED, 2 Channels
	i 7i i	1300 nm, multimode, LED, 2 Channels
	i i j i	1300 nm, single-mode, ELED, 2 Channels
	7K	1300 nm, single-mode, Laser, 2 Channels
	j 7L j	Channel 1 - RS422; Channel 2 - 820 nm, multimode, LED
	j 7M j	Channel 1 - RS422; Channel 2 - 1300 nm, multimode, LED
	j 7N j	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED
	j 7P j	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, Laser
	7Q	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode Laser
	7R	G703, 1 Channel
	7S	G703, 2 Channels
	7T	RS422, 1 Channel
TRANSPUCER	7W	RS422, 2 Channels
TRANSDUCER	5A 5C	4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed) 8 RTD inputs
INPUTS/OUTPUTS	5C 5D	4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed)
	1 5E I	4 KTD Inputs, 4 RTD inputs 4 domA inputs, 4 RTD inputs
	1 5F I	4 dama inputs 8 dama inputs
		· · · · · · · · · · · · · · · ·

The replacement module order codes for the reduced-size vertical mount units are shown below.

Table 2-9: ORDER CODES FOR REPLACEMENT MODULES, VERTICAL UNITS

	JR - ** - '	
POWER SUPPLY	RH V	125 / 250 V AC/DC
	RL V	24 to 48 V (DC only)
CPU	T	RS485 with 3 100Base-FX Ethernet, multimode, SFP with LC
	į U	RS485 with 1 100Base-T Ethernet, SFP RJ-45 + 2 100Base-FX Ethernet, multimode, SFP with LC
	V	RS485 with 3 100Base-T Ethernet, SFP with RJ-45
FACEPLATE/DISPLAY	3F	Vertical faceplate with keypad and English display
	3D	Vertical faceplate with keypad and French display
	3R	Vertical faceplate with keypad and Russian display
	3A	Vertical faceplate with keypad and Chinese display
	3K	Enhanced front panel with English display
] 3M	Enhanced front panel with French display
	3Q	Enhanced front panel with Russian display
	3U	Enhanced front panel with Chinese display
	3L	Enhanced front panel with English display and user-programmable pushbuttons
	3N	Enhanced front panel with French display and user-programmable pushbuttons
	3T	Enhanced front panel with Russian display and user-programmable pushbuttons
	3V 3I	Enhanced front panel with Chinese display and user-programmable pushbuttons
	3I 3J	Enhanced front panel with German display Enhanced front panel with German display and user-programmable pushbuttons
DIGITAL	1 4A	4 Solid-State (no monitoring) MOSFET outputs
INPUTS/OUTPUTS	1 4A 1 4B	4 Solid-State (rottage with optional current) MOSFET outputs
INPUTS/OUTPUTS	1 4D 1 4C	4 Solid-State (current with optional voltage) MOSFET outputs
	4D	4 Solid-State (current with optional voltage) mode E1 outputs 16 digital inputs with Auto-Burnishing (maximum of three modules within a case)
	4L	14 Form-A (no monitoring) Latching outputs
	67	8 Form-A (no monitoring) cutouts
	6A	2 Form-A (voltage with optional current) and 2 Form-C outputs, 8 digital inputs
	6B	2 Form-A (voltage with optional current) and 4 Form-C outputs, 4 digital inputs
	6C	8 Form-C outputs
	6D	16 digital inputs
	6E	4 Form-C outputs, 8 digital inputs
	i 6F	8 Fast Form-C outputs
	6G	4 Form-A (voltage with optional current) outputs, 8 digital inputs
	(6H	6 Form-A (voltage with optional current) outputs, 4 digital inputs
	6K	4 Form-C and 4 Fast Form-C outputs
	6L	2 Form-A (current with optional voltage) and 2 Form-C outputs, 8 digital inputs
	[6M	2 Form-A (current with optional voltage) and 4 Form-C outputs, 4 digital inputs
	6N	4 Form-A (current with optional voltage) outputs, 8 digital inputs
	6P	6 Form-A (current with optional voltage) outputs, 4 digital inputs
	6R	2 Form-A (no monitoring) and 2 Form-C outputs, 8 digital inputs
	6S 6T	2 Form-A (no monitoring) and 4 Form-C outputs, 4 digital inputs
	61 6U	4 Form-A (no monitoring) outputs, 8 digital inputs 6 Form-A (no monitoring) outputs, 4 digital inputs
	6U	2 Form-A (no monitoring) outputs, 4 digital inputs 2 Form-A outputs, 1 Form-C output, 2 Form-A (no monitoring) latching outputs, 8 digital inputs
CT/VT MODULES	1 8L	2 Form-A outputs, 1 Form-C output, 2 Form-A (no mornioring) ratening outputs, 8 digital inputs Standard 4CT/4VT with enhanced diagnostics
(NOT AVAILABLE FOR THE C30)	8N	Standard 8CT with enhanced diagnostics Standard 8CT with enhanced diagnostics
(NOT AVAILABLE FOR THE COU)	6N 8V	Standard 8VT with enhanced diagnostics
	8Z*	Standard ov Fixing enhanced diagnostics HL7 4CT
INTER-RELAY COMMUNICATIONS	02 2A	C37.94SM, 1300 nm single-mode, ELED, 1 channel single-mode
INTER-NELAT COMMUNICATIONS	2A 2B	C37.945M, 1300 nm single-mode, ELED, 1 draintel single-mode
	2F	Bi-phase, single channel

Table 2–9: ORDER CODES FOR REPLACEMENT MODULES, VERTICAL UNITS

	JR - *'	- *	
	21		Bi-phase, dual channel
	j 20	i	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 Channel
	j 2⊦	ı j	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 Channels
	j 2	i	Channel 1 - IEEE C37.94, multimode, 64/128 kbps; Channel 2 - 1300 nm, single-mode, Laser
	j 2.	i	Channel 1 - IEEE C37.94, multimode, 64/128 kbps; Channel 2 - 1550 nm, single-mode, Laser
	72	i i	1550 nm, single-mode, Laser, 1 Channel
	i 73	i	1550 nm, single-mode, Laser, 2 Channel
	74	i	Channel 1 - RS422; Channel 2 - 1550 nm, single-mode, Laser
	75		Channel 1 - G.703: Channel 2 - 1550 nm. single-mode Laser
	i 76	i	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 1 Channel
	i 77	· i	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 2 Channels
	i 7/	, i	820 nm, multimode, LED, 1 Channel
	i 7E	i	1300 nm, multimode, LED, 1 Channel
	i 70	; i	1300 nm, single-mode, ELED, 1 Channel
	j 70) į	1300 nm, single-mode, Laser, 1 Channel
	j 76		Channel 1 - G703; Channel 2 - 820 nm, multimode
	j 7F	i j	Channel 1 - G.703; Channel 2 - 1300 nm, multimode
	j 70	i	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode ELED
	j 7⊦	ı j	820 nm, multimode, LED, 2 Channels
	j 71	i	1300 nm, multimode, LED, 2 Channels
	į 7.	i	1300 nm, single-mode, ELED, 2 Channels
	j 71	i	1300 nm, single-mode, Laser, 2 Channels
	i 7L	. i	Channel 1 - RS422: Channel 2 - 820 nm. multimode. LED
	j 7N	1 j	Channel 1 - RS422; Channel 2 - 1300 nm, multimode, LED
	j 7N	ı j	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, ELED
	j 7F	· j	Channel 1 - RS422; Channel 2 - 1300 nm, single-mode, Laser
	j 70	≀ i	Channel 1 - G.703; Channel 2 - 1300 nm, single-mode Laser
	j 7F		G.703, 1 Channel
	j 79		G.703, 2 Channels
	j 71		RS422, 1 Channel
	j 7V	/ j	RS422, 2 Channels
TRANSDUCER	j 5/		4 dcmA inputs, 4 dcmA outputs (only one 5A module is allowed)
INPUTS/OUTPUTS	j 50		8 RTD inputs
	j 50		4 RTD inputs, 4 dcmA outputs (only one 5D module is allowed)
	j 5E		4 dcmA inputs, 4 RTD inputs
	j 5F	1	8 dcmA inputs

^{*} CPU module types 8L and 8N cannot be ordered with the 8Z module

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

2.3.1 PROTECTION ELEMENTS

The operating times include the activation time of a trip rated form-A output contact unless otherwise indicated. FlexLogic operands of a given element are 4 ms faster. Take this into account when using FlexLogic to interconnect with other protection or control elements of the relay, building FlexLogic equations, or interfacing with other IEDs or power system devices via communications or different output contacts. If not specified, the operate times given here are for a 60 Hz system at nominal system frequency. Operate times for a 50 Hz system are 1.2 times longer.

PHASE/NEUTRAL/GROUND TOC

Current: Phasor or RMS

Pickup level: 0.000 to 30.000 pu in steps of 0.001

Dropout level: 97% to 98% of pickup

Level accuracy:

for 0.1 to 2.0 \times CT: $\pm 0.5\%$ of reading or $\pm 0.4\%$ of rated

(whichever is greater)

for > $2.0 \times CT$: $\pm 1.5\%$ of reading > $2.0 \times CT$ rating Curve shapes: IEEE Moderately/Very/Extremely

Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; I²t; FlexCurves™ (programmable); Definite Time (0.01 s

base curve)

Curve multiplier: Time Dial = 0.00 to 600.00 in steps of

0.01

Reset type: Instantaneous/Timed (per IEEE)

Curve timing accuracy

at 1.03 to 20 x pickup: $\pm 3.5\%$ of operate time or $\pm \frac{1}{2}$ cycle

(whichever is greater) from pickup to

operate

PHASE/NEUTRAL/GROUND IOC

Pickup level: 0.000 to 30.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy:

0.1 to 2.0 \times CT rating: $\pm 0.5\%$ of reading or $\pm 0.4\%$ of rated

(whichever is greater)

 $> 2.0 \times CT \text{ rating}$ $\pm 1.5\% \text{ of reading}$

Overreach: <2%

Pickup delay: 0.00 to 600.00 s in steps of 0.01 Reset delay: 0.00 to 600.00 s in steps of 0.01 Operate time: <16 ms at $3 \times \text{pickup}$ at 60 Hz

(Phase/Ground IOC)

<20 ms at $3 \times$ pickup at 60 Hz

(Neutral IOC)

Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

NEGATIVE SEQUENCE TOC

Pickup level: 0.000 to 30.000 pu in steps of 0.001

Dropout level: 97% to 98% of pickup

Level accuracy: $\pm 0.5\%$ of reading or $\pm 0.4\%$ of rated

(whichever is greater) from 0.1 to 2.0 x CT rating

±1.5% of reading > 2.0 x CT rating

Curve shapes: IEEE Moderately/Very/Extremely

Inverse; IEC (and BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/Extremely Inverse; I²t; FlexCurves™ (programmable); Definite Time (0.01 s

base curve)

Curve multiplier (Time dial): 0.00 to 600.00 in steps of 0.01

Reset type: Instantaneous/Timed (per IEEE) and Lin-

ear

Curve timing accuracy

at 1.03 to 20 x pickup: $\pm 3.5\%$ of operate time or $\pm \frac{1}{2}$ cycle

(whichever is greater) from pickup to

operate

NEGATIVE SEQUENCE IOC

Pickup level: 0.000 to 30.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy: 0.1 to $2.0 \times CT$ rating: $\pm 0.5\%$ of reading

or $\pm 0.4\%$ of rated (whichever is greater); $> 2.0 \times CT$ rating: $\pm 1.5\%$ of reading

Overreach: <2%

Pickup delay: 0.00 to 600.00 s in steps of 0.01 Reset delay: 0.00 to 600.00 s in steps of 0.01 Operate time: <20 ms at $3 \times$ pickup at 60 Hz Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

PHASE DIRECTIONAL OVERCURRENT

Relay connection: 90° (quadrature)

Quadrature voltage: ABC phase seq.: phase A (V_{BC}), phase

B (V_{CA}), phase C (V_{AB}); ACB phase seq.: phase A (V_{CB}), phase B (V_{AC}),

phase C (V_{BA})

Polarizing voltage threshold: 0.000 to 3.000 pu in steps of 0.001

Current sensitivity threshold: 0.05 pu

Characteristic angle: 0 to 359° in steps of 1

Angle accuracy: ±2°
Operation time (FlexLogic operands):

Tripping (reverse load, forward fault):<

12 ms, typically

Blocking (forward load, reverse fault):<

8 ms, typically

NEUTRAL DIRECTIONAL OVERCURRENT

Directionality: Co-existing forward and reverse
Polarizing: Voltage, Current, Dual, Dual-V, Dual-I

Polarizing voltage: V_0 or VX

Polarizing current: IG
Operating current: I_0

Level sensing: $3 \times (|I_0| - K \times |I_1|)$, IG Restraint, K: 0.000 to 0.500 in steps of 0.001

Characteristic angle: -90 to 90° in steps of 1

Limit angle: 40 to 90° in steps of 1, independent for

forward and reverse

Angle accuracy: ±2°

Offset impedance: 0.00 to 250.00 Ω in steps of 0.01 Pickup level: 0.002 to 30.000 pu in steps of 0.01

Dropout level: 97 to 98%

Operation time: <16 ms at $3 \times \text{pickup}$ at 60 Hz

NEGATIVE SEQUENCE DIRECTIONAL OC

Directionality: Co-existing forward and reverse

Polarizing: Voltage
Polarizing voltage: V_2
Operating current: I_2

Level sensing:

Zero-sequence: $|I_0| - K \times |I_1|$ Negative-sequence: $|I_2| - K \times |I_1|$

Restraint, *K*: 0.000 to 0.500 in steps of 0.001

Characteristic angle: 0 to 90° in steps of 1

Limit angle: 40 to 90° in steps of 1, independent for

forward and reverse

Angle accuracy: ±2°

Offset impedance: 0.00 to 250.00 Ω in steps of 0.01 Pickup level: 0.015 to 30.000 pu in steps of 0.01

Dropout level: 97 to 98%

Operation time: <16 ms at $3 \times \text{pickup}$ at 60 Hz

WATTMETRIC ZERO-SEQUENCE DIRECTIONAL

Measured power: zero-sequence

Number of elements: 2

Characteristic angle: 0 to 360° in steps of 1

Minimum power: 0.001 to 1.200 pu in steps of 0.001 Pickup level accuracy: $\pm 1\%$ or ± 0.0025 pu, whichever is greater

Hysteresis: 3% or 0.001 pu, whichever is greater Pickup delay: definite time (0 to 600.00 s in steps of 0.01), inverse time, or FlexCurve

Inverse time multiplier: 0.01 to 2.00 s in steps of 0.01

Curve timing accuracy: ±3.5% of operate time or ±1 cyc

±3.5% of operate time or ±1 cycle (whichever is greater) from pickup to

operate

Operate time: <30 ms at 60 Hz

SENSITIVE DIRECTIONAL POWER

Measured power: 3-phase, true RMS

Number of stages: 2

Characteristic angle: 0 to 359° in steps of 1

Calibration angle: 0.00 to 0.95° in steps of 0.05

Minimum power: -1.200 to 1.200 pu in steps of 0.001

Pickup level accuracy: ±1% or ±0.001 pu, whichever is greater

Hysteresis: 2% or 0.001 pu, whichever is greater

Pickup delay: 0 to 600.00 s in steps of 0.01

Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

Operate time: <50 ms

PHASE UNDERVOLTAGE

Voltage: Phasor only

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 102 to 103% of pickup

Level accuracy: ±0.5% of reading from 10 to 208 V

Curve shapes: GE IAV Inverse;

Definite Time (0.1s base curve)

Curve multiplier: Time dial = 0.00 to 600.00 in steps of

0.01

Curve timing accuracy

at <0.90 x pickup: $\pm 3.5\%$ of operate time or $\pm 1/2$ cycle

(whichever is greater) from pickup to

operate

AUXILIARY UNDERVOLTAGE

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 102 to 103% of pickup

Level accuracy: ±0.5% of reading from 10 to 208 V
Curve shapes: GE IAV Inverse, Definite Time

Curve multiplier: Time Dial = 0 to 600.00 in steps of 0.01

Curve timing accuracy

at <0.90 x pickup: $\pm 3.5\%$ of operate time or $\pm 1/2$ cycle

(whichever is greater) from pickup to

operate

PHASE OVERVOLTAGE

Voltage: Phasor only

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy: $\pm 0.5\%$ of reading from 10 to 208 V Pickup delay: 0.00 to 600.00 in steps of 0.01 s Operate time: <30 ms at 1.10 × pickup at 60 Hz Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

NEUTRAL OVERVOLTAGE

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy: ±0.5% of reading from 10 to 208 V
Pickup delay: 0.00 to 600.00 s in steps of 0.01 (definite

time) or user-defined curve

Reset delay: 0.00 to 600.00 s in steps of 0.01

Curve timing accuracy

at >1.1 x pickup: $\pm 3.5\%$ of operate time or ± 1 cycle

(whichever is greater) from pickup to

operate

Operate time: <30 ms at 1.10 × pickup at 60 Hz

AUXILIARY OVERVOLTAGE

Pickup level: 0.000 to 3.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy: $\pm 0.5\%$ of reading from 10 to 208 V Pickup delay: 0 to 600.00 s in steps of 0.01 Reset delay: 0 to 600.00 s in steps of 0.01 Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

Operate time: <30 ms at 1.10 \times pickup at 60 Hz

NEGATIVE SEQUENCE OVERVOLTAGE

Pickup level: 0.000 to 1.250 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Timer accuracy: ±3% of operate time or ±20 ms, which-

ever is greater

Operate time: <30 ms at 1.10 \times pickup at 60 Hz

UNDERFREQUENCY

Minimum signal: 0.10 to 1.25 pu in steps of 0.01
Pickup level: 20.00 to 65.00 Hz in steps of 0.01

Dropout level: pickup + 0.03 HzLevel accuracy: $\pm 0.001 \text{ Hz}$

Time delay: 0 to $65.535 \, s$ in steps of 0.001 Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

Operate time: typically 4 cycles at 0.1 Hz/s change typically 3.5 cycles at 0.3 Hz/s change

typically 3 cycles at 0.5 Hz/s change

Typical times are average operate times including variables such as frequency change instance, test method, etc., and may vary by ± 0.5 cycles.

OVERFREQUENCY

Pickup level: 20.00 to 65.00 Hz in steps of 0.01

Dropout level: pickup -0.03 Hz Level accuracy: ± 0.001 Hz

Time delay: 0 to 65.535 s in steps of 0.001
Timer accuracy: ±3% of operate time or ±1/4 cycle

(whichever is greater)

Operate time: typically 4 cycles at 0.1 Hz/s change

typically 3.5 cycles at 0.3 Hz/s change typically 3 cycles at 0.5 Hz/s change

Typical times are average operate times including variables such as frequency change instance, test method, etc., and may vary by ± 0.5 cycles.

RATE OF CHANGE OF FREQUENCY

df/dt trend: increasing, decreasing, bi-directional df/dt pickup level: 0.10 to 15.00 Hz/s in steps of 0.01

df/dt dropout level: 96% of pickup

df/dt level accuracy:80 mHz/s or 3.5%, whichever is greaterOvervoltage supv.:0.100 to 3.000 pu in steps of 0.001Overcurrent supv.:0.000 to 30.000 pu in steps of 0.001Pickup delay:0 to 65.535 s in steps of 0.001Reset delay:0 to 65.535 s in steps of 0.001Timer accuracy:±3% of operate time or ±1/4 cycle

(whichever is greater)

95% settling time for df/dt: <24 cycles

Operate time: typically 6.5 cycles at $2 \times \text{pickup}$

typically 5.5 cycles at $3 \times$ pickup typically 4.5 cycles at $5 \times$ pickup

Typical times are average operate times including variables such as frequency change instance, test method, etc., and may vary by ± 0.5 cycles.

BREAKER FAILURE

Mode: 1-pole, 3-pole

Current supervision: phase, neutral current

Current supv. pickup: 0.001 to 30.000 pu in steps of 0.001

Current supv. dropout: 97 to 98% of pickup

Current supv. accuracy:

0.1 to 2.0 \times CT rating: $\,\pm 0.75\%$ of reading or $\pm 2\%$ of rated

(whichever is greater)

above 2 × CT rating: ±2.5% of reading

BREAKER ARCING CURRENT

Principle: accumulates breaker duty (I²t) and mea-

sures fault duration

Initiation: programmable per phase from any Flex-

Logic operand

Compensation for auxiliary relays: 0 to 65.535 s in steps of 0.001 Alarm threshold: 0 to 50000 kA2-cycle in steps of 1

Fault duration accuracy: 0.25 of a power cycle

Availability: 1 per CT bank with a minimum of 2

BREAKER FLASHOVER

Operating quantity: phase current, voltage and voltage differ-

ence

Pickup level voltage: 0 to 1.500 pu in steps of 0.001

Dropout level voltage: 97 to 98% of pickup

Pickup level current: 0 to 1.500 pu in steps of 0.001

Dropout level current: 97 to 98% of pickup

Level accuracy: $\pm 0.5\%$ or $\pm 0.1\%$ of rated, whichever is

greater

Pickup delay: 0 to 65.535 s in steps of 0.001

Timer accuracy: ±3% of operate time or ±42 ms, which-

ever is greater

Operate time: <42 ms at 1.10 × pickup at 60 Hz

BREAKER RESTRIKE

Principle: detection of high-frequency overcurrent

condition 1/4 cycle after breaker opens

Availability: one per CT/VT module (not including 8Z

modules)

Pickup level: 0.1 to 2.00 pu in steps of 0.01

Reset delay: 0.000 to 65.535 s in steps of 0.001

INCIPIENT CABLE FAULT DETECTION

Principle: detection of ½ cycle or less overcurrent

condition during normal load

Availability: two per CT/VT module (not including 8Z

modules)

Pickup level: 0.1 to 10.00 pu in steps of 0.01

Reset delay: 0.000 to 65.535 s in steps of 0.001

Operating mode: number of counts, counts per time win-

dow

SYNCHROCHECK

Max voltage difference: 0 to 400000 V in steps of 1 Max angle difference: 0 to 100° in steps of 1

Max freq. difference: 0.00 to 2.00 Hz in steps of 0.01

Hysteresis for max. freq. diff.: 0.00 to 0.10 Hz in steps of 0.01

Dead source function: None, LV1 & DV2, DV1 & LV2, DV1 or

DV2, DV1 xor DV2, DV1 & DV2

DV2 DV1 xor DV2, DV1 & DV2

(L = Live, D = Dead)

AUTORECLOSURE

Single breaker applications, 3-pole tripping schemes

Up to 4 reclose attempts before lockout

Independent dead time setting before each shot

Possibility of changing protection settings after each shot with

FlexLogic

LOAD ENCROACHMENT

Responds to: Positive-sequence quantities

Minimum voltage: 0.000 to 3.000 pu in steps of 0.001

Reach (sec. Ω): 0.02 to 250.00 Ω in steps of 0.01

Impedance accuracy: ±5%

Angle: 5 to 50° in steps of 1

Angle accuracy: ±2°

Pickup delay: 0 to 65.535 s in steps of 0.001 Reset delay: 0 to 65.535 s in steps of 0.001 Timer accuracy: $\pm 3\%$ of operate time or $\pm 1/4$ cycle

(whichever is greater)

Operate time: <30 ms at 60 Hz

THERMAL OVERLOAD PROTECTION

Thermal overload curves: IEC 255-8 curve

Base current: 0.20 to 3.00 pu in steps of 0.01

Overload (k) factor: 1.00 to 1.20 pu in steps of 0.05

Trip time constant: 0 to 1000 min. in steps of 1

Reset time constant: 0 to 1000 min. in steps of 1

Minimum reset time: 0 to 1000 min. in steps of 1

Timer accuracy (cold curve): ± 100 ms or 2%, whichever is greater Timer accuracy (hot curve): ± 500 ms or 2%, whichever is greater for $I_p < 0.9 \times k \times I_b$ and I / $(k \times I_b) > 1.1$

TRIP BUS (TRIP WITHOUT FLEXLOGIC)

Number of elements: 6 Number of inputs: 16

Operate time: <2 ms at 60 Hz

Timer accuracy: ±3% or 10 ms, whichever is greater

2.3.2 USER-PROGRAMMABLE ELEMENTS

FLEXLOGIC

Programming language: Reverse Polish Notation with graphical

visualization (keypad programmable)

Lines of code: 512 Internal variables: 64

Supported operations: NOT, XOR, OR (2 to 16 inputs), AND (2

to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), latch (reset-domi-

nant), edge detectors, timers

Inputs: any logical variable, contact, or virtual

input

Number of timers: 32

Pickup delay: 0 to 60000 (ms, sec., min.) in steps of 1
Dropout delay: 0 to 60000 (ms, sec., min.) in steps of 1

FLEXCURVES™

Number: 4 (A through D)

Reset points: 40 (0 through 1 of pickup)
Operate points: 80 (1 through 20 of pickup)
Time delay: 0 to 65535 ms in steps of 1

FLEX STATES

Number: up to 256 logical variables grouped

under 16 Modbus addresses

Programmability: any logical variable, contact, or virtual

input

FLEXELEMENTS™

Number of elements: 8

Operating signal: any analog actual value, or two values in

differential mode

Operating signal mode: signed or absolute value

Operating mode: level, delta Comparator direction: over, under

Pickup Level: -90.000 to 90.000 pu in steps of 0.001

Hysteresis: 0.1 to 50.0% in steps of 0.1

Delta dt: 20 ms to 60 days

Pickup & dropout delay: 0.000 to 65.535 s in steps of 0.001

NON-VOLATILE LATCHES

Type: set-dominant or reset-dominant

Number: 16 (individually programmed)

Output: stored in non-volatile memory

Execution sequence: as input prior to protection, control, and

FlexLogic

USER-PROGRAMMABLE LEDs

Number: 48 plus trip and alarm

Programmability: from any logical variable, contact, or vir-

tual input

Reset mode: self-reset or latched

LED TEST

Initiation: from any digital input or user-program-

mable condition

Number of tests: 3, interruptible at any time
Duration of full test: approximately 3 minutes

Test sequence 1: all LEDs on

Test sequence 2: all LEDs off, one LED at a time on for 1 s Test sequence 3: all LEDs on, one LED at a time off for 1 s

USER-DEFINABLE DISPLAYS

Number of displays: 16

Lines of display: 2×20 alphanumeric characters

Parameters: up to 5, any Modbus register addresses

Invoking and scrolling: keypad, or any user-programmable con-

dition, including pushbuttons

CONTROL PUSHBUTTONS

Number of pushbuttons: 7

Operation: drive FlexLogic operands

USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of pushbuttons: 12 (standard faceplate);

16 (enhanced faceplate)

Mode: self-reset, latched

Display message: 2 lines of 20 characters each
Drop-out timer: 0.00 to 60.00 s in steps of 0.05
Autoreset timer: 0.2 to 600.0 s in steps of 0.1
Hold timer: 0.0 to 10.0 s in steps of 0.1

SELECTOR SWITCH

Number of elements: 2

Upper position limit: 1 to 7 in steps of 1
Selecting mode: time-out or acknowledge
Time-out timer: 3.0 to 60.0 s in steps of 0.1

Control inputs: step-up and 3-bit

Power-up mode: restore from non-volatile memory or syn-

chronize to a 3-bit control input or synch/

restore mode

DIGITAL ELEMENTS

Number of elements: 48

Operating signal: any FlexLogic operand

Pickup delay: 0.000 to 999999.999 s in steps of 0.001
Dropout delay: 0.000 to 999999.999 s in steps of 0.001
Timing accuracy: ±3% or ±4 ms, whichever is greater

2.3.3 MONITORING

OSCILLOGRAPHY

Maximum records: 64

Sampling rate: 64 samples per power cycle

Triggers: any element pickup, dropout, or operate;

digital input change of state; digital output change of state; FlexLogic equation

Data: AC input channels; element state; digital

input state; digital output state

Data storage: in non-volatile memory

EVENT RECORDER

Capacity: 1024 events
Time-tag: to 1 microsecond

Triggers: any element pickup, dropout, or operate;

digital input change of state; digital output change of state; self-test events

Data storage: in non-volatile memory

DATA LOGGER

Number of channels: 1 to 16

Parameters: any available analog actual value
Sampling rate: 15 to 3600000 ms in steps of 1

Trigger: any FlexLogic operand

Mode: continuous or triggered

Storage capacity: (NN is dependent on memory)

1-second rate:

01 channel for NN days 16 channels for NN days

 \downarrow

60-minute rate:

01 channel for NN days 16 channels for NN days **FAULT LOCATOR**

Method: single-ended

Voltage source: wye-connected VTs, delta-connected

VTs and neutral voltage, delta-connected VTs and zero-sequence current (approxi-

nation

Maximum accuracy if: fault resistance is zero or fault currents

from all line terminals are in phase

Relay accuracy: $\pm 1.5\%$ (V > 10 V, I > 0.1 pu)

Worst-case accuracy:

 $\begin{array}{lll} \text{VT}_{\text{\%error}} + & \text{user data} \\ \text{CT}_{\text{\%error}} + & \text{user data} \\ \text{Z}_{\text{Line}\%error} + & \text{user data} \\ \text{METHOD}_{\text{\%error}} + & \text{see chapter 8} \\ \text{RELAY ACCURACY}_{\text{\%error}} + & (1.5\%) \end{array}$

HI-Z

Detections: Arc Suspected, Arc Detected, Downed

Conductor, Phase Identification

PHASOR MEASUREMENT UNIT

Output format: per IEEE C37.118 or IEC 61850-90-5

standard

Number of channels: 14 synchrophasors, 8 analogs, 16 digi-

tals

TVE (total vector error) <1%

Triggering: frequency, voltage, current, power, rate

of change of frequency, user-defined

Reporting rate: 1, 2, 5, 10, 12, 15, 20, 25, 30, 50, or 60

times per second for P and M class, and 100 or 120 times per second for P class

only

Number of clients: One over TCP/IP port and one over

UDP/IP per aggregator

AC ranges: As indicated in appropriate specifications

sections

Network reporting format: 16-bit integer (for IEEE C37.118) or 32-

bit IEEE floating point numbers

Network reporting style: rectangular (real and imaginary for IEEE

C37.188) or polar (magnitude and angle)

coordinates

Post-filtering: none, 3-point, 5-point, 7-point
Calibration: ±5° (angle) and ±5% (magnitude)

2.3.4 METERING

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at

0.1 to $2.0 \times CT$ rating: $\pm 0.25\%$ of reading or $\pm 0.1\%$ of rated

(whichever is greater)

 $> 2.0 \times CT$ rating: $\pm 1.0\%$ of reading

RMS VOLTAGE

Accuracy: ±0.5% of reading from 10 to 208 V

REAL POWER (WATTS)

Accuracy at 0.1 to 1.5 x CT rating and 0.8 to

1.2 x VT rating: $\pm 1.0\%$ of reading at $-1.0 \le PF < -0.8$ and

 $0.8 < PF \le 10$

REACTIVE POWER (VARS)

Accuracy at 0.1 to 1.5 x CT rating and 0.8 to

1.2 x VT rating: $\pm 1.0\%$ of reading at $-0.2 \le PF \le 0.2$

APPARENT POWER (VA)

Accuracy at 0.1 to 1.5 x CT rating and 0.8 to

1.2 x VT rating: ±1.0% of reading

WATT-HOURS (POSITIVE AND NEGATIVE)

Accuracy: $\pm 2.0\%$ of reading Range: ± 0 to 1×10^6 MWh Parameters: three-phase only

Update rate: 50 ms

VAR-HOURS (POSITIVE AND NEGATIVE)

Accuracy: $\pm 2.0\%$ of reading Range: ± 0 to 1×10^6 Mvarh Parameters: three-phase only

Update rate: 50 ms

CURRENT HARMONICS

Harmonics: 2nd to 25th harmonic: per phase, dis-

played as a % of f₁ (fundamental fre-

quency phasor)

THD: per phase, displayed as a % of f₁

Accuracy:

THD:

HARMONICS: 1. $f_1 > 0.4$ pu: (0.20% + 0.035% / harmonic) of

reading or 0.15% of 100%, whichever is

greater

2. f₁ < 0.4pu: as above plus %error of f₁ 1. f₁ > 0.4pu: (0.25% + 0.035% / harmonic) of

reading or 0.20% of 100%, whichever is

greater

2. f₁ < 0.4pu: as above plus %error of f₁

VOLTAGE HARMONICS

Harmonics: 2nd to 25th harmonic: per phase, dis-

played as a % of f₁ (fundamental fre-

quency phasor)

THD: per phase, displayed as a % of f₁

Accuracy:

HARMONICS: 1. $f_1 > 0.4$ pu: (0.20% + 0.035% / harmonic) of

reading or 0.15% of 100%, whichever is

greater

 $2. f_1 < 0.4$ pu: as above plus %error of f_1 THD: $1. f_1 > 0.4$ pu: (0.25% + 0.035% / harmonic) of

reading or 0.20% of 100%, whichever is

greater

2. f₁ < 0.4pu: as above plus %error of f₁

FREQUENCY

Accuracy at

V = 0.8 to 1.2 pu: ± 0.01 Hz (when voltage signal is used

for frequency measurement)

I = 0.1 to 0.25 pu: $\pm 0.05 \text{ Hz}$

I > 0.25 pu: ± 0.02 Hz (when current signal is used for

frequency measurement)

DEMAND

Measurements: Phases A, B, and C present and maxi-

mum measured currents

3-Phase Power (P, Q, and S) present and maximum measured currents

Accuracy: ±2.0%

2.3.5 INPUTS

AC CURRENT

CT rated primary: 1 to 50000 A

CT rated secondary: 1 A or 5 A by connection Relay burden: < 0.2 VA at rated secondary

Conversion range:

Standard CT: 0.02 to 46 × CT rating RMS symmetrical

Sensitive Ground CT module:

0.002 to 4.6 \times CT rating RMS symmetrical

HI-Z CT module: 0.002 to $4.6 \times$ CT rating RMS symmetri-

cal

Current withstand: 20 ms at 250 times rated

1 sec. at 100 times rated

continuous 4xInom; URs equipped with 24 CT inputs have a maximum operating

temp. of 50°C

Short circuit rating: 150000 RMS symmetrical amperes, 250

V maximum (primary current to external

CT)

AC VOLTAGE

VT rated secondary: 50.0 to 240.0 V

VT ratio: 1.00 to 24000.00Relay burden:< 0.25 VA

at 120 V

Conversion range: 1 to 275 V

Voltage withstand: continuous at 260 V to neutral 1 min./hr at 420 V to neutral

FREQUENCY

Nominal frequency setting:25 to 60 Hz

Sampling frequency: 64 samples per power cycle

Tracking frequency range:20 to 70 Hz

CONTACT INPUTS

Dry contacts: 1000Ω maximum Wet contacts: 300 V DC maximum Selectable thresholds: 17 V, 33 V, 84 V, 166 V

Tolerance: ±10%
Contacts per common return: 4
Recognition time: < 1 ms

Debounce time: 0.0 to 16.0 ms in steps of 0.5 Continuous current draw: 3 mA (when energized)

CONTACT INPUTS WITH AUTO-BURNISHING

Dry contacts: 1000Ω maximum Wet contacts: 300 V DC maximum Selectable thresholds: 17 V, 33 V, 84 V, 166 V

Tolerance: ±10%
Contacts per common return: 2
Recognition time: < 1 ms

Debounce time: 0.0 to 16.0 ms in steps of 0.5 Continuous current draw:3 mA (when energized)
Auto-burnish impulse current: 50 to 70 mA
Duration of auto-burnish impulse: 25 to 50 ms

DCMA INPUTS

Current input (mA DC): 0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to 10,

0 to 20, 4 to 20 (programmable)

Type: Passive

RTD INPUTS

Types (3-wire): 100Ω Platinum, $100 \& 120 \Omega$ Nickel, 10

 $\Omega \: \mathsf{Copper}$

Sensing current: 5 mA

Range: -50 to +250°C

Accuracy: ±2°C Isolation: 36 V pk-pk

IRIG-B INPUT

Amplitude modulation: 1 to 10 V pk-pk
DC shift: TTL-Compatible

Input impedance: $50 \text{ k}\Omega$ Isolation: 2 kV

REMOTE INPUTS (IEC 61850 GSSE/GOOSE)

Input points: 32, configured from 64 incoming bit pairs

Remote devices: 16

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

Remote DPS inputs: 5

2.3 SPECIFICATIONS

DIRECT INPUTS

Input points: 32 Remote devices: 16

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

Ring configuration: Yes, No

Data rate: 64 or 128 kbps

CRC: 32-bit

CRC alarm:

Responding to: Rate of messages failing the CRC Monitoring message count: 10 to 10000 in steps of 1 Alarm threshold: 1 to 1000 in steps of 1

Unreturned message alarm:

Responding to: Rate of unreturned messages in the ring

configuration

Monitoring message count: 10 to 10000 in steps of 1 Alarm threshold: 1 to 1000 in steps of 1

TELEPROTECTION

Input points: 16 Remote devices: 3

Default states on loss of comms.: On, Off, Latest/Off, Latest/On

Ring configuration: No

Data rate: 64 or 128 kbps

CRC: 32-bit

2.3.6 POWER SUPPLY

LOW RANGE

Nominal DC voltage: 24 to 48 V Minimum DC voltage: 20 V

Maximum DC voltage: 60 or 72 V; check power supply module

Voltage loss hold-up: 20 ms duration at nominal

NOTE: Low range is DC only.

HIGH RANGE

Nominal DC voltage: 125 to 250 V

Minimum DC voltage: 88 V

Maximum DC voltage: 300 or 400 V; check power supply mod-

ule

Nominal AC voltage: 100 to 240 V at 50/60 Hz
Minimum AC voltage: 88 V at 25 to 100 Hz
Maximum AC voltage: 265 V at 25 to 100 Hz
Voltage loss hold-up: 200 ms duration at nominal

ALL RANGES

Volt withstand: 2 × Highest Nominal Voltage for 10 ms

Power consumption: typical = 15 to 20 W/VA

maximum = 50 W/VA

contact factory for exact order code con-

sumption

INTERNAL FUSE

RATINGS

Low range power supply: 8 A / 250 V High range power supply: 4 A / 250 V

INTERRUPTING CAPACITY

AC: 100 000 A RMS symmetrical

DC: 10 000 A

2.3.7 OUTPUTS

FORM-A RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90

Carry continuous: 6 A
Break (DC inductive, L/R = 40 ms):

VOLTAGE	CURRENT
24 V	1 A
48 V	0.5 A
125 V	0.3 A
250 V	0.2 A

Operate time: < 4 ms
Contact material: silver alloy

LATCHING RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90 Carry continuous: 6 A as per IEEE C37.90 Break (DC resistive as per IEC61810-1):

VOLTAGE	CURRENT
24 V	6 A
48 V	1.6 A
125 V	0.4 A
250 V	0.2 A

Operate time: < 4 ms
Contact material: silver alloy

Control: separate operate and reset inputs
Control mode: operate-dominant or reset-dominant

FORM-A VOLTAGE MONITOR

Applicable voltage: approx. 15 to 250 V DC Trickle current: approx. 1 to 2.5 mA

FORM-A CURRENT MONITOR

Threshold current: approx. 80 to 100 mA

FORM-C AND CRITICAL FAILURE RELAY

Make and carry for 0.2 s: 30 A as per ANSI C37.90

Carry continuous: 8 A
Break (DC inductive, L/R = 40 ms):

VOLTAGE	CURRENT
24 V	1 A
48 V	0.5 A
125 V	0.3 A
250 V	0.2 A

Operate time: < 8 ms
Contact material: silver alloy

FAST FORM-C RELAY

Make and carry: 0.1 A max. (resistive load)

Minimum load impedance:

INPUT VOLTAGE	IMPEDANCE						
VOLTAGE	2 W RESISTOR	1 W RESISTOR					
250 V DC	20 ΚΩ	50 KΩ					
120 V DC	5 ΚΩ	2 ΚΩ					
48 V DC	2 ΚΩ	2 ΚΩ					
24 V DC	2 ΚΩ	2 ΚΩ					

Note: values for 24 V and 48 V are the same due to a required 95% voltage drop across the load impedance.

Operate time: < 0.6 ms Internal Limiting Resistor: 100 Ω , 2 W

SOLID-STATE OUTPUT RELAY

Operate and release time: $<100 \mu s$ Maximum voltage: 265 V DC

Maximum continuous current: 5 A at 45°C; 4 A at 65°C

Make and carry:

for 0.2 s: 30 A as per ANSI C37.90

for 0.03 s 300 A

Breaking capacity:

	UL508	Utility application (autoreclose scheme)	Industrial application
Operations/ interval	5000 ops / 1 s-On, 9 s-Off	5 ops / 0.2 s-On, 0.2 s-Off	10000 ops / 0.2 s-On,
	1000 ops / 0.5 s-On, 0.5 s-Off	within 1 minute	30 s-Off
Break capability (0 to 250 V	3.2 A L/R = 10 ms		
DC)	1.6 A L/R = 20 ms	10 A L/R = 40 ms	10 A L/R = 40 ms
	0.8 A L/R = 40 ms		

CONTROL POWER EXTERNAL OUTPUT (FOR DRY CONTACT INPUT)

Capacity: 100 mA DC at 48 V DC

Isolation: ±300 Vpk

REMOTE OUTPUTS (IEC 61850 GSSE/GOOSE)

Standard output points: 32
User output points: 32

DIRECT OUTPUTS

Output points: 32

DCMA OUTPUTS

Range: -1 to 1 mA, 0 to 1 mA, 4 to 20 mA

Max. load resistance: 12 k Ω for -1 to 1 mA range

12 $k\Omega$ for 0 to 1 mA range 600 Ω for 4 to 20 mA range

Accuracy: ±0.75% of full-scale for 0 to 1 mA range

±0.5% of full-scale for –1 to 1 mA range ±0.75% of full-scale for 0 to 20 mA range

99% Settling time to a step change: 100 ms

Isolation: 1.5 kV

Driving signal: any FlexAnalog quantity

Upper and lower limit for the driving signal: -90 to 90 pu in steps of

0.001

RS232

Front port: 19.2 kbps, Modbus RTU

RS485

1 rear port: Up to 115 kbps, Modbus RTU, isolated

together at 36 Vpk

Typical distance: 1200 m Isolation: 2 kV

ETHERNET (FIBER)

PARAMETER	FIBER TYPE	
	100MB MULTI- MODE	
Wavelength	1310 nm	
Connector	LC	
Transmit power	–20 dBm	
Receiver sensitivity	–30 dBm	
Power budget	10 dB	
Maximum input power	–14 dBm	
Typical distance	2 km	
Duplex	full/half	
Redundancy	yes	

ETHERNET (10/100 MB TWISTED PAIR)

Modes: 10 MB, 10/100 MB (auto-detect)

Connector: RJ45

SIMPLE NETWORK TIME PROTOCOL (SNTP)

clock synchronization error: <10 ms (typical)

PRECISION TIME PROTOCOL (PTP)

PTP IEEE Std 1588 2008 (version 2)

Power Profile (PP) per IEEE Standard PC37.238TM2011

Slave-only ordinary clock

Peer delay measurement mechanism

PARALLEL REDUNDANCY PROTOCOL (PRP) (IEC 62439-3 CLAUSE 4, 2012)

Ethernet ports used: 2 and 3

Networks supported: 10/100 MB Ethernet

2.3.9 INTER-RELAY COMMUNICATIONS

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE	
RS422	1200 m	
G.703	100 m	

RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820 nm LED, Multimode	–20 dBm	-30 dBm	10 dB
1300 nm LED, Multimode	–21 dBm	–30 dBm	9 dB
1300 nm ELED, Single mode	–23 dBm	–32 dBm	9 dB
1300 nm Laser, Single mode	–1 dBm	-30 dBm	29 dB
1550 nm Laser, Single mode	+5 dBm	-30 dBm	35 dB

These power budgets are calculated from the manufacturer's worst-case transmitter power and worst

case receiver sensitivity.

The power budgets for the 1300 nm ELED are calculated from the manufacturer's transmitter power and receiver sensitivity at ambient temperature. At extreme temperatures these values deviate based on component tolerance. On average, the output power decreases as the temperature is increased by a factor 1dB / 5°C.

MAXIMUM OPTICAL INPUT POWER

EMITTER, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	–7.6 dBm
1300 nm LED, Multimode	–11 dBm
1300 nm ELED, Single mode	–14 dBm
1300 nm Laser, Single mode	–14 dBm
1550 nm Laser, Single mode	–14 dBm

TYPICAL LINK DISTANCE

EMITTER TYPE	CABLE TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED, multimode	62.5/125 μm	ST	1.65 km
1300 nm LED, multimode	62.5/125 μm	ST	3.8 km
1300 nm ELED, single mode	9/125 μm	ST	11.4 km
1300 nm Laser, single mode	9/125 μm	ST	64 km
1550 nm Laser, single mode	9/125 μm	ST	105 km

Typical distances listed are based on the following assumptions for system loss. As actual losses vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)

ST connector 2 dB

FIBER LOSSES

 820 nm multimode
 3 dB/km

 1300 nm multimode
 1 dB/km

 1300 nm single mode
 0.35 dB/km

 1550 nm single mode
 0.25 dB/km

Splice losses: One splice every 2 km,

at 0.05 dB loss per splice.

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensated difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

2.3.10 ENVIRONMENTAL

AMBIENT TEMPERATURES

Storage temperature: -40 to 85°C

Operating temperature: -40 to 60°C; the LCD contrast can be

impaired at temperatures less than -

20°C

HUMIDITY

Humidity: operating up to 95% (non-condensing) at

55°C (as per IEC60068-2-30 variant 1, 6

days).

OTHER

Altitude: 2000 m (maximum)

Pollution degree: II
Overvoltage category: II

Ingress protection: IP20 front, IP10 back

2.3.11 TYPE TESTS

F60 TYPE TESTS

TEST	REFERENCE STANDARD	TEST LEVEL	
Dielectric voltage withstand	EN60255-5	2.2 kV	
Impulse voltage withstand	EN60255-5	5 kV	
Damped oscillatory	IEC61000-4-18 / IEC60255-22-1	2.5 kV CM, 1 kV DM	
Electrostatic discharge	EN61000-4-2 / IEC60255-22-2	Level 3	
RF immunity	EN61000-4-3 / IEC60255-22-3	Level 3	
Fast transient disturbance	EN61000-4-4 / IEC60255-22-4	Class A and B	
Surge immunity	EN61000-4-5 / IEC60255-22-5	Level 3 and 4	
Conducted RF immunity	EN61000-4-6 / IEC60255-22-6	Level 3	
Power frequency immunity	EN61000-4-7 / IEC60255-22-7	Class A and B	
Voltage interruption and ripple DC	IEC60255-11	12% ripple, 200 ms interrupts	
Radiated and conducted emissions	CISPR11 / CISPR22 / IEC60255-25	Class A	
Sinusoidal vibration	IEC60255-21-1	Class 1	
Shock and bump	IEC60255-21-2	Class 1	
Seismic	IEC60255-21-3	Class 1	
Power magnetic immunity	IEC61000-4-8	Level 5	
Pulse magnetic immunity	IEC61000-4-9	Level 4	
Damped magnetic immunity	IEC61000-4-10	Level 4	
Voltage dip and interruption	IEC61000-4-11	0, 40, 70, 80% dips; 250 / 300 cycle interrupts	
Damped oscillatory	IEC61000-4-12	2.5 kV CM, 1 kV DM	
Conducted RF immunity, 0 to 150 kHz	IEC61000-4-16	Level 4	
Voltage ripple	IEC61000-4-17	15% ripple	
Ingress protection	IEC60529	IP40 front, IP10 back	
Cold	IEC60068-2-1	-40°C for 16 hours	
Hot	IEC60068-2-2	85°C for 16 hours	
Humidity	IEC60068-2-30	6 days, variant 1	
Damped oscillatory	IEEE/ANSI C37.90.1	2.5 kV, 1 MHz	
RF immunity	IEEE/ANSI C37.90.2	20 V/m, 80 MHz to 1 GHz	
Safety	UL508	e83849 NKCR	
Safety	UL C22.2-14	e83849 NKCR7	
Safety	UL1053	e83849 NKCR	

2.3.12 PRODUCTION TESTS

THERMAL

Products go through an environmental test based upon an Accepted Quality Level (AQL) sampling process.

2.3.13 APPROVALS

APPROVALS

COMPLIANCE	APPLICABLE COUNCIL DIRECTIVE	ACCORDING TO
CE	Low voltage directive	EN 60255-5
	EMC directive	EN 60255-26 / EN 50263
		EN 61000-6-5
C-UL-US		UL 508
		UL 1053
		C22.2 No. 14

2.3.14 MAINTENANCE

MOUNTING

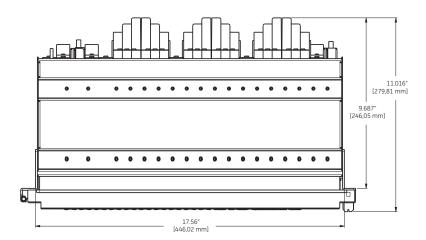
Attach mounting brackets using 20 inch-pounds (± 2 inch-pounds) of torque.

CLEANING

Normally, cleaning is not required; but for situations where dust has accumulated on the faceplate display, a dry cloth can be used.

To avoid deterioration of electrolytic capacitors, power up units that are stored in a de-energized state once per year, for one hour continuously.

3.1.1 PANEL CUTOUT


a) HORIZONTAL UNITS

The F60 Feeder Protection System is available as a 19-inch rack horizontal mount unit with a removable faceplate. The faceplate can be specified as either standard or enhanced at the time of ordering. The enhanced faceplate contains additional user-programmable pushbuttons and LED indicators.

The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth.

The case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

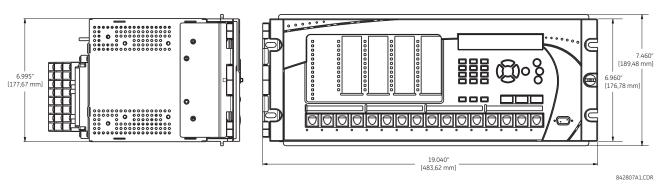


Figure 3-1: F60 HORIZONTAL DIMENSIONS (ENHANCED PANEL)

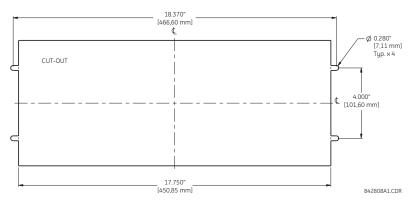


Figure 3-2: F60 HORIZONTAL MOUNTING (ENHANCED PANEL)

REMOTE MOUNTING
VIEW FROM THE REAR OF THE PANEL

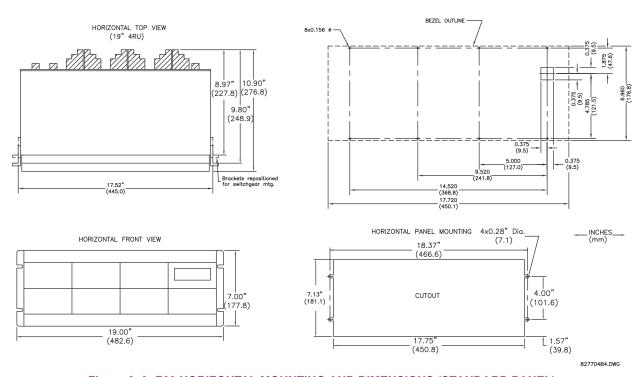


Figure 3-3: F60 HORIZONTAL MOUNTING AND DIMENSIONS (STANDARD PANEL)

b) VERTICAL UNITS

The F60 Feeder Protection System is available as a reduced size $(\frac{3}{4})$ vertical mount unit, with a removable faceplate. The faceplate can be specified as either standard or enhanced at the time of ordering. The enhanced faceplate contains additional user-programmable pushbuttons and LED indicators.

The modular design allows the relay to be easily upgraded or repaired by a qualified service person. The faceplate is hinged to allow easy access to the removable modules, and is itself removable to allow mounting on doors with limited rear depth.

The case dimensions are shown below, along with panel cutout details for panel mounting. When planning the location of your panel cutout, ensure that provision is made for the faceplate to swing open without interference to or from adjacent equipment.

3 HARDWARE 3.1 DESCRIPTION

The relay must be mounted such that the faceplate sits semi-flush with the panel or switchgear door, allowing the operator access to the keypad and the RS232 communications port. The relay is secured to the panel with the use of four screws supplied with the relay.

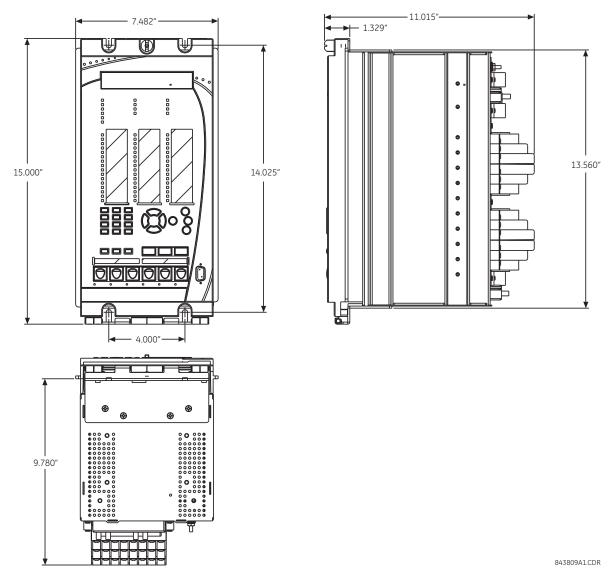


Figure 3-4: F60 VERTICAL DIMENSIONS (ENHANCED PANEL)

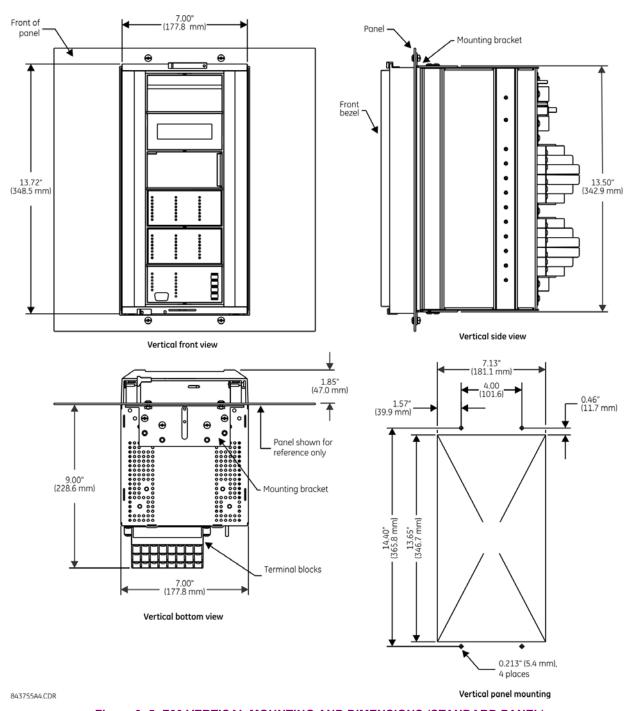


Figure 3-5: F60 VERTICAL MOUNTING AND DIMENSIONS (STANDARD PANEL)

For details on side mounting F60 devices with the enhanced front panel, refer to the following documents available online from the GE Multilin website.

- GEK-113180: UR-series UR-V side-mounting front panel assembly instructions.
- GEK-113181: Connecting the side-mounted UR-V enhanced front panel to a vertical UR-series device.
- GEK-113182: Connecting the side-mounted UR-V enhanced front panel to a vertically-mounted horizontal UR-series device.

For details on side mounting F60 devices with the standard front panel, refer to the figures below.

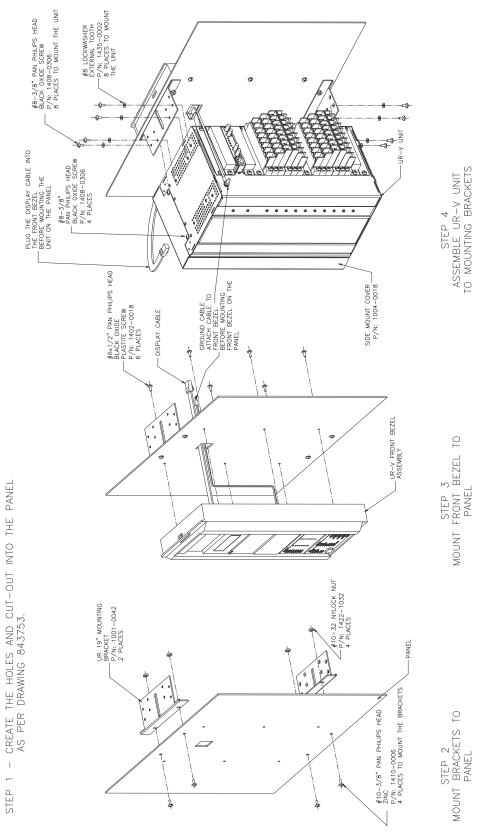


Figure 3-6: F60 VERTICAL SIDE MOUNTING INSTALLATION (STANDARD PANEL)

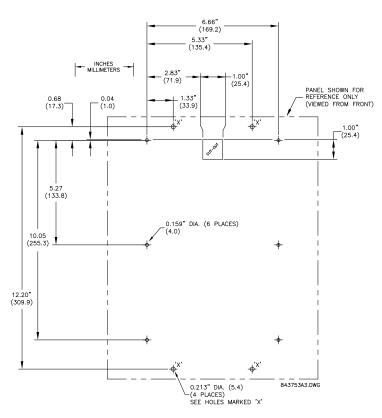


Figure 3-7: F60 VERTICAL SIDE MOUNTING REAR DIMENSIONS (STANDARD PANEL)

3.1.2 REAR TERMINAL LAYOUT

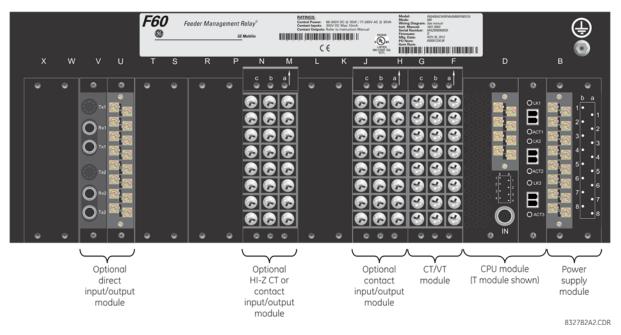


Figure 3-8: REAR TERMINAL VIEW

Do not touch any rear terminals while the relay is energized.

The small form-factor pluggable ports (SFPs) are pluggable transceivers. Do not use non-validated transceivers or install validated transceivers in the wrong Ethernet slot, else damage can occur.

The relay follows a convention with respect to terminal number assignments which are three characters long assigned in order by module slot position, row number, and column letter. Two-slot wide modules take their slot designation from the first slot position (nearest to CPU module) which is indicated by an arrow marker on the terminal block. See the following figure for an example of rear terminal assignments.

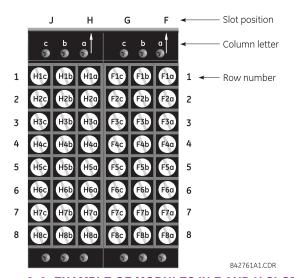


Figure 3-9: EXAMPLE OF MODULES IN F AND H SLOTS

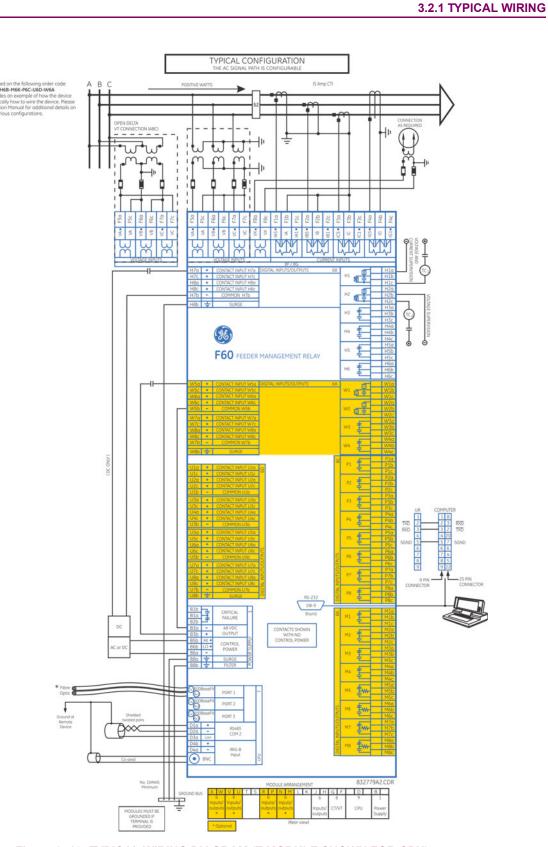


Figure 3–10: TYPICAL WIRING DIAGRAM (T MODULE SHOWN FOR CPU)

3.2 WIRING

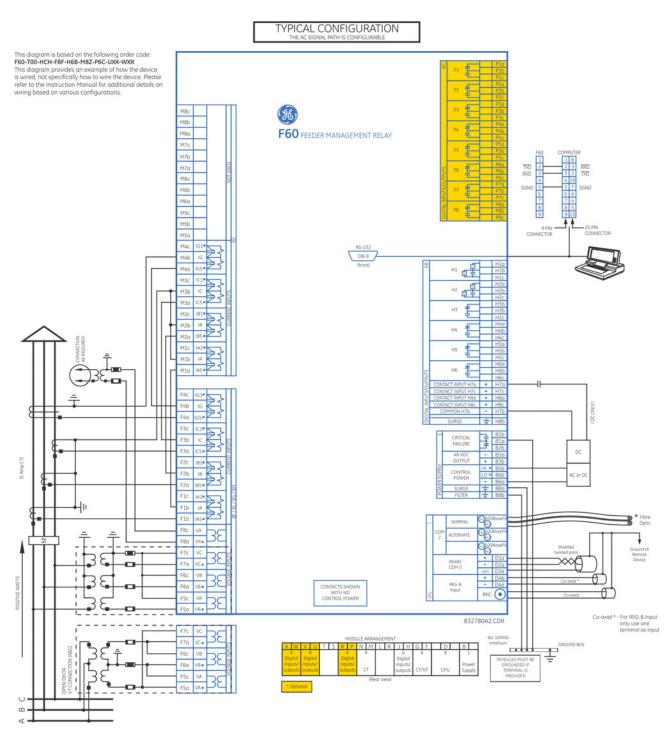


Figure 3–11: TYPICAL WIRING DIAGRAM WITH HIGH-IMPEDANCE DETECTION (T MODULE SHOWN FOR CPU)

3.2.2 DIELECTRIC STRENGTH

The dielectric strength of the UR-series module hardware is shown in the following table:

Table 3-1: DIELECTRIC STRENGTH OF UR-SERIES MODULE HARDWARE

MODULE			NALS	DIELECTRIC STRENGTH
TYPE		FROM	ТО	(AC)
1	Power supply	High (+); Low (+); (-)	Chassis	2000 V AC for 1 minute
1	Power supply	48 V DC (+) and (-)	Chassis	2000 V AC for 1 minute
1	Power supply	Relay terminals	Chassis	2000 V AC for 1 minute
2	Reserved	N/A	N/A	N/A
3	Reserved	N/A	N/A	N/A
4	Reserved	N/A	N/A	N/A
5	Analog inputs/outputs	All except 8b	Chassis	< 50 V DC
6	Digital inputs/outputs	All	Chassis	2000 V AC for 1 minute
7	G.703	All except 2b, 3a, 7b, 8a	Chassis	2000 V AC for 1 minute
/	RS422	All except 6a, 7b, 8a	Chassis	< 50 V DC
8	CT/VT	All	Chassis	2000 V AC for 1 minute
9	CPU	All	Chassis	2000 V AC for 1 minute

Filter networks and transient protection clamps are used in the hardware to prevent damage caused by high peak voltage transients, radio frequency interference (RFI), and electromagnetic interference (EMI). These protective components can be damaged by application of the ANSI/IEEE C37.90 specified test voltage for a period longer than the specified one minute.

3.2.3 CONTROL POWER

NOTICE

Control power supplied to the relay must be connected to the matching power supply range of the relay. If the voltage is applied to the wrong terminals, damage can occur.

The F60 relay, like almost all electronic relays, contains electrolytic capacitors. These capacitors are well known to be subject to deterioration over time if voltage is not applied periodically. Deterioration can be avoided by powering the relays up once a year.

The power supply module can be ordered for two possible voltage ranges, with or without a redundant power option. Each range has a dedicated input connection for proper operation. The ranges are as shown below (see the *Specifications* section of chapter 2 for details):

- Low (LO) range: 24 to 48 V (DC only) nominal.
- High (HI) range: 125 to 250 V nominal.

The power supply module provides power to the relay and supplies power for dry contact input connections.

The power supply module provides 48 V DC power for dry contact input connections and a critical failure relay (see the *Typical wiring diagram* earlier). The critical failure relay is a form-C device that is energized once control power is applied and the relay has successfully booted up with no critical self-test failures. If on-going self-test diagnostic checks detect a critical failure (see the *Self-test Errors* section in chapter 7) or control power is lost, the relay is de-energize.

For high reliability systems, the F60 has a redundant option in which two F60 power supplies are placed in parallel on the bus. If one of the power supplies become faulted, the second power supply assumes the full load of the relay without any interruptions. Each power supply has a green LED on the front of the module to indicate it is functional. The critical fail relay of the module also indicates a faulted power supply.

An LED on the front of the control power module shows the status of the power supply:

LED INDICATION	POWER SUPPLY	
CONTINUOUS ON	OK	
ON / OFF CYCLING	Failure	
OFF	Failure	

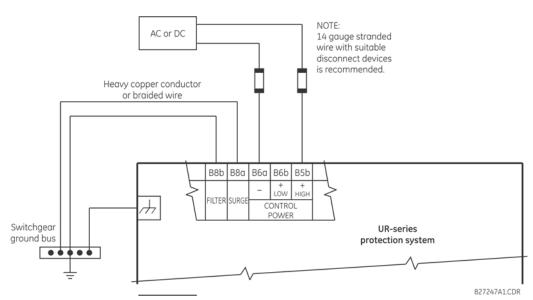


Figure 3-12: CONTROL POWER CONNECTION

3.2.4 CT AND VT MODULES

A CT/VT module can have voltage inputs on channels 1 through 4 inclusive, or channels 5 through 8 inclusive. Channels 1 and 5 are intended for connection to phase A, and are labeled as such in the relay. Likewise, channels 2 and 6 are intended for connection to phase B, and channels 3 and 7 are intended for connection to phase C.

Channels 4 and 8 are intended for connection to a single-phase source. For voltage inputs, these channel are labelled as auxiliary voltage (VX). For current inputs, these channels are intended for connection to a CT between system neutral and ground, and are labelled as ground current (IG).

Verify that the connection made to the relay nominal current of 1 A or 5 A matches the secondary rating of the connected CTs. Unmatched CTs may result in equipment damage or inadequate protection.

CT/VT modules can be ordered with a standard ground current input that is the same as the phase current input. Each AC current input has an isolating transformer and an automatic shorting mechanism that shorts the input when the module is withdrawn from the chassis. There are no internal ground connections on the current inputs. Current transformers with 1 to 50000 A primaries and 1 A or 5 A secondaries may be used.

CT/VT modules with a sensitive ground input are also available. The ground CT input of the sensitive ground modules is ten times more sensitive than the ground CT input of standard CT/VT modules. However, the phase CT inputs and phase VT inputs are the same as those of regular CT/VT modules.

The above modules are available with enhanced diagnostics. These modules can automatically detect CT/VT hardware failure and take the relay out of service.

CT connections for both ABC and ACB phase rotations are identical as shown in the *Typical wiring diagram*.

The exact placement of a zero-sequence core balance CT to detect ground fault current is shown below. Twisted-pair cabling on the zero-sequence CT is recommended.

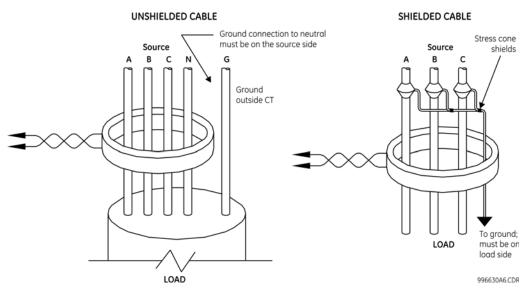


Figure 3-13: ZERO-SEQUENCE CORE BALANCE CT INSTALLATION

The phase voltage channels are used for most metering and protection purposes. The auxiliary voltage channel is used as input for the synchrocheck and volts-per-hertz features.

NOTE

Substitute the tilde "~" symbol with the slot position of the module in the following figure.

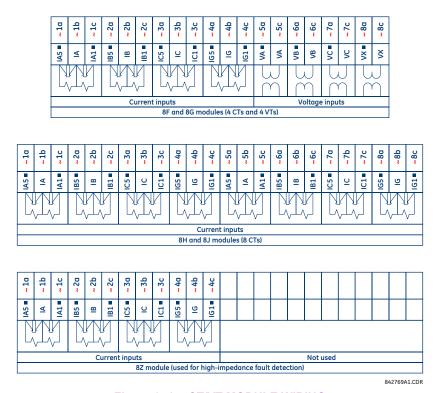


Figure 3-14: CT/VT MODULE WIRING

3 HARDWARE 3.2 WIRING

A relay configured for high impedance fault detection element includes two CT/VT modules: one type 8F, 8G, 8H, or 8J module and one type 8Z module. For correct operation of the high impedance fault detection element, the ground current terminals of the two CT modules must be connected to a ground current source, either a zero-sequence CT (see the *Typical wiring diagram with high impedance fault detection* earlier in this chapter) or, if a zero-sequence CT is not available, to the neutral conductor of the phase CTs (see diagram below).

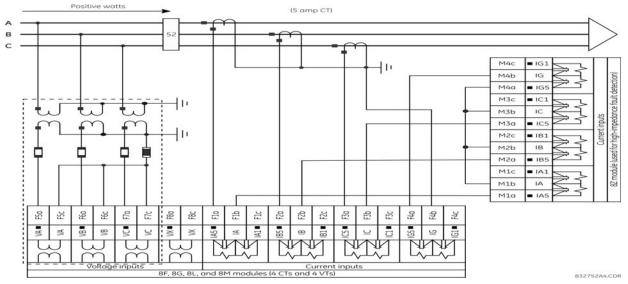


Figure 3-15: TYPICAL 8Z MODULE WIRING WITH PHASE CTS

3.2.5 PROCESS BUS MODULES

The F60 can be ordered with a process bus interface module. This module is designed to interface with the GE Multilin HardFiber system, allowing bidirectional IEC 61850 fiber optic communications with up to eight HardFiber merging units, known as Bricks. The HardFiber system has been designed to integrate seamlessly with the existing UR-series applications, including protection functions, FlexLogic, metering, and communications.

The IEC 61850 process bus system offers the following benefits:

- Reduces labor associated with design, installation, and testing of protection and control applications using the F60 by reducing the number of individual copper terminations
- Integrates seamlessly with existing F60 applications, since the IEC 61850 process bus interface module replaces the traditional CT/VT modules
- Communicates using open standard IEC 61850 messaging

For additional details on the HardFiber system, see GE publication GEK-113658: HardFiber Process Bus System Instruction Manual.

3.2.6 CONTACT INPUTS AND OUTPUTS

Every contact input/output module has 24 terminal connections. They are arranged as three terminals per row, with eight rows in total. A given row of three terminals can be used for the outputs of one relay. For example, for form-C relay outputs, the terminals connect to the normally open (NO), normally closed (NC), and common contacts of the relay. For a form-A output, there are options of using current or voltage detection for feature supervision, depending on the module ordered. The terminal configuration for contact inputs is different for the two applications.

The contact inputs are grouped with a common return. The F60 has two versions of grouping: four inputs per common return and two inputs per common return. When a contact input/output module is ordered, four inputs per common is used. The four inputs per common allows for high-density inputs in combination with outputs, with a compromise of four inputs sharing one common. If the inputs must be isolated per row, then two inputs per common return should be selected (4D module).

The tables and diagrams on the following pages illustrate the module types (6A, etc.) and contact arrangements that can be ordered for the relay. Since an entire row is used for a single contact output, the name is assigned using the module slot position and row number. However, since there are two contact inputs per row, these names are assigned by module slot position, row number, and column position.

Some form-A / solid-state relay outputs include circuits to monitor the DC voltage across the output contact when it is open, and the DC current through the output contact when it is closed. Each of the monitors contains a level detector whose output is set to logic "On = 1" when the current in the circuit is above the threshold setting. The voltage monitor is set to "On = 1" when the current is above about 1 to $2.5 \, \text{mA}$, and the current monitor is set to "On = 1" when the current exceeds about 80 to 100 mA. The voltage monitor is intended to check the health of the overall trip circuit, and the current monitor can be used to seal-in the output contact until an external contact has interrupted current flow.

Block diagrams are shown as follows for form-A and solid-state relay outputs with optional voltage monitor, optional current monitor, and with no monitoring. The actual values shown for contact output 1 are the same for all contact outputs.

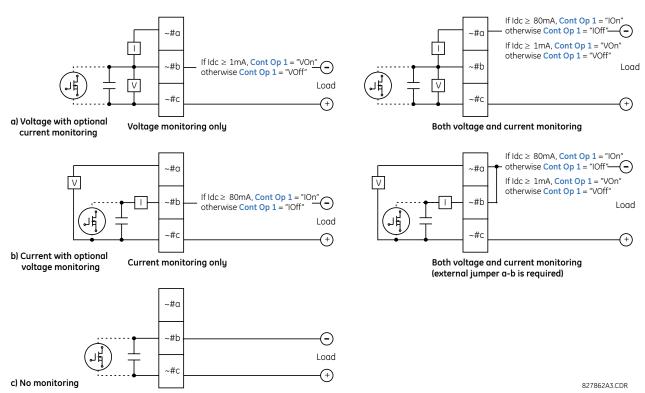


Figure 3-16: FORM-A AND SOLID-STATE CONTACT OUTPUTS WITH VOLTAGE AND CURRENT MONITORING

The operation of voltage and current monitors is reflected with the corresponding FlexLogic operands (CONT OP # VON, CONT OP # VOFF, and CONT OP # ION) which can be used in protection, control, and alarm logic. The typical application of the voltage monitor is breaker trip circuit integrity monitoring; a typical application of the current monitor is seal-in of the control command.

3 HARDWARE 3.2 WIRING

See the Digital Elements section of chapter 5 for an example of how form-A and solid-state relay contacts can be applied for breaker trip circuit integrity monitoring.

Consider relay contacts unsafe to touch when the unit is energized. If the relay contacts need WARNING to be used for low voltage accessible applications, ensure proper insulation levels.

USE OF FORM-A AND SOLID-STATE RELAY OUTPUTS IN HIGH IMPEDANCE CIRCUITS

For form-A and solid-state relay output contacts internally equipped with a voltage measuring circuit across the contact, the circuit has an impedance that can cause a problem when used in conjunction with external high input impedance monitoring equipment such as modern relay test set trigger circuits. These monitoring circuits may continue to read the form-A contact as being closed after it has closed and subsequently opened, when measured as an impedance.

The solution is to use the voltage measuring trigger input of the relay test set, and connect the form-A contact through a voltage-dropping resistor to a DC voltage source. If the 48 V DC output of the power supply is used as a source, a 500 Ω , 10 W resistor is appropriate. In this configuration, the voltage across either the form-A contact or the resistor can be used to monitor the state of the output.

Wherever a tilde "~" symbol appears, substitute with the slot position of the module; wherever a number sign "#" appears, substitute the contact number

When current monitoring is used to seal-in the form-A and solid-state relay contact outputs, the Flex-Logic operand driving the contact output should be given a reset delay of 10 ms to prevent damage of the output contact (in situations when the element initiating the contact output is bouncing, at values in the region of the pickup value).

Table 3-2: CONTACT INPUT AND OUTPUT MODULE ASSIGNMENTS

~6A MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6B MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6C MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Form-C
~2	Form-C
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7	Form-C
~8	Form-C

~6D MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1a, ~1c	2 Inputs
~2a, ~2c	2 Inputs
~3a, ~3c	2 Inputs
~4a, ~4c	2 Inputs
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6E MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-C
~2	Form-C
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6F MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Fast Form-C
~2	Fast Form-C
~3	Fast Form-C
~4	Fast Form-C
~5	Fast Form-C
~6	Fast Form-C
~7	Fast Form-C
~8	Fast Form-C

~6G MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6H MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

CHMODILLE

~6K MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Form-C
~2	Form-C
~3	Form-C
~4	Form-C
~5	Fast Form-C
~6	Fast Form-C
~7	Fast Form-C
~8	Fast Form-C

~6L MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6M MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6N MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6P MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6R MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6S MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	Form-C
~5	Form-C
~6	Form-C
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6T MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6U MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-A
~4	Form-A
~5	Form-A
~6	Form-A
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

~6V MODULE	
TERMINAL ASSIGNMENT	OUTPUT OR INPUT
~1	Form-A
~2	Form-A
~3	Form-C
~4	2 Outputs
~5a, ~5c	2 Inputs
~6a, ~6c	2 Inputs
~7a, ~7c	2 Inputs
~8a, ~8c	2 Inputs

JT
A
A
A
A
A
A
A
A

~4A MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Not Used
~2	Solid-State
~3	Not Used
~4	Solid-State
~5	Not Used
~6	Solid-State
~7	Not Used
~8	Solid-State

~4B MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Not Used
~2	Solid-State
~3	Not Used
~4	Solid-State
~5	Not Used
~6	Solid-State
~7	Not Used
~8	Solid-State

~4C MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	Not Used
~2	Solid-State
~3	Not Used
~4	Solid-State
~5	Not Used
~6	Solid-State
~7	Not Used
~8	Solid-State

~4D MODULE	
OUTPUT	
2 Inputs	
2 Inputs	
2 Inputs	
2 Inputs	
2 Inputs	
2 Inputs	
2 Inputs	
2 Inputs	

~4L MODULE	
TERMINAL ASSIGNMENT	OUTPUT
~1	2 Outputs
~2	2 Outputs
~3	2 Outputs
~4	2 Outputs
~5	2 Outputs
~6	2 Outputs
~7	2 Outputs
~8	Not Used

3 HARDWARE 3.2 WIRING

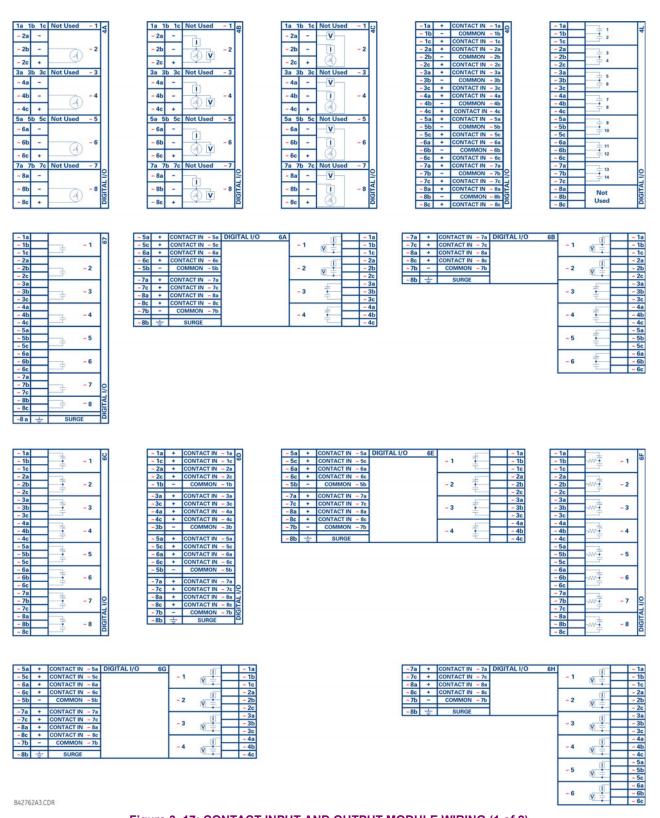


Figure 3–17: CONTACT INPUT AND OUTPUT MODULE WIRING (1 of 2)

- 10	~ 1a	\rightarrow		ž
- 2a -2b -2 -2 -2 -2 -2 -2 -)—Ì	~ 1	9
- 2b		\vdash		IJ
- 20		\vdash		Ш
- 3a -3b -3 -3 -3 -3 -3 -3 -		<u> </u>	~ 2	ш
- 3b	~ 2c	\vdash		IJ
-3c		\vdash		Ш
- 4a -4b -4 -4 -4 -4 -4 -4 -		<u> </u>	~ 3	ш
- 4b - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	~ 3c	——		IJ
- 46		\vdash		Ш
-5a -5b		\pm	~ 4	ш
-5b - W-1 -5 -5c - 5c - 7 -6a - 6b - W-1 - 6 -6c - 7 -7b - W-1 - 7 -7c - 7c - 7c - 7c -8b - W-1 - 8		\vdash		J I
- 5a		\vdash		Ш
- 6a - 6 - 6c - 7a - 7a - 7c - 7c - 8a - 8b - WH - 8 5		-₩Ŧ	~ 5	ш
-6b ————————————————————————————————————		\vdash		J I
~ 6c	~ 6a	\rightarrow		Н
77a 77b W 77 77 77c 77c 77c 77c 77c 77c 77e 8a 78b 8b 8b 8b 8b 8b 8b 8b 8b 8b 8b 8b 8b 8		-₩Ŧ	~ 6	ш
-7b -W -7 0/17k -7 0/		ш		JI
~7c				L
~8a ~8		-₩ -	~ 7	2
		\perp		JĘI
				ĽΪ
~ 8c		₩Ì	~ 8	ō
	~ 8c	-		

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6L		_V	~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1	里	~ 1b
~ 6a	+	CONTACT IN ~ 6a			+	~ 1c
~ 6c	+	CONTACT IN ~ 6c			V	~ 2a
~ 5b	-	COMMON ~5b		~ 2	里	~ 2b
~7a		CONTACT IN ~ 7a			+	~ 2c
~7c	_	CONTACT IN ~ 7c				~ 3a
		CONTACT IN ~ 7c		~ 3	- Í-	~ 3b
~8a	_					~ 3c
~8c	+	CONTACT IN ~ 8c				~ 4a
~ /D	Ë	COMMON ~ 7b		~ 4	Í	~ 4b
~8b	\pm	SURGE			=	~ 4c

_							
~7a	+		DIGITAL I/O	6M		_V	~ 1a
~7c	+	CONTACT IN ~ 70	:		~ 1	里	~ 1b
~8a	+	CONTACT IN ~ 8a				L‡_	~ 1c
~8c	+	CONTACT IN ~ 8				_V	~ 2a
~7b	-	COMMON ~ 7	7		~ 2		~ 2b
-	Ŧ	SURGE				里	~ 2c
~8b	=	SURGE					~ 3a
					~ 3	7-	~ 3b
						₹	~ 3c
							~ 4a
					~ 4	<u> </u>	~ 4b
						ŧ	~ 4c
							~ 5a
					~ 5	7	~ 5b
						Ŧ	~ 5c
							~ 6a
					~ 6	<u>‡</u>	~ 6b
						Ē	~ 6c

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6N		_V	~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1	聖	~ 1b
~ 6a	+	CONTACT IN ~ 6a			L	~ 1c
~ 6c	+	CONTACT IN ~ 6c			_V	~ 2a
~ 5b	-	COMMON ~5b		~ 2	- 모	~ 2b
~7a	=	CONTACT IN ~ 7a			L.	~ 2c
		CONTACT IN ~ 7c			_V	~ 3a
~7c	+			~ 3	m-	~ 3b
~8a	+	CONTACT IN ~ 8a			<u></u>	~ 3c
~8c	+	CONTACT IN ~ 8c				~ 4a
~7b	-	COMMON ~ 7b				
				~ 4	፲ −	~ 4b
~8b	士	SURGE			- 二	~ 4c

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6F	3				~ 1a
~ 5c	+	CONTACT IN ~ 5c		П	~ 1			~ 1b
~ 6a	+	CONTACT IN ~ 6a		- [т		~ 1c
~ 6c	+	CONTACT IN ~ 6c		I				~ 2a
~ 5b	-	COMMON ~5b		-1	~ 2	_		~ 2b
				- 1				~ 2c
~7a	+	CONTACT IN ~ 7a		- 1				~ 3a
~7c	+	CONTACT IN ~ 7c		- 1	_	*	-	
~8a	-	CONTACT IN ~ 8a	1	- 1	~ 3			~ 3b
	_			- 1				~ 3c
~8c	+	CONTACT IN ~ 8c		- 1				~ 4a
~7b	-	COMMON ~ 7b	I	- 1		上	\mathbf{H}	
-75				- 1	~ 4	<u> </u>		~ 4b
~8b	(보	SURGE				т		~ 4c

~ 5a	+	CONTACT IN ~ 5a	DIGITAL I/O 6T			~ 1a
~ 5c	+	CONTACT IN ~ 5c		~ 1		~ 1b
~ 6a	+	CONTACT IN ~ 6a			т	~ 1c
~ 6c	+	CONTACT IN ~ 6c				~ 2a
~ 5b	-	COMMON ~5b		~ 2		~ 2b
						~ 2c
~7a	+	CONTACT IN ~ 7a				~ 3a
~7c	+	CONTACT IN ~ 7c		_		
~8a	+	CONTACT IN ~ 8a	1	~ 3		~ 3b
_	÷			l .		~ 3c
~8c	+	CONTACT IN ~ 8c	l			~ 4a
~7b	-	COMMON ~7b	I	l .		
- 12				~ 4		~ 4b
~8b	÷	SURGE				~ 4c

- 5a	+	CONTACT IN -5a	DIGITAL I/O 6V		_(V)	- 1a
- 5c	+	CONTACT IN - 5c		- 1	10-	- 1b
- 6a		CONTACT IN - 6a			-	- 1c
- 6c		CONTACT IN - 6c			_V	- 2a
- 5b	-	COMMON -5b		- 2	100-	~ 2b
~7a	_	CONTACT IN - 7a			-	- 2c
-7c	+	CONTACT IN - 7c		100	-	- 3a
-8a	-	CONTACT IN - 8a		- 3	1	- 3b
-8c	+	CONTACT IN - 8c			-	- 3c
-7b	-	COMMON -7b		- 4a	_	- 4a
-70				-4c	-	- 4b
~8b	÷	SURGE		40	-	- 4c

			_				
~7a	+	CONTACT IN ~ 7a	DIGITAL I/O	6P		_V	~ 1a
~7c	+	CONTACT IN ~ 7c			~ 1	<u>_</u>	~ 1b
~8a	+	CONTACT IN ~ 8a				L‡	~ 1c
~8c	+	CONTACT IN ~ 8c				_V_	~ 2a
~7b	-	COMMON ~7b			~ 2	m-	~ 2b
~ 8b		ou no s					~ 2c
~ 80	÷	SURGE		_		_V	~ 3a
					~ 3	Ψ—	~ 3b
						1	~ 3c
						_V	~ 4a
					~ 4	III—	~ 4b
						L _F	~ 4c
						-[V]-	~ 5a
					~ 5	I III—	~ 5b
						L¥	~ 5c
						-[V]-	~ 6a
					~ 6		~ 6b
						L	~ 6c

~7a	+	CONTACT IN ~ 7a	DIGITAL I/O	6S			~ 1a
~7c	+	CONTACT IN ~ 7c			~ 1		~ 1b
~8a	+	CONTACT IN ~ 8a				工	~ 1c
~8c	+	CONTACT IN ~ 8c					~ 2a
~7b	_	COMMON ~7b			~ 2		~ 2b
~ 8b	_	SURGE					~ 2c
~ 00	=	JUNGE					~ 3a
					~ 3	Ŧ-	~ 3b
							~ 3c
							~ 4a
					~ 4	<u> </u>	~ 4b
							~ 4c
							~ 5a
					~ 5	I –	~ 5b
							~ 5c
							~ 6a
					~ 6	I -	~ 6b
							~ 6c

~7a	+	CONTACT IN	~ 7a	DIGITAL I/O	6U			~ 1a
~7c	+	CONTACT IN	~ 7c			~ 1		~ 1b
~8a	+	CONTACT IN	~ 8a					~ 1c
~8c	+	CONTACT IN	~ 8c					~ 2a
~7b	-	COMMON	~ 7b			~ 2		~ 2b
~ 8b	-	SURGE						~ 2c
- 00		JOHUL						~ 3a
						~ 3		~ 3b
								~ 3c
								~ 4a
						~ 4		~ 4b
							Τ_	~ 4c
								~ 5a
						~ 5		~ 5b
								~ 5c
								~ 6a
						~ 6		~ 6b
								~ 6c

842763A2.CDR

Figure 3–18: CONTACT INPUT AND OUTPUT MODULE WIRING (2 of 2)

For proper functionality, observe correct polarity for all contact input and solid state output connections.

3 HARDWARE 3.2 WIRING

CONTACT INPUTS

A dry contact has one side connected to terminal B3b. This is the positive 48 V DC voltage rail supplied by the power supply module. The other side of the dry contact is connected to the required contact input terminal. Each contact input group has its own common (negative) terminal which must be connected to the DC negative terminal (B3a) of the power supply module. When a dry contact closes, a current of 1 to 3 mA flows through the associated circuit.

A wet contact has one side connected to the positive terminal of an external DC power supply. The other side of this contact is connected to the required contact input terminal. If a wet contact is used, then the negative side of the external source must be connected to the relay common (negative) terminal of each contact group. The maximum external source voltage for this arrangement is 300 V DC.

The voltage threshold at which each group of four contact inputs detects a closed contact input is programmable as 17 V DC for 24 V sources, 33 V DC for 48 V sources, 84 V DC for 110 to 125 V sources, and 166 V DC for 250 V sources.

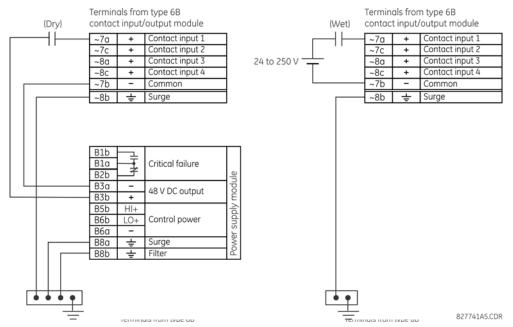


Figure 3-19: DRY AND WET CONTACT INPUT CONNECTIONS

Wherever a tilde "~" symbol appears, substitute with the slot position of the module.

Contact outputs can be ordered as form-A or form-C. The form-A contacts can be connected for external circuit supervision. These contacts are provided with voltage and current monitoring circuits used to detect the loss of DC voltage in the circuit, and the presence of DC current flowing through the contacts when the form-A contact closes. If enabled, the current monitoring can be used as a seal-in signal to ensure that the form-A contact does not attempt to break the energized inductive coil circuit and weld the output contacts.

There is no provision in the relay to detect a DC ground fault on $48\ V\ DC$ control power external output. We recommend using an external DC supply.

3.2 WIRING 3 HARDWARE

USE OF CONTACT INPUTS WITH AUTO-BURNISHING

The contact inputs sense a change of the state of the external device contact based on the measured current. When external devices are located in a harsh industrial environment (either outdoor or indoor), their contacts can be exposed to various types of contamination. Normally, there is a thin film of insulating sulfidation, oxidation, or contaminates on the surface of the contacts, sometimes making it difficult or impossible to detect a change of the state. This film must be removed to establish circuit continuity – an impulse of higher than normal current can accomplish this.

The contact inputs with auto-burnish create a high current impulse when the threshold is reached to burn off this oxidation layer as a maintenance to the contacts. Afterwards the contact input current is reduced to a steady-state current. The impulse has a 5 second delay after a contact input changes state.

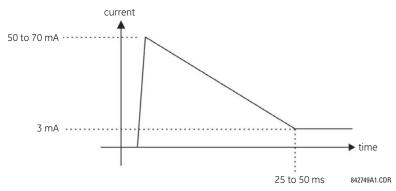


Figure 3-20: CURRENT THROUGH CONTACT INPUTS WITH AUTO-BURNISHING

Regular contact inputs limit current to less than 3 mA to reduce station battery burden. In contrast, contact inputs with auto-burnishing allow currents up to 50 to 70 mA at the first instance when the change of state was sensed. Then, within 25 to 50 ms, this current is slowly reduced to 3 mA as indicated above. The 50 to 70 mA peak current burns any film on the contacts, allowing for proper sensing of state changes. If the external device contact is bouncing, the auto-burnishing starts when external device contact bouncing is over.

Another important difference between the auto-burnishing input module and the regular input modules is that only two contact inputs have common ground, as opposed to four contact inputs sharing one common ground (refer to the *Contact Input and Output Module Wiring* diagrams). This is beneficial when connecting contact inputs to separate voltage sources. Consequently, the threshold voltage setting is also defined per group of two contact inputs.

The auto-burnish feature can be disabled or enabled using the DIP switches found on each daughter card. There is a DIP switch for each contact, for a total of 16 inputs.

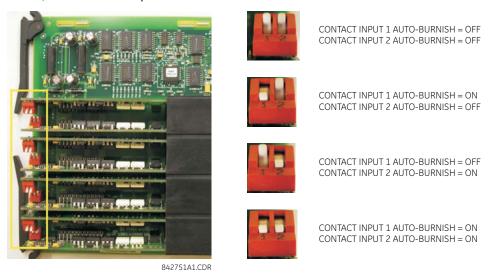


Figure 3-21: AUTO-BURNISH DIP SWITCHES

The auto-burnish circuitry has an internal fuse for safety purposes. During regular maintenance, check the auto-burnish functionality using an oscilloscope.

3.2.7 TRANSDUCER INPUTS/OUTPUTS

Transducer input modules can receive input signals from external dcmA output transducers (dcmA In) or resistance temperature detectors (RTD). Hardware and software is provided to receive signals from these external transducers and convert these signals into a digital format for use as required.

Transducer output modules provide DC current outputs in several standard dcmA ranges. Software is provided to configure virtually any analog quantity used in the relay to drive the analog outputs.

Every transducer input/output module has a total of 24 terminal connections. These connections are arranged as three terminals per row with a total of eight rows. A given row can be used for either inputs or outputs, with terminals in column "a" having positive polarity and terminals in column "c" having negative polarity. Since an entire row is used for a single input/output channel, the name of the channel is assigned using the module slot position and row number.

Each module also requires that a connection from an external ground bus be made to terminal 8b. The current outputs require a twisted-pair shielded cable, where the shield is grounded at one end only. The figure below illustrates the transducer module types (5A, 5C, 5D, 5E, and 5F) and channel arrangements that can be ordered for the relay.

Wherever a tilde "~" symbol appears, substitute with the slot position of the module.

~1a	+	dcmA In ∼1	ξ
~1c	_	ucma m ~1	"′
~2a	+	dcmA In ~2	1
~2c	1	dcmA in ~2	
			1
~3a	+	dcmA In ~3	1
~3c	_	dema in ~3	
~4a	+	dcmA In ~4	1
~4c	-	dcma in ~4	
			1
~5a	+	dcmA Out ~5	1
~5c	_	dema out ~5	ı
~6a	+	dcmA Out ~6	1
~6c	_	dcma Out ~6	
			1
~7a	+	dcmA Out ∼7	l
~7c	ı	dellik Odt 147	9
~8a	+	dcmA Out ~8]_`
~8c	_	uciin Out ~o	ANALOG
]₹
~8b	후	SURGE	₹

4					1.,
~1a	Hot		RTD	~1	20
~1c	Comp				1
~1b	Return	for	RTD ~	1& ~2	┚
~2a	Hot		RTD	~2	1
~2c	Comp		1110		1
~3a	Hot	\vdash			1
~3c	Comp	1	RTD	~3	
~3b	Return	for	RTD ~	3& ∼4	1
~4a	Hot		RTD	~4	7
~4c	Comp		עוט	~4	╽
					7
~5a	Hot	l	RTD	~5	
~5c	Comp				1
~5b	Return	for	RTD ∼	5& ∼6	
~6a	Hot		RTD	~6	
~6c	Comp	_	KID	۰~٥]
~7a	Hot				1
~7c	Comp		RTD	~7	
~7b	Return	for	RTD ~	7&: ~8	2
~8a	Hot			_	1,-
~8c	Comp	l	RTD	~8	NALOG I
			SURG		I₹

~1a	Hot	RTD	~1	20
~1c	Comp		1	"
~1b	Return	for RTD ~1&	~2	
~2a	Hot	RTD	~2	Ш
~2c	Comp	KID	~	
				1 1
~3a	Hot	RTD	~3	Ш
~3c	Comp	KID	,~5	Ш
~3b	Return	for RTD ~3&	~4	
~4a	Hot	RTD	~4	Ш
~4c	Comp	שוא	~4	Ш
				1
~5a	+	dcmA Out	5	Ш
~5c	_	della out	~5	
~6a	+	dcmA Out		Ш
ر 9	_	dema out	~6	
~7a	+	dcmA Out	~7	
~7c	_	GCTIK OUL	,	2
~8a	+	dcmA Out		(2)
~8c	_	dema out	~0	NALOG 1/0
				ا≱ا
~8b	+	SURGE		₹

~1a	+	dcmA In	~1	5E
~1c	ı	ucina in	701	
~2a	+	dcmA In	~2	
~2c	-	delliz III	2	
~3a	+	dA I-	7	
~3c	_	dcmA In	~3	
~4a	+	dcmA In	~4	
~4c	-	delliz III		
~5a	Hot			
~5c		RTD	~5	
~5b	Return	for RTD ∼5&	~6	
~6a	Hot	RTD	~6	
~6c	Comp	KID	0	
~7a	Hot			
~7c	Comp	RTD	~7	
~7b	Return	for RTD ∼7&	~8	9
~8a	Hot	RTD	~8	
~8c	Comp	NID.	0	ANALOG
~8b	╢	SURGE		Ä

~1a	+	dcmA In	~1	5F
~1c	_	40111111111		
~2a	+	dcmA In	~2	
~2c	-	delliz III	2	
				1
~3a	+	dcmA In	~3	
~3c	_	dellia III	5	
~4a	+	dcmA In	~4	
~4c	_	dema in	~4	
				1 1
~5a	+	dcmA In	~5	
~5c	_	demA in	~5	
~6a	+	dcmA In	~6	1
~6c	-	acma in	~6	
				1
~7a	+	dcmA In	~7	
~7c	-	dema in	~/	2
~8a	+	4		-
~8c	_	dcmA in	~8	ANALOG I,
				Ĭ₹
~8b	Ŧ	SURGE		¥

842764A1.CDR

Figure 3-22: TRANSDUCER INPUT/OUTPUT MODULE WIRING

3.2.8 RS232 FACEPLATE PORT

A 9-pin RS232C serial port is located on the F60 faceplate for programming with a computer. All that is required to use this interface is a computer running the EnerVista UR Setup software provided with the relay. Cabling for the RS232 port is shown in the following figure for both 9-pin and 25-pin connectors.

The baud rate for this port is fixed at 19200 bps.

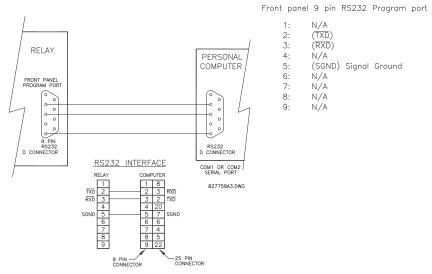


Figure 3-23: RS232 FACEPLATE PORT CONNECTION

3.2.9 CPU COMMUNICATION PORTS

a) OPTIONS

In addition to the faceplate RS232 port, the F60 provides a rear RS485 communication port.

The CPU modules do not require a surge ground connection.

3 HARDWARE 3.2 WIRING

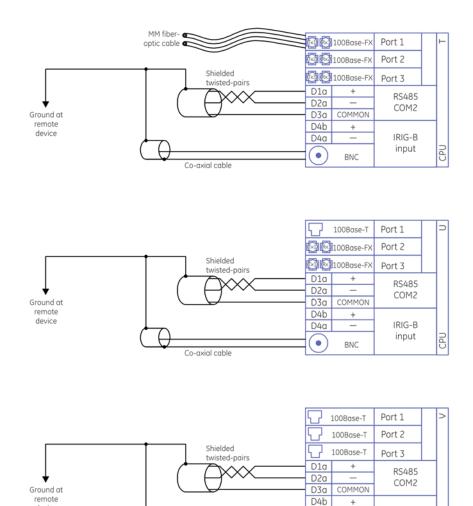


Figure 3–24: CPU MODULE COMMUNICATIONS WIRING

Co-axial cable

D4a

BNC

IRIG-B input

842722A3.CDR

b) RS485 PORTS

RS485 data transmission and reception are accomplished over a single twisted pair with transmit and receive data alternating over the same two wires. Through the use of the port, continuous monitoring and control from a remote computer, SCADA system, or PLC is possible.

To minimize errors from noise, the use of shielded twisted pair wire is recommended. Correct polarity must also be observed. For instance, the relays must be connected with all RS485 "+" terminals connected together, and all RS485 "-" terminals connected together. Though data is transmitted over a two-wire twisted pair, all RS485 devices require a shared reference, or common voltage. This common voltage is implied to be a power supply common. Some systems allow the shield (drain wire) to be used as common wire and to connect directly to the F60 COM terminal (#3); others function correctly only if the common wire is connected to the F60 COM terminal, but insulated from the shield.

To avoid loop currents, ground the shield at only one point. If other system considerations require the shield to be grounded at more than one point, install resistors (typically 100 ohms) between the shield and ground at each grounding point. Each relay needs to be daisy-chained to the next one in the link. A maximum of 32 relays can be connected in this manner without exceeding driver capability. For larger systems, additional serial channels must be added. It is also possible to use commercially available repeaters to have more than 32 relays on a single channel. Avoid star or stub connections entirely.

Lightning strikes and ground surge currents can cause large momentary voltage differences between remote ends of the communication link. For this reason, surge protection devices are internally provided at both communication ports. An isolated power supply with an optocoupled data interface also acts to reduce noise coupling. To ensure maximum reliability, all equipment should have similar transient protection devices installed.

Terminate both ends of the RS485 circuit with an impedance as shown below.

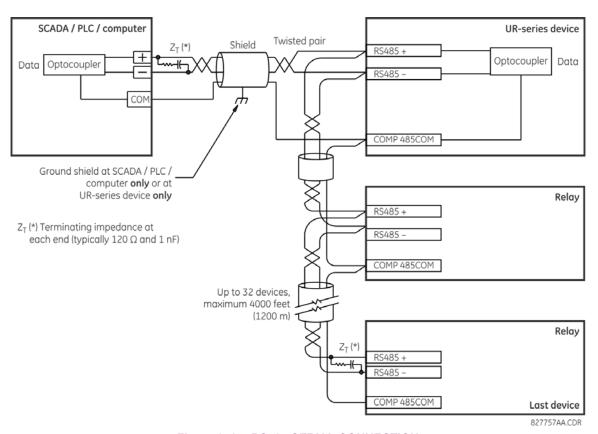
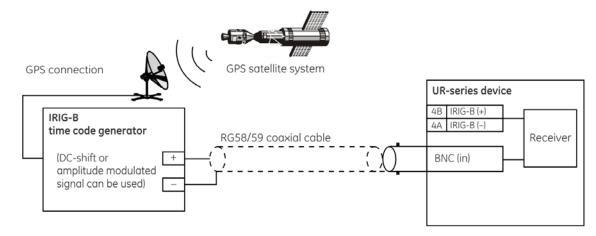


Figure 3-25: RS485 SERIAL CONNECTION

c) 100BASE-FX FIBER OPTIC PORTS

Ensure that the dust covers are installed when the fiber is not in use. Dirty or scratched connectors can lead to high losses on a fiber link.


Observing any fiber transmitter output can injure the eye.

The fiber optic communication ports allow for fast and efficient communications between relays at 100 Mbps. Optical fiber can be connected to the relay supporting a wavelength of 1310 nm in multi-mode.

The fiber optic port is designed such that the response times do not vary for any core that is $100 \, \mu m$ or less in diameter, $62.5 \, \mu m$ for $100 \, Mbps$. For optical power budgeting, splices are required every 1 km for the transmitter/receiver pair. When splicing optical fibers, the diameter and numerical aperture of each fiber must be the same.

3.2.10 IRIG-B

IRIG-B is a standard time code format that allows stamping of events to be synchronized among connected devices within 1 millisecond. The IRIG time code formats are serial, width-modulated codes that can be either DC level shifted or amplitude modulated (AM). Third party equipment is available for generating the IRIG-B signal; this equipment can use a GPS satellite system to obtain the time reference so that devices at different geographic locations can be synchronized.

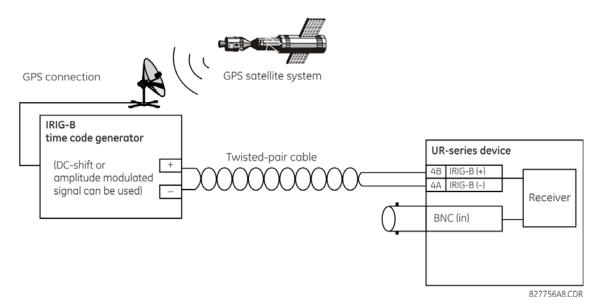


Figure 3-26: OPTIONS FOR THE IRIG-B CONNECTION

Using an amplitude modulated receiver causes errors up to 1 ms in event time-stamping.

3.3.1 DESCRIPTION

The F60 direct inputs and outputs feature makes use of the type 7 series of communications modules, which allow direct messaging between devices.

The communications channels are normally connected in a ring configuration as shown in the following figure. The transmitter of one module is connected to the receiver of the next module. The transmitter of this second module is then connected to the receiver of the next module in the ring. This is continued to form a communications ring. The figure illustrates a ring of four UR-series relays with the following connections: UR1-Tx to UR2-Rx, UR2-Tx to UR3-Rx, UR3-Tx to UR4-Rx, and UR4-Tx to UR1-Rx. A maximum of sixteen (16) UR-series relays can be connected in a single ring

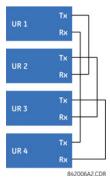


Figure 3-27: DIRECT INPUT AND OUTPUT SINGLE CHANNEL CONNECTION

The interconnection for dual-channel Type 7 communications modules is shown as follows. Two channel modules allow for a redundant ring configuration. That is, two rings can be created to provide an additional independent data path. The required connections are: UR1-Tx1 to UR2-Rx1, UR2-Tx1 to UR3-Rx1, UR3-Tx1 to UR4-Rx1, and UR4-Tx1 to UR1-Rx1 for the first ring; and UR1-Tx2 to UR4-Rx2, UR4-Tx2 to UR3-Rx2, UR3-Tx2 to UR2-Rx2, and UR2-Tx2 to UR1-Rx2 for the second ring.

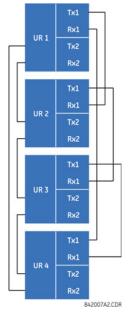


Figure 3-28: DIRECT INPUT AND OUTPUT DUAL CHANNEL CONNECTION

The following diagram shows the connection for three UR-series relays using two independent communication channels. UR1 and UR3 have single type 7 communication modules; UR2 has a dual-channel module. The two communication channels can be of different types, depending on the Type 7 modules used. To allow the direct input and output data to *cross-over* from channel 1 to channel 2 on UR2, the **DIRECT I/O CHANNEL CROSSOVER** setting should be "Enabled" on UR2. This forces UR2 to forward messages received on Rx1 out Tx2, and messages received on Rx2 out Tx1.

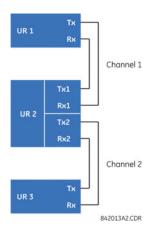


Figure 3-29: DIRECT INPUT AND OUTPUT SINGLE/DUAL CHANNEL COMBINATION CONNECTION

The interconnection requirements are described in further detail in this section for each specific variation of type 7 communications module. These modules are listed in the following table. All fiber modules use ST type connectors.

Not all the direct input and output communications modules are applicable to the F60 relay. See the order codes tables in chapter 2 for the applicable options.

Table 3-3: CHANNEL COMMUNICATION OPTIONS (Sheet 1 of 2)

MODULE	SPECIFICATION
2A	C37.94SM, 1300 nm, single-mode, ELED, 1 channel single-mode
2B	C37.94SM, 1300 nm, single-mode, ELED, 2 channel single-mode
2E	Bi-phase, 1 channel
2F	Bi-phase, 2 channels
2G	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 1 channel
2H	IEEE C37.94, 820 nm, 128 kbps, multimode, LED, 2 channels
21	Channel 1 - IEEE C37.94 MM, 64/128 kbps; Channel 2 - 1300 nm, single-mode
2J	Channel 1 - IEEE C37.94 MM, 64/128 kbps; Channel 2 - 1550 nm, single-mode
72	1550 nm, single-mode, laser, 1 channel
73	1550 nm, single-mode, laser, 2 channels
74	Channel 1 - RS422; channel 2 - 1550 nm, single-mode, laser
75	Channel 1 - G.703; channel 2 - 1550 nm, single-mode, laser
76	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 1 channel
77	IEEE C37.94, 820 nm, 64 kbps, multimode, LED, 2 channels
7A	820 nm, multimode, LED, 1 channel
7B	1300 nm, multimode, LED, 1 channel
7C	1300 nm, single-mode, ELED, 1 channel
7D	1300 nm, single-mode, laser, 1 channel
7E	Channel 1: G.703, Channel 2: 820 nm, multimode
7F	Channel 1: G.703, Channel 2: 1300 nm, multimode
7G	Channel 1: G.703, Channel 2: 1300 nm, single-mode ELED
7H	820 nm, multimode, LED, 2 channels
71	1300 nm, multimode, LED, 2 channels
7J	1300 nm, single-mode, ELED, 2 channels
7K	1300 nm, single-mode, LASER, 2 channels
7L	Channel 1: RS422, channel: 820 nm, multimode, LED
7M	Channel 1: RS422, channel 2: 1300 nm, multimode, LED

Table 3-3: CHANNEL COMMUNICATION OPTIONS (Sheet 2 of 2)

MODULE	SPECIFICATION
7N	Channel 1: RS422, channel 2: 1300 nm, single-mode, ELED
7P	Channel 1: RS422, channel 2: 1300 nm, single-mode, laser
7Q	Channel 1: G.703, channel 2: 1300 nm, single-mode, laser
7R	G.703, 1 channel
7S	G.703, 2 channels
7T	RS422, 1 channel
7V	RS422, 2 channels, 2 clock inputs (N60 only)
7W	RS422, 2 channels

3.3.2 FIBER: LED AND ELED TRANSMITTERS

The following figure shows the configuration for the 7A, 7B, 7C, 7H, 7I, and 7J fiber-only modules.

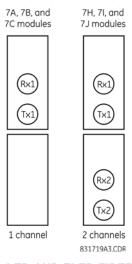


Figure 3-30: LED AND ELED FIBER MODULES

3.3.3 FIBER-LASER TRANSMITTERS

The following figure shows the configuration for the 72, 73, 7D, and 7K fiber-laser module.

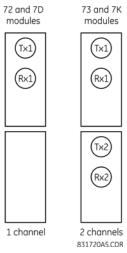


Figure 3-31: LASER FIBER MODULES

When using a laser Interface, attenuators can be necessary to ensure that you do not exceed the maximum optical input power to the receiver.

3.3.4 G.703 INTERFACE

a) **DESCRIPTION**

The following figure shows the 64K ITU G.703 co-directional interface configuration.

The G.703 module is fixed at 64 kbps. The SETTINGS > PRODUCT SETUP > DIRECT I/O > DIRECT I/O > DATA RATE setting is not applicable to this module.

AWG 24 twisted shielded pair is recommended for external connections, with the shield grounded only at one end. Connecting the shield to pin X1a or X6a grounds the shield since these pins are internally connected to ground. Thus, if pin X1a or X6a is used, do not ground at the other end. This interface module is protected by surge suppression devices.

75		Shield	~1a
	G.703 channel 1	Tx -	~1b
		Rx -	~2a
	eriariner 1	Tx +	~2b
		Rx +	~3a
ons	Surge	╬	~3b
cati	G.703 channel 2	Shield	~6a
inni		Tx -	~6b
ШШ		Rx -	~7a
00		Tx +	~7b
G.703 communications		Rx +	~8a
G.	Surge	+	~8b
		8427	73A3.CDF

Figure 3-32: G.703 INTERFACE CONFIGURATION

The following figure shows the typical pin interconnection between two G.703 interfaces. For the actual physical arrangement of these pins, see the *Rear Terminal Layout* section earlier in this chapter. All pin interconnections are to be maintained for a connection to a multiplexer.

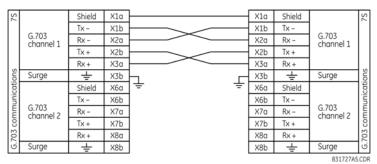


Figure 3-33: TYPICAL PIN INTERCONNECTION BETWEEN TWO G.703 INTERFACES

Pin nomenclature can differ from one manufacturer to another. Therefore, it is not uncommon to see pinouts numbered TxA, TxB, RxA and RxB. In such cases, it can be assumed that "A" is equivalent to "+" and "B" is equivalent to "-".

b) G.703 SELECTION SWITCH PROCEDURES

- 1. With the power to the relay off, remove the G.703 module (7R or 7S) as follows. Record the original location of the module to help ensure that the same or replacement module is inserted into the correct slot.
- 2. Simultaneously pull the ejector/inserter clips located at the top and at the bottom of each module in order to release the module for removal.
- 3. Remove the module cover screw.
- 4. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 5. Set the timing selection switches (channel 1, channel 2) to the desired timing modes.
- Replace the top cover and the cover screw.

7. Re-insert the G.703 module. Take care to ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module is fully inserted.

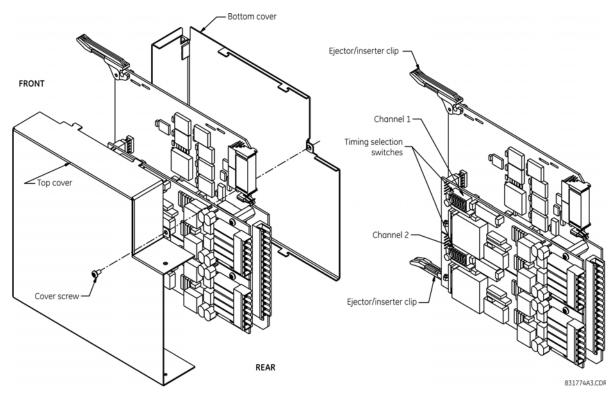
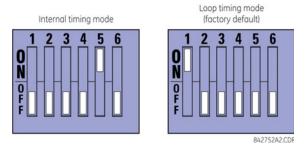


Figure 3-34: G.703 TIMING SELECTION SWITCH SETTING

Table 3-4: G.703 TIMING SELECTIONS

SWITCHES	FUNCTION
S1	OFF → octet timing disabled ON → octet timing 8 kHz
S5 and S6	S5 = OFF and S6 = OFF → loop timing mode S5 = ON and S6 = OFF → internal timing mode S5 = OFF and S6 = ON → minimum remote loopback mode S5 = ON and S6 = ON → dual loopback mode

c) G.703 OCTET TIMING


If octet timing is enabled (ON), this 8 kHz signal is asserted during the violation of bit 8 (LSB) necessary for connecting to higher order systems. When F60s are connected back-to-back, octet timing is disabled (OFF).

d) G.703 TIMING MODES

There are two timing modes for the G.703 module: internal timing mode and loop timing mode (default).

- Internal Timing Mode: The system clock is generated internally. Therefore, the G.703 timing selection should be in the internal timing mode for back-to-back (UR-to-UR) connections. For back-to-back connections, set for octet timing (S1 = OFF) and timing mode to internal timing (S5 = ON and S6 = OFF).
- Loop Timing Mode: The system clock is derived from the received line signal. Therefore, the G.703 timing selection should be in loop timing mode for connections to higher order systems. For connection to a higher order system (URto-multiplexer, factory defaults), set to octet timing (S1 = ON) and set timing mode to loop timing (S5 = OFF and S6 = OFF).

The switch settings for the internal and loop timing modes are shown below:

e) G.703 TEST MODES

In *minimum remote loopback* mode, the multiplexer is enabled to return the data from the external interface without any processing to assist in diagnosing G.703 line-side problems irrespective of clock rate. Data enters from the G.703 inputs, passes through the data stabilization latch which also restores the proper signal polarity, passes through the multiplexer and then returns to the transmitter. The differential received data is processed and passed to the G.703 transmitter module after which point the data is discarded. The G.703 receiver module is fully functional and continues to process data and passes it to the differential Manchester transmitter module. Since timing is returned as it is received, the timing source is expected to be from the G.703 line side of the interface.

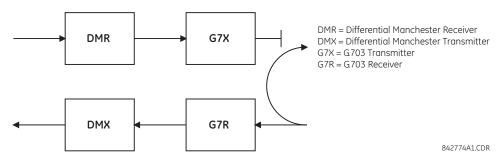


Figure 3-35: G.703 MINIMUM REMOTE LOOPBACK MODE

In *dual loopback mode*, the multiplexers are active and the functions of the circuit are divided into two with each receiver/ transmitter pair linked together to deconstruct and then reconstruct their respective signals. Differential Manchester data enters the Differential Manchester receiver module and then is returned to the differential Manchester transmitter module. Likewise, G.703 data enters the G.703 receiver module and is passed through to the G.703 transmitter module to be returned as G.703 data. Because of the complete split in the communications path and because, in each case, the clocks are extracted and reconstructed with the outgoing data, in this mode there must be two independent sources of timing. One source lies on the G.703 line side of the interface while the other lies on the differential Manchester side of the interface.

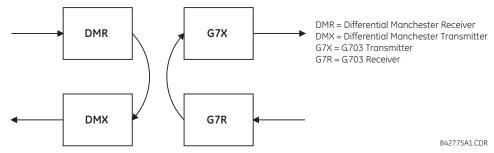


Figure 3-36: G.703 DUAL LOOPBACK MODE

3.3.5 RS422 INTERFACE

a) **DESCRIPTION**

There are two RS422 inter-relay communications modules available: single-channel RS422 (module 7T) and dual-channel RS422 (module 7W). The modules can be configured to run at 64 kbps or 128 kbps. AWG 20-24 twisted shielded pair cable is recommended for external connections. These modules are protected by optically-isolated surge suppression devices.

The shield pins (6a and 7b) are internally connected to the ground pin (8a). Proper shield termination is as follows:

- Site 1: Terminate shield to pins 6a or 7b or both.
- Site 2: Terminate shield to COM pin 2b.

Match the clock terminating impedance with the impedance of the line.

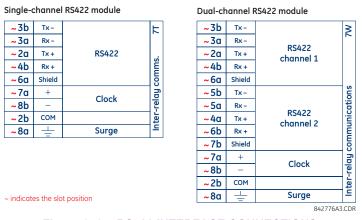


Figure 3-37: RS422 INTERFACE CONNECTIONS

The following figure shows the typical pin interconnection between two single-channel RS422 interfaces installed in slot W. All pin interconnections are to be maintained for a connection to a multiplexer.

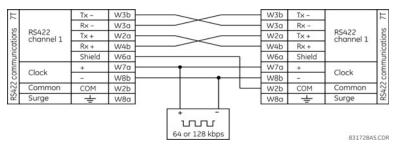


Figure 3-38: TYPICAL PIN INTERCONNECTION BETWEEN TWO RS422 INTERFACES

b) TWO-CHANNEL APPLICATION VIA MULTIPLEXERS

The RS422 interface can be used for single channel or two channel applications over SONET/SDH or multiplexed systems. When used in single-channel applications, the RS422 interface links to higher order systems in a typical fashion observing transmit (Tx), receive (Rx), and send timing (ST) connections. However, when used in two-channel applications, certain criteria must be followed since there is one clock input for the two RS422 channels. The system functions correctly when the following connections are observed and your data module has a terminal timing feature. Terminal timing is a common feature to most synchronous data units that allows the module to accept timing from an external source. Using the terminal timing feature, two channel applications can be achieved if these connections are followed: The send timing outputs from the multiplexer (data module 1), connects to the clock inputs of the UR–RS422 interface in the usual fashion. In addition, the send timing outputs of data module 1 is also paralleled to the terminal timing inputs of data module 2. By using this configuration, the timing for both data modules and both UR–RS422 channels are derived from a single clock source. As a result, data sampling for both of the UR–RS422 channels is synchronized via the send timing leads on data module 1 as shown below. If the terminal timing feature is not available or this type of connection is not desired, the G.703 interface is a viable option that does not impose timing restrictions.

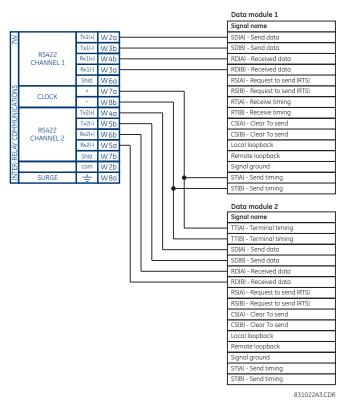


Figure 3-39: TIMING CONFIGURATION FOR RS422 TWO-CHANNEL, THREE-TERMINAL APPLICATION

Data module 1 provides timing to the F60 RS422 interface via the ST(A) and ST(B) outputs. Data module 1 also provides timing to data module 2 TT(A) and TT(B) inputs via the ST(A) and AT(B) outputs. The data module pin numbers have been omitted in the figure above since they vary by manufacturer.

c) TRANSMIT TIMING

The RS422 interface accepts one clock input for transmit timing. It is important that the rising edge of the 64 kHz transmit timing clock of the multiplexer interface is sampling the data in the center of the transmit data window. Therefore, it is important to confirm clock and data transitions to ensure proper system operation. For example, the following figure shows the positive edge of the Tx clock in the center of the Tx data bit.

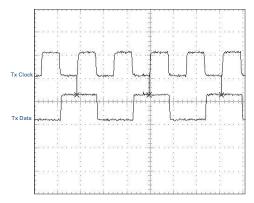


Figure 3-40: CLOCK AND DATA TRANSITIONS

d) RECEIVE TIMING

The RS422 interface utilizes NRZI-MARK modulation code and; therefore, does not rely on an Rx clock to recapture data. NRZI-MARK is an edge-type, invertible, self-clocking code.

To recover the Rx clock from the data-stream, an integrated DPLL (digital phase lock loop) circuit is utilized. The DPLL is driven by an internal clock, which is 16-times over-sampled, and uses this clock along with the data-stream to generate a data clock that can be used as the SCC (serial communication controller) receive clock.

3.3.6 RS422 AND FIBER INTERFACE

The following figure shows the combined RS422 plus fiberoptic interface configuration at 64K baud. The 7L, 7M, 7P, and 74 modules are used in two-terminal with a redundant channel or three-terminal configurations where channel 1 is employed via the RS422 interface (possibly with a multiplexer) and channel 2 via direct fiber.

AWG 20-24 twisted shielded pair is recommended for external RS422 connections and ground the shield only at one end. For the direct fiber channel, address power budget issues properly.

When using a LASER Interface, attenuators can be necessary to ensure that you do not exceed maximum optical input power to the receiver.

7,N,	Clock	+	~7a
7M, 7N, and 74	channel 1	ı	~8b
7L, 7 7P, 0	Common	COM	~2b
7		Tx -	~3b
	RS422 channel 1	Rx -	~3a
ر _د ا		Tx +	~2a
.0		Rx +	~4b
icat		Shield	~6a
RS422 communications	Fiber channel 2	(Tx2)	R×2
RS CO	Surge	丰	~8a

842777A2.CDR

Figure 3-41: RS422 AND FIBER INTERFACE CONNECTION

Connections shown above are for multiplexers configured as DCE (data communications equipment) units.

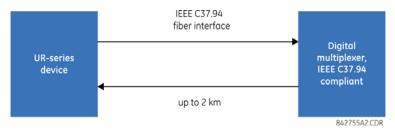
3.3.7 G.703 AND FIBER INTERFACE

The figure below shows the combined G.703 plus fiberoptic interface configuration at 64 kbps. The 7E, 7F, 7G, 7Q, and 75 modules are used in configurations where channel 1 is employed via the G.703 interface (possibly with a multiplexer) and channel 2 via direct fiber. AWG 24 twisted shielded pair is recommended for external G.703 connections connecting the shield to pin 1a at one end only. For the direct fiber channel, address power budget issues properly. See previous sections for additional details on the G.703 and fiber interfaces.

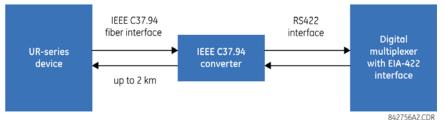
When using a laser Interface, attenuators can be necessary to ensure that you do not exceed the maximum optical input power to the receiver.

5,0		Shield	~1a
, 7F, 7G, and 7Q		Tx -	~1b
ř. 7	G.703 channel 1	Rx -	~2a
75, 7E, 7	Cridinici 1	Tx+	~2b
7 ion		Rx +	~3a
cat	Surge	╢	~3b
G.703 75, communications	Fiber channel 2	(R×2)	Tx2

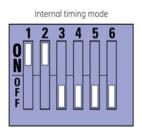
Figure 3-42: G.703 AND FIBER INTERFACE CONNECTION

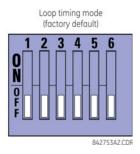

3.3.8 IEEE C37.94 INTERFACE

The UR-series IEEE C37.94 communication modules (modules types 2G, 2H, 2I, 2J, 76, and 77) are designed to interface with IEEE C37.94 compliant digital multiplexers or an IEEE C37.94 compliant interface converter for use with direct input and output applications. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps, but the standard provides for speeds up to 64n kbps, where n = 1, 2, ..., 12. The UR-series C37.94 communication modules are either 64 kbps (with n fixed at 1) for 128 kbps (with n fixed at 2). The frame is a valid International Telecommunications Union (ITU-T) recommended G.704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz, with a resultant bit rate of 2048 kbps.


The specifications for the module are as follows:.

- IEEE standard: C37.94 for 1×128 kbps optical fiber interface (for 2G and 2H modules) or C37.94 for 2×64 kbps optical fiber interface (for 76 and 77 modules)
- Fiber optic cable type: 50 mm or 62.5 mm core diameter optical fiber
- · Fiber optic mode: multimode
- · Fiber optic cable length: up to 2 km
- Fiber optic connector: type ST
- Wavelength: 830 ±40 nm
- Connection: as per all fiber optic connections, a Tx to Rx connection is required


The UR-series C37.94 communication module can be connected directly to any compliant digital multiplexer that supports the IEEE C37.94 standard shown as follows.



The UR-series C37.94 communication module can be connected to the electrical interface (G.703, RS422, or X.21) of a non-compliant digital multiplexer via an optical-to-electrical interface converter that supports the IEEE C37.94 standard, shown as follows.

The UR-series C37.94 communication module has six switches to set the clock configuration. The following figure shows the functions of these control switches.

For the internal timing mode, the system clock is generated internally. Therefore, the timing switch selection should be internal timing for relay 1 and loop timed for relay 2. There must be only one timing source configured.

For the looped timing mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in loop timing mode for connections to higher order systems.

The IEEE C37.94 communications module cover removal procedure is as follows:

- With power to the relay off, remove the IEEE C37.94 module (type 2G, 2H, 2I, 2J, 76 or 77 module) as follows. Record
 the original location of the module to help ensure that the same or replacement module is inserted into the correct slot.
- Simultaneously pull the ejector/inserter clips located at the top and at the bottom of each module in order to release the module for removal.
- 3. Remove the module cover screw.
- 4. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 5. Set the timing selection switches (channel 1, channel 2) to the desired timing modes (see description above).
- 6. Replace the top cover and the cover screw.
- 7. Re-insert the IEEE C37.94 module. Take care to ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module is fully inserted.

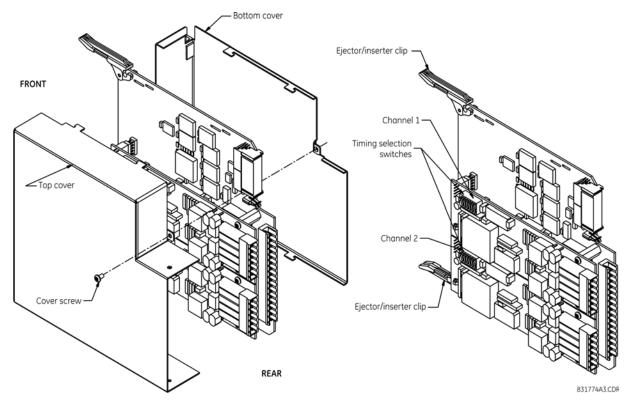


Figure 3-43: IEEE C37.94 TIMING SELECTION SWITCH SETTING

Modules shipped since January 2012 have status LEDs that indicate the status of the DIP switches, as shown in the following figure.

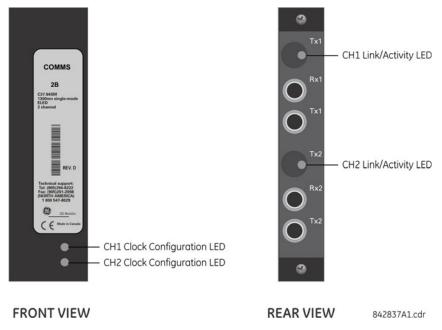


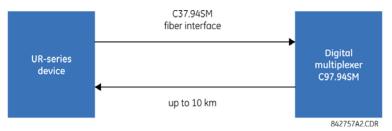
Figure 3-44: STATUS LEDS

The clock configuration LED status is as follows:

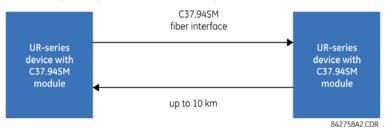
- Flashing green loop timing mode while receiving a valid data packet
- Flashing yellow internal mode while receiving a valid data packet
- Solid red (switch to) internal timing mode while not receiving a valid data packet

The link/activity LED status is as follows:

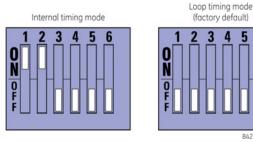
- Flashing green FPGA is receiving a valid data packet
- Solid yellow FPGA is receiving a "yellow bit" and remains yellow for each "yellow bit"
- Solid red FPGA is not receiving a valid packet or the packet received is invalid


3.3.9 C37.94SM INTERFACE

The UR-series C37.94SM communication modules (2A and 2B) are designed to interface with modified IEEE C37.94 compliant digital multiplexers or IEEE C37.94 compliant interface converters that have been converted from 820 nm multi-mode fiber optics to 1300 nm ELED single-mode fiber optics. The IEEE C37.94 standard defines a point-to-point optical link for synchronous data between a multiplexer and a teleprotection device. This data is typically 64 kbps, but the standard provides for speeds up to 64n kbps, where n = 1, 2, ..., 12. The UR-series C37.94SM communication module is 64 kbps only with n fixed at 1. The frame is a valid International Telecommunications Union (ITU-T) recommended G.704 pattern from the standpoint of framing and data rate. The frame is 256 bits and is repeated at a frame rate of 8000 Hz, with a resultant bit rate of 2048 kbps.


The specifications for the module are as follows:

- Emulated IEEE standard: emulates C37.94 for 1 × 64 kbps optical fiber interface (modules set to n = 1 or 64 kbps)
- Fiber optic cable type: 9/125 μm core diameter optical fiber
- Fiber optic mode: single-mode, ELED compatible with HP HFBR-1315T transmitter and HP HFBR-2316T receiver
- Fiber optic cable length: up to 11.4 km
- Fiber optic connector: type ST
- Wavelength: 1300 ±40 nm
- Connection: as per all fiber optic connections, a Tx to Rx connection is required


The UR-series C37.94SM communication module can be connected *directly* to any compliant digital multiplexer that supports C37.94SM as shown below.

It can also can be connected directly to any other UR-series relay with a C37.94SM module as shown below.

The UR-series C37.94SM communication module has six switches that are used to set the clock configuration. The functions of these control switches are shown below.

For the internal timing mode, the system clock is generated internally. Therefore, the timing switch selection should be internal timing for relay 1 and loop timed for relay 2. There must be only one timing source configured.

For the looped timing mode, the system clock is derived from the received line signal. Therefore, the timing selection should be in loop timing mode for connections to higher order systems.

The C37.94SM communications module cover removal procedure is as follows:

- 1. With power to the relay off, remove the C37.94SM module (modules 2A or 2B) as follows. Record the original location of the module to help ensure that the same or replacement module is inserted into the correct slot.
- Simultaneously pull the ejector/inserter clips located at the top and at the bottom of each module in order to release the module for removal.
- 3. Remove the module cover screw.
- 4. Remove the top cover by sliding it towards the rear and then lift it upwards.
- 5. Set the timing selection switches (channel 1, channel 2) to the desired timing modes (see description above).
- 6. Replace the top cover and the cover screw.
- 7. Re-insert the C37.94SM module. Take care to ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module is fully inserted.

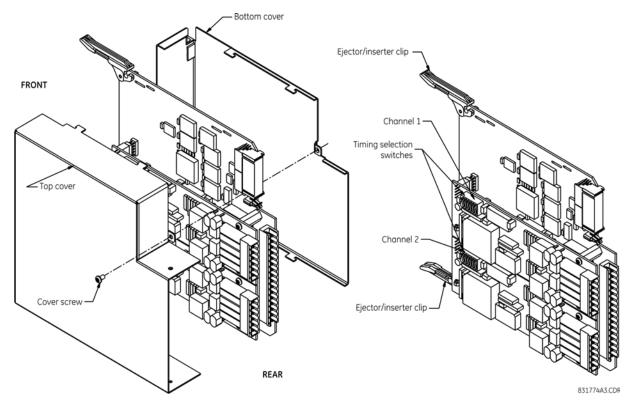


Figure 3-45: C37.94SM TIMING SELECTION SWITCH SETTING

Modules shipped since January 2012 have status LEDs that indicate the status of the DIP switches, as shown in the following figure.

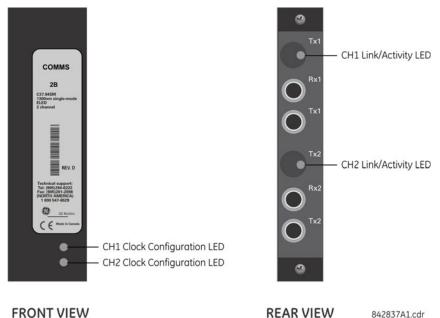


Figure 3-46: STATUS LEDS

The clock configuration LED status is as follows:

- Flashing green loop timing mode while receiving a valid data packet
- Flashing yellow internal mode while receiving a valid data packet
- Solid red (switch to) internal timing mode while not receiving a valid data packet

The link/activity LED status is as follows:

- Flashing green FPGA is receiving a valid data packet
- Solid yellow FPGA is receiving a "yellow bit" and remains yellow for each "yellow bit"
- Solid red FPGA is not receiving a valid packet or the packet received is invalid

4.1.1 INTRODUCTION

The EnerVista UR Setup software provides a graphical user interface (GUI) as one of two human interfaces to a UR device. The alternate human interface is implemented via the device's faceplate keypad and display (see the *Faceplate Interface* section in this chapter).

The EnerVista UR Setup software provides a single facility to configure, monitor, maintain, and troubleshoot the operation of relay functions, connected over local or wide area communication networks. It can be used while disconnected (offline) or connected (online) to a UR device. In offline mode, settings files can be created for eventual downloading to the device. In online mode, you can communicate with the device in real-time.

The EnerVista UR Setup software is provided with every F60 relay and runs on Microsoft Windows XP, 7, and Server 2008. This chapter provides a summary of the basic EnerVista UR Setup software interface features. The EnerVista UR Setup Help File provides details for getting started and using the EnerVista UR Setup software interface.

4.1.2 CREATING A SITE LIST

To start using the EnerVista UR Setup software, site and device definition are required. See the EnerVista UR Setup Help File or refer to the *EnerVista UR Setup Software* section in Chapter 1 for details.

4.1.3 ENERVISTA UR SETUP OVERVIEW

a) ENGAGING A DEVICE

The EnerVista UR Setup software can be used in online mode (relay connected) to directly communicate with the F60 relay. Communicating relays are organized and grouped by communication interfaces and into sites. Sites can contain any number of relays selected from the UR-series of relays.

b) USING SETTINGS FILES

The EnerVista UR Setup software interface supports three ways of handling changes to relay settings:

- In offline mode (relay disconnected) to create or edit relay settings files for later download to communicating relays
- While connected to a communicating relay to directly modify any relay settings via relay data view windows, and then save the settings to the relay
- · You can create/edit settings files and then write them to the relay while the interface is connected to the relay

Settings files are organized on the basis of file names assigned by the user. A settings file contains data pertaining to the following types of relay settings:

- · Device definition
- Product setup
- · System setup
- FlexLogic
- Grouped elements
- Control elements
- · Inputs/outputs
- Testing

Factory default values are supplied and can be restored after any changes.

The following communications settings are not transferred to the F60 with settings files:

Modbus Slave Address
Modbus IP Port Number
RS485 COM2 Baud Rate
RS485 COM2 Parity
COM2 Minimum Response Time

COM2 Selection

RRTD Slave Address

RRTD Baud Rate

IP Address

IP Subnet Mask

IEC61850 Config GOOSE ConfRev

IP Routing

When a settings file is loaded to a F60 that is in-service, the following sequence occurs:

- The F60 takes itself out of service.
- 2. The F60 issues a **UNIT NOT PROGRAMMED** major self-test error.
- The F60 closes the critical fail contact.

c) CREATING AND EDITING FLEXLOGIC

You create or edit a FlexLogic equation in order to customize the relay. You can subsequently view the automatically generated logic diagram.

d) VIEWING ACTUAL VALUES

You can view real-time relay data such as input/output status and measured parameters.

e) VIEWING TRIGGERED EVENTS

While the interface is in either online or offline mode, you can view and analyze data generated by triggered specified parameters, via one of the following:

Event recorder

The event recorder captures contextual data associated with the last 1024 events, listed in chronological order from most recent to oldest.

Oscillography

The oscillography waveform traces and digital states are used to provide a visual display of power system and relay operation data captured during specific triggered events.

f) FILE SUPPORT

- Execution: Any EnerVista UR Setup file that is opened launches the application or provides focus to the already opened application. If the file was a settings file (has a URS extension) that had been removed from the Settings List tree menu, it is added back to the Settings List tree menu.
- Drag and Drop: The Site List and Settings List control bar windows are each mutually a drag source and a drop target for device-order-code-compatible files or individual menu items. Also, the Settings List control bar window and any Windows Explorer directory folder are each mutually a file drag source and drop target.

New files that are dropped into the Settings List window are added to the tree, which is automatically sorted alphabetically with respect to settings file names. Files or individual menu items that are dropped in the selected device menu in the Site List window are automatically sent to the online communicating device.

g) FIRMWARE UPGRADES

The firmware of a F60 device can be upgraded, locally or remotely, via the EnerVista UR Setup software. The corresponding instructions are provided by the EnerVista UR Setup Help file under the topic "Upgrading Firmware".

Modbus addresses assigned to firmware modules, features, settings, and corresponding data items (that is, default values, minimum/maximum values, data type, and item size) can change slightly from version to version of firmware. The addresses are rearranged when new features are added or existing features are enhanced or modified. The **EEPROM DATA ERROR** message displayed after upgrading/downgrading the firmware is a resettable, self-test message intended to inform users that the Modbus addresses have changed with the upgraded firmware. This message does not signal any problems when appearing after firmware upgrades.

4.1.4 ENERVISTA UR SETUP MAIN WINDOW

The EnerVista UR Setup software main window supports the following primary display components:

- 1. Title bar that shows the pathname of the active data view
- 2. Main window menu bar
- 3. Main window tool bar
- 4. Site list control bar window
- 5. Settings list control bar window
- 6. Device data view windows, with common tool bar
- 7. Settings file data view windows, with common tool bar
- 8. Workspace area with data view tabs
- 9. Status bar
- 10. Quick action hot links

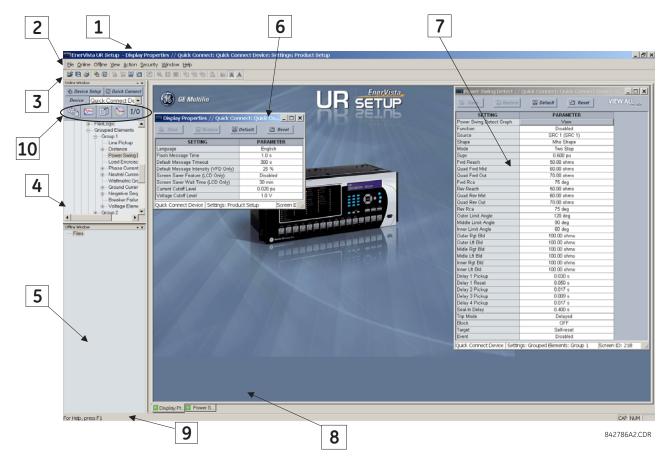


Figure 4-1: ENERVISTA UR SETUP SOFTWARE MAIN WINDOW

Extended EnerVista UR Setup Features

4.1.5 SETTINGS TEMPLATES

Setting file templates simplify the configuration and commissioning of multiple relays that protect similar assets. An example of this is a substation that has ten similar feeders protected by ten UR-series F60 relays.

In these situations, typically 90% or greater of the settings are identical between all devices. The templates feature allows engineers to configure and test these common settings, then lock them so that they are not available to users. For example, these locked down settings can be hidden from view for field engineers, allowing them to quickly identify and concentrate on the specific settings.

The remaining settings (typically 10% or less) can be specified as editable and be made available to field engineers installing the devices. These are settings such as protection element pickup values and CT and VT ratios.

The settings template mode allows the user to define which settings are visible in EnerVista UR Setup. Settings templates can be applied to both settings files (settings file templates) and online devices (online settings templates). The functionality is identical for both purposes.

Settings files conversion from previous firmware versions is supported.

a) ENABLING THE SETTINGS TEMPLATE

The settings file template feature is disabled by default. The following procedure describes how to enable the settings template for UR-series settings files.

- 1. Select a settings file from the offline window of the EnerVista UR Setup main screen.
- 2. Right-click the selected device or settings file and select the Template Mode > Create Template option.

The settings file template is now enabled and the file tree displayed in light blue. The settings file is now in template editing mode.

Alternatively, the settings template can also be applied to online settings. The following procedure describes this process.

- 1. Select an installed device from the online window of the EnerVista UR Setup main screen.
- Right-click the selected device and select the Template Mode > Create Template option.

The software prompts for a template password. This password is required to use the template feature and must be at least four characters in length.

3. Enter and re-enter the new password, then click **OK** to continue.

The online settings template is now enabled. The device is now in template editing mode.

b) EDITING THE SETTINGS TEMPLATE

The settings template editing feature allows the user to specify which settings are available for viewing and modification in EnerVista UR Setup. By default, all settings except the FlexLogic equation editor settings are locked.

- 1. Select an installed device or a settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Select the **Template Mode > Edit Template** option to place the device in template editing mode.
- 3. Enter the template password then click **OK**.
- 4. Open the relevant settings windows that contain settings to be specified as viewable.

By default, all settings are specified as locked and displayed against a grey background. The icon on the upper right of the settings window also indicates that EnerVista UR Setup is in **EDIT mode**. The following example shows the phase time overcurrent settings window in edit mode.

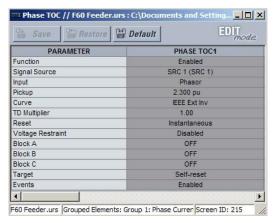


Figure 4–2: SETTINGS TEMPLATE VIEW, ALL SETTINGS SPECIFIED AS LOCKED

5. Specify the settings to make viewable by clicking them.

The setting available to view is displayed against a yellow background as shown below.

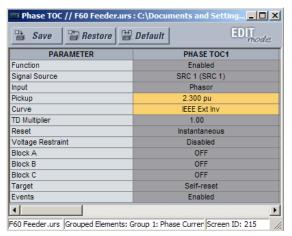


Figure 4-3: SETTINGS TEMPLATE VIEW, TWO SETTINGS SPECIFIED AS EDITABLE

- 6. Click on **Save** to save changes to the settings template.
- 7. Proceed through the settings tree to specify all viewable settings.

c) ADDING PASSWORD PROTECTION TO A TEMPLATE

It is highly recommended that templates be saved with password protection to maximize security.

The following procedure describes how to add password protection to a settings file template.

- 1. Select a settings file from the offline window on the left of the EnerVista UR Setup main screen.
- 2. Selecting the **Template Mode > Password Protect Template** option.

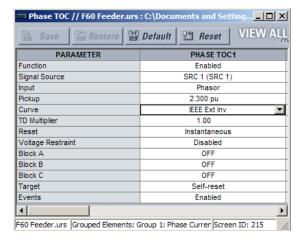
The software prompts for a template password. This password must be at least four characters in length.

3. Enter and re-enter the new password, then click **OK** to continue.

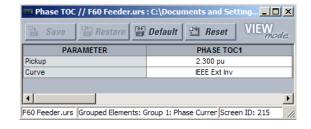
The settings file template is now secured with password protection.

When templates are created for online settings, the password is added during the initial template creation step. It does not need to be added after the template is created.

d) VIEWING THE SETTINGS TEMPLATE


Once all necessary settings are specified for viewing, users are able to view the settings template on the online device or settings file. There are two ways to specify the settings view with the settings template feature:

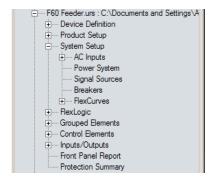
- Display only those settings available for editing
- Display all settings, with settings not available for editing greyed-out


Use the following procedure to only display settings available for editing:

- 1. Select an installed device or a settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Apply the template by selecting the **Template Mode > View In Template Mode** option.
- 3. Enter the template password then click **OK** to apply the template.

Once the template has been applied, users are limited to view and edit the settings specified by the template. The effect of applying the template to the phase time overcurrent settings is shown below.

Phase time overcurrent settings window without template applied.



Phase time overcurrent window with template applied via the **Template Mode > View In Template Mode** command. The template specifies that only the Pickup and Curve settings be available.

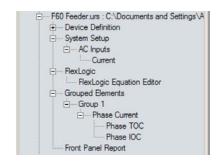

842858A1.CDR

Figure 4-4: APPLYING TEMPLATES VIA THE VIEW IN TEMPLATE MODE COMMAND

Viewing the settings in template mode also modifies the settings tree, showing only the settings categories that contain editable settings. The effect of applying the template to a typical settings tree view is shown below.

Typical settings tree view with template applied via the **Template Mode > View In Template Mode** command

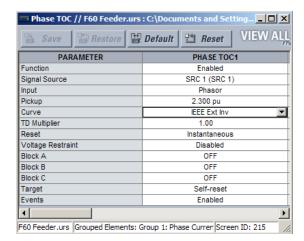
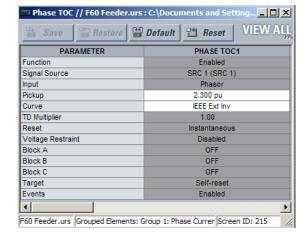

842860A1.CDR

Figure 4-5: APPLYING TEMPLATES VIA THE VIEW IN TEMPLATE MODE SETTINGS COMMAND


Use the following procedure to display settings available for editing and settings locked by the template.

- Select an installed device or a settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Apply the template by selecting the **Template Mode > View All Settings** option.
- 3. Enter the template password then click **OK** to apply the template.

Once the template has been applied, users are limited to edit the settings specified by the template, but all settings are shown. The effect of applying the template to the phase time overcurrent settings is shown below.

Phase time overcurrent settings window without template applied.

Phase time overcurrent window with template applied via the **Template Mode > View All Settings** command. The template specifies that only the Pickup and Curve settings be available.

842859A1.CDR

Figure 4-6: APPLYING TEMPLATES VIA THE VIEW ALL SETTINGS COMMAND

e) REMOVING THE SETTINGS TEMPLATE

It can be necessary at some point to remove a settings template. Once a template is removed, it cannot be reapplied and it is necessary to define a new settings template.

- 1. Select an installed device or settings file from the tree menu on the left of the EnerVista UR Setup main screen.
- 2. Select the **Template Mode > Remove Settings Template** option.
- 3. Enter the template password and click **OK** to continue.

4. Verify one more time that you want to remove the template by clicking **Yes**.

The EnerVista software removes all template information and all settings are available.

4.1.6 SECURING AND LOCKING FLEXLOGIC EQUATIONS

The UR allows users to secure parts or all of a FlexLogic equation, preventing unauthorized viewing or modification of critical FlexLogic applications. This is accomplished using the settings template feature to lock individual entries within FlexLogic equations.

Secured FlexLogic equations remain secure when files are sent to and retrieved from any UR-series device.

a) LOCKING FLEXLOGIC EQUATION ENTRIES

The following procedure describes how to lock individual entries of a FlexLogic equation.

- Right-click the settings file or online device and select the Template Mode > Create Template item to enable the settings template feature.
- 2. Select the **FlexLogic > FlexLogic Equation Editor** settings menu item.
 - By default, all FlexLogic entries are specified as viewable and displayed against a yellow background. The icon on the upper right of the window also indicates that EnerVista UR Setup is in **EDIT mode**.
- 3. Specify which entries to lock by clicking on them.

The locked entries are displayed against a grey background as shown in the example below.

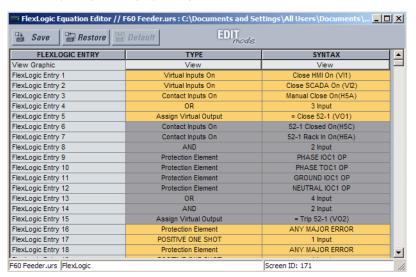
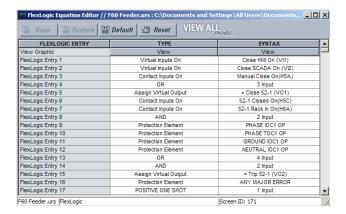



Figure 4–7: LOCKING FLEXLOGIC ENTRIES IN EDIT MODE

- 4. Click on Save to save and apply changes to the settings template.
- 5. Select the **Template Mode > View In Template Mode** option to view the template.
- 6. Apply a password to the template then click **OK** to secure the FlexLogic equation.

Once the template has been applied, users are limited to view and edit the FlexLogic entries not locked by the template. The effect of applying the template to the FlexLogic entries in the above procedure is shown below.

Save Restore Default Reset V Mode				
FLEXLOGIC ENTRY	TYPE	SYNTAX		
View Graphic	View	View		
FlexLogic Entry 1	Virtual Inputs On	Close HMI On (VI1)		
FlexLogic Entry 2	Virtual Inputs On	Close SCADA On (VI2)		
FlexLogic Entry 3	Contact Inputs On	Manual Close On(H5a)		
FlexLogic Entry 4	OR	3 Input		
FlexLogic Entry 5	Assign Virtual Output	= Close 52-1 (VO1)		
FlexLogic Entry 6	Locked	Locked		
FlexLogic Entry 7	Locked	Locked		
FlexLogic Entry 8	Locked	Locked		
FlexLogic Entry 9	Locked	Locked		
FlexLogic Entry 10	Locked	Locked		
FlexLogic Entry 11	Locked	Locked		
FlexLogic Entry 12	Locked	Locked		
FlexLogic Entry 13	Locked	Locked		
FlexLogic Entry 14	Locked	Locked		
FlexLogic Entry 15	Locked	Locked		
FlexLogic Entry 16	Protection Element	ANY MAJOR ERROR		
FlexLogic Entry 17	POSITIVE ONE SHOT	1 Input		
FlexLogic Entry 18	Protection Element	ANY MAJOR ERROR		
60 Feeder.urs FlexLogic		Screen ID: 171		

Typical FlexLogic $^{\text{TM}}$ entries without template applied.

Typical FlexLogic™ entries locked with template via the **Template Mode > View In Template Mode** command.

842861A1.CDR

Figure 4–8: LOCKING FLEXLOGIC ENTRIES THROUGH SETTING TEMPLATES

The FlexLogic entries are also shown as locked in the graphical view (as shown below) and on the front panel display.

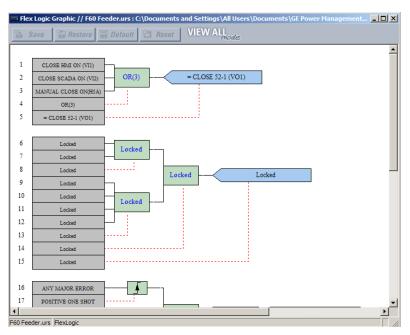


Figure 4-9: SECURED FLEXLOGIC IN GRAPHICAL VIEW

b) LOCKING FLEXLOGIC EQUATIONS TO A SERIAL NUMBER

A settings file and associated FlexLogic equations can also be locked to a specific UR serial number. Once the desired FlexLogic entries in a settings file have been secured, use the following procedure to lock the settings file to a specific serial number.

- 1. Select the settings file in the offline window.
- 2. Right-click on the file and select the Edit Settings File Properties item.

The following window is displayed.

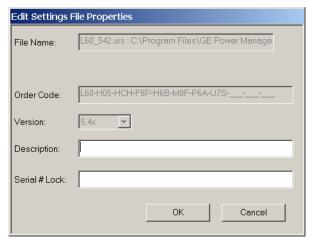


Figure 4-10: TYPICAL SETTINGS FILE PROPERTIES WINDOW

3. Enter the serial number of the F60 device to lock to the settings file in the Serial # Lock field.

The settings file and corresponding secure FlexLogic equations are now locked to the F60 device specified by the serial number.

4.1.7 SETTINGS FILE TRACEABILITY

A traceability feature for settings files allows the user to quickly determine if the settings in a F60 device have been changed since the time of installation from a settings file. When a settings file is transferred to a F60 device, the date, time, and serial number of the F60 are sent back to EnerVista UR Setup and added to the settings file on the local PC. This information can be compared with the F60 actual values at any later date to determine if security has been compromised.

The traceability information is only included in the settings file if a complete settings file is either transferred to the F60 device or obtained from the F60 device. Any partial settings transfers by way of drag and drop do not add the traceability information to the settings file.

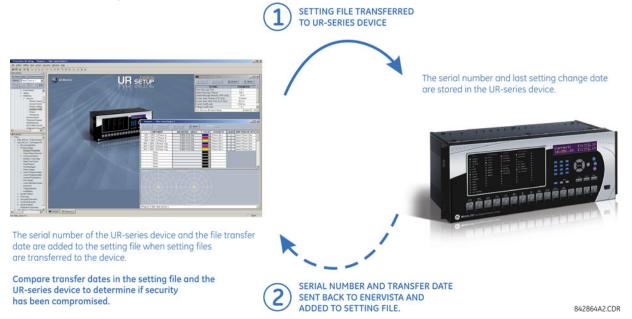


Figure 4-11: SETTINGS FILE TRACEABILITY MECHANISM

With respect to the above diagram, the traceability feature is used as follows.

- The transfer date of a setting file written to a F60 is logged in the relay and can be viewed via EnerVista UR Setup or the front panel display. Likewise, the transfer date of a setting file saved to a local PC is logged in EnerVista UR Setup.
- 2. Comparing the dates stored in the relay and on the settings file at any time in the future indicates if any changes have been made to the relay configuration since the settings file was saved.

a) SETTINGS FILE TRACEABILITY INFORMATION

The serial number and file transfer date are saved in the settings files when they are sent to a F60 device.

The F60 serial number and file transfer date are included in the settings file device definition within the EnerVista UR Setup offline window as shown in the example below.

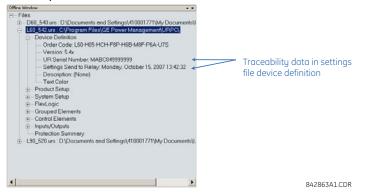


Figure 4-12: DEVICE DEFINITION SHOWING TRACEABILITY DATA

This information is also available in printed settings file reports as shown in the example below.

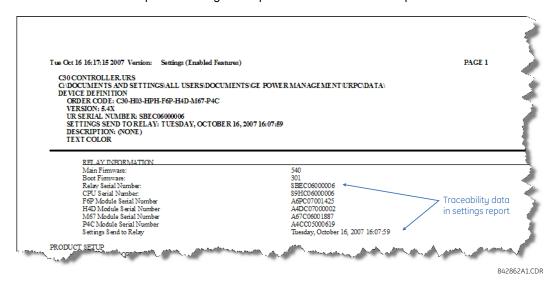


Figure 4-13: SETTINGS FILE REPORT SHOWING TRACEABILITY DATA

b) ONLINE DEVICE TRACEABILITY INFORMATION

The F60 serial number and file transfer date are available for an online device through the actual values. Select the **Actual Values > Product Info > Model Information** menu item within the EnerVista UR Setup online window as shown in the example below.

Figure 4-14: TRACEABILITY DATA IN ACTUAL VALUES WINDOW

This information is also available from the front panel display through the following actual values:

ACTUAL VALUES $\Rightarrow \emptyset$ PRODUCT INFO \Rightarrow MODEL INFORMATION $\Rightarrow \emptyset$ SERIAL NUMBER ACTUAL VALUES $\Rightarrow \emptyset$ PRODUCT INFO \Rightarrow MODEL INFORMATION $\Rightarrow \emptyset$ LAST SETTING CHANGE

c) ADDITIONAL TRACEABILITY RULES

The following additional rules apply for the traceability feature

- If the user changes any settings within the settings file in the offline window, then the traceability information is removed from the settings file.
- · If the user creates a new settings file, then no traceability information is included in the settings file.
- If the user converts an existing settings file to another revision, then any existing traceability information is removed from the settings file.
- If the user duplicates an existing settings file, then any traceability information is transferred to the duplicate settings file.

4.2.1 FACEPLATE

a) ENHANCED FACEPLATE

The front panel interface is one of two supported interfaces, the other interface being EnerVista UR Setup software. The front panel interface consists of LED panels, an RS232 port, keypad, LCD display, control pushbuttons, and optional user-programmable pushbuttons.

The faceplate is hinged to allow easy access to the removable modules.

Figure 4-15: UR-SERIES ENHANCED FACEPLATE

b) STANDARD FACEPLATE

There are two interfaces: the front panel and the EnerVista UR Setup software. The front panel interface consists of LED panels, an RS232 port, keypad, LCD display, control pushbuttons, and optional user-programmable pushbuttons.

The faceplate is hinged to allow easy access to the removable modules. There is also a removable dust cover that fits over the faceplate that must be removed in order to access the keypad panel. The following figure shows the horizontal arrangement of the faceplate panels.

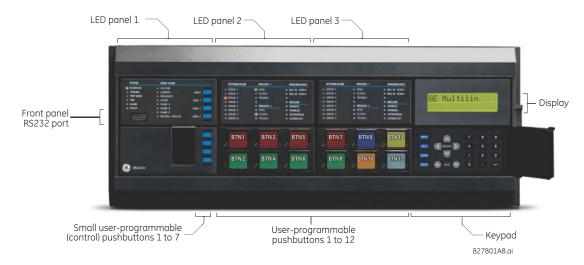


Figure 4-16: UR-SERIES STANDARD HORIZONTAL FACEPLATE PANELS

The following figure shows the vertical arrangement of the faceplate panels for relays ordered with the vertical option.

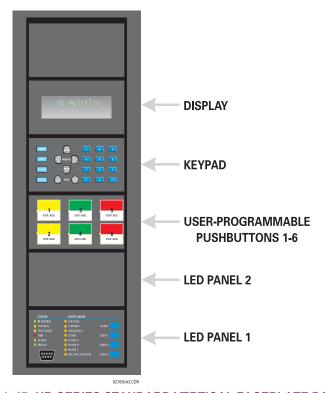


Figure 4–17: UR-SERIES STANDARD VERTICAL FACEPLATE PANELS

4.2.2 LED INDICATORS

a) ENHANCED FACEPLATE

The enhanced front panel display provides five columns of LED indicators. The first column contains 14 status and event cause LEDs, and the next four columns contain the 48 user-programmable LEDs.

The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the **SETTINGS** $\Rightarrow \oplus$ **INPUT/OUTPUTS** $\Rightarrow \oplus$ **RESETTING** menu). The RS232 port is intended for connection to a portable PC.

The USER keys are used by the breaker control feature.

Figure 4–18: TYPICAL LED INDICATOR PANEL FOR ENHANCED FACEPLATE

The status indicators in the first column are described below.

• **IN SERVICE**: This LED indicates that control power is applied, all monitored inputs, outputs, and internal systems are OK, and that the device has been programmed.

- TROUBLE: This LED indicates that the relay has detected an internal problem.
- **TEST MODE**: This LED indicates that the relay is in test mode.
- **TRIP**: This LED indicates that the FlexLogic operand serving as a trip switch has operated. This indicator always latches; as such, a reset command must be initiated to allow the latch to be reset.
- ALARM: This LED indicates that the FlexLogic operand serving as an alarm switch has operated. This indicator is never latched.
- PICKUP: This LED indicates that an element is picked up. This indicator is never latched.

The event cause indicators in the first column are described below.

Events cause LEDs are turned on or off by protection elements that have their respective target setting selected as either "Enabled" or "Latched". If a protection element target setting is "Enabled", then the corresponding event cause LEDs remain on as long as operate operand associated with the element remains asserted. If a protection element target setting is "Latched", then the corresponding event cause LEDs turn on when the operate operand associated with the element is asserted and remain on until the RESET button on the front panel is pressed after the operand is reset.

All elements that are able to discriminate faulted phases can independently turn off or on the phase A, B or C LEDs. This includes phase instantaneous overcurrent, phase undervoltage, etc. This means that the phase A, B, and C operate operands for individual protection elements are ORed to turn on or off the phase A, B or C LEDs.

- VOLTAGE: This LED indicates voltage was involved.
- CURRENT: This LED indicates current was involved.
- · FREQUENCY: This LED indicates frequency was involved.
- OTHER: This LED indicates a composite function was involved.
- PHASE A: This LED indicates phase A was involved.
- PHASE B: This LED indicates phase B was involved.
- PHASE C: This LED indicates phase C was involved.
- NEUTRAL/GROUND: This LED indicates that neutral or ground was involved.

The user-programmable LEDs consist of 48 amber LED indicators in four columns. The operation of these LEDs is user-defined. Support for applying a customized label beside every LED is provided. Default labels are shipped in the label package of every F60, together with custom templates. The default labels can be replaced by user-printed labels.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the *User-programmable LEDs* section in chapter 5 for the settings used to program the operation of the LEDs on these panels.

b) STANDARD FACEPLATE

The standard faceplate consists of three panels with LED indicators, keys, and a communications port. The RESET key is used to reset any latched LED indicator or target message, once the condition has been cleared (these latched conditions can also be reset via the SETTINGS $\Rightarrow \emptyset$ INPUT/OUTPUTS $\Rightarrow \emptyset$ RESETTING menu). The RS232 port is for connection to a computer.

The USER keys are used by the breaker control feature.

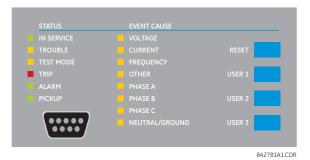


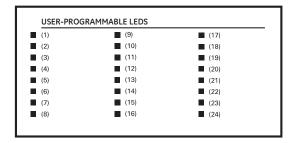
Figure 4-19: LED PANEL 1

STATUS INDICATORS:

- IN SERVICE: Indicates that control power is applied; all monitored inputs/outputs and internal systems are OK; the relay has been programmed.
- TROUBLE: Indicates that the relay has detected an internal problem.
- TEST MODE: Indicates that the relay is in test mode.
- TRIP: Indicates that the selected FlexLogic operand serving as a Trip switch has operated. This indicator always latches; the reset command must be initiated to allow the latch to be reset.
- ALARM: Indicates that the selected FlexLogic operand serving as an Alarm switch has operated. This indicator is never latched.
- PICKUP: Indicates that an element is picked up. This indicator is never latched.

EVENT CAUSE INDICATORS:

Events cause LEDs are turned on or off by protection elements that have their respective target setting selected as either "Enabled" or "Latched". If a protection element target setting is "Enabled", then the corresponding event cause LEDs remain on as long as operate operand associated with the element remains asserted. If a protection element target setting is "Latched", then the corresponding event cause LEDs turn on when the operand associated with the element is asserted and remain on until the RESET button on the front panel is pressed after the operand is reset.


All elements that are able to discriminate faulted phases can independently turn off or on the phase A, B or C LEDs. This includes phase instantaneous overcurrent, phase undervoltage, etc. This means that the phase A, B, and C operate operands for individual protection elements are ORed to turn on or off the phase A, B or C LEDs.

- VOLTAGE: Indicates voltage was involved.
- CURRENT: Indicates current was involved.
- FREQUENCY: Indicates frequency was involved.
- OTHER: Indicates a composite function was involved.
- PHASE A: Indicates phase A was involved.
- PHASE B: Indicates phase B was involved.
- PHASE C: Indicates phase C was involved.
- NEUTRAL/GROUND: Indicates that neutral or ground was involved.

USER-PROGRAMMABLE INDICATORS:

The second and third provide 48 amber LED indicators whose operation is controlled by the user. Support for applying a customized label beside every LED is provided.

User customization of LED operation is of maximum benefit in installations where languages other than English are used to communicate with operators. Refer to the *User-programmable LEDs* section in chapter 5 for the settings used to program the operation of the LEDs on these panels.

(25)	(33)	(41)
(26)	(34)	(42)
(27)	(35)	(43)
(28)	(36)	(44)
(29)	(37)	(45)
(30)	(38)	(46)
(31)	(39)	(47)
(32)	(40)	(48)

842782A1.CDR

Figure 4-20: LED PANELS 2 AND 3 (INDEX TEMPLATE)

DEFAULT LABELS FOR LED PANEL 2:

The default labels are intended to represent:

- GROUP 1...6: The illuminated GROUP is the active settings group.
- BREAKER 1(2) OPEN: The breaker is open.
- BREAKER 1(2) CLOSED: The breaker is closed.
- BREAKER 1(2) TROUBLE: A problem related to the breaker has been detected.
- SYNCHROCHECK NO1(2) IN-SYNCH: Voltages have satisfied the synchrocheck element.
- RECLOSE ENABLED: The recloser is operational.
- RECLOSE DISABLED: The recloser is not operational.
- RECLOSE IN PROGRESS: A reclose operation is in progress.
- RECLOSE LOCKED OUT: The recloser is not operational and requires a reset.

Firmware revisions 2.9x and earlier support eight user setting groups; revisions 3.0x and higher support six setting groups. For convenience of users using earlier firmware revisions, the relay panel shows eight setting groups. Please note that the LEDs, despite their default labels, are fully user-programmable.

The relay is shipped with the default label for the LED panel 2. The LEDs, however, are not pre-programmed. To match the pre-printed label, the LED settings must be entered as shown in the *User-programmable LEDs* section of chapter 5. The LEDs are fully user-programmable. The default labels can be replaced by user-printed labels for both panels as explained in the following section.

Figure 4–21: LED PANEL 2 (DEFAULT LABELS)

4.2.3 CUSTOM LABELING OF LEDS

a) ENHANCED FACEPLATE

The following procedure requires these pre-requisites:

- · EnerVista UR Setup software is installed and operational
- The F60 settings have been saved to a settings file
- The F60 front panel label cutout sheet (GE Multilin part number 1006-0047) has been downloaded from http://www.gedigitalenergy.com/products/support/ur/URLEDenhanced.doc and printed
- Small-bladed knife

To create custom LED labels for the enhanced front panel display:

1. Start the EnerVista UR Setup software.

Select the Front Panel Report item at the bottom of the menu tree for the settings file. The front panel report window displays.

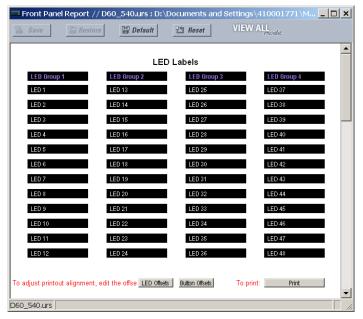


Figure 4-22: FRONT PANEL REPORT WINDOW

- 3. Enter the text to appear next to each LED and above each user-programmable pushbuttons in the fields provided.
- 4. Feed the F60 front panel label cutout sheet into a printer and press the **Print** button in the front panel report window.
- 5. When printing is complete, fold the sheet along the perforated lines and punch out the labels.
- 6. Remove the F60 label insert tool from the package and bend the tabs as described in the following procedures. These tabs are used for removal of the default and custom LED labels.

It is important that the tool be used EXACTLY as shown below, with the printed side containing the GE part number facing the user.

The label package shipped with every F60 contains the three default labels shown below, the custom label template sheet, and the label removal tool.

If the default labels are suitable for your application, insert them in the appropriate slots and program the LEDs to match them. If you require custom labels, follow the procedures below to remove the original labels and insert the new ones.

The following procedure describes how to setup and use the label removal tool.

1. Bend the tabs at the left end of the tool upwards as shown below.

2. Bend the tab at the center of the tool tail as shown below.

The following procedure describes how to remove the LED labels from the F60 enhanced front panel and insert the custom labels.

1. Use the knife to lift the LED label and slide the label tool underneath. Make sure the bent tabs are pointing away from the relay.

2. Slide the label tool under the LED label until the tabs snap out as shown below. This attaches the label tool to the LED label.

3. Remove the tool and attached LED label as shown below.

4. Slide the new LED label inside the pocket until the text is properly aligned with the LEDs, as shown below.

The following procedure describes how to remove the user-programmable pushbutton labels from the F60 enhanced front panel and insert the custom labels.

1. Use the knife to lift the pushbutton label and slide the tail of the label tool underneath, as shown below. Make sure the bent tab is pointing away from the relay.

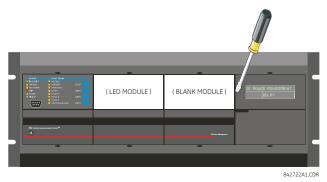
2. Slide the label tool under the user-programmable pushbutton label until the tabs snap out as shown below. This attaches the label tool to the user-programmable pushbutton label.

3. Remove the tool and attached user-programmable pushbutton label as shown below.

4. Slide the new user-programmable pushbutton label inside the pocket until the text is properly aligned with the buttons, as shown below.

b) STANDARD FACEPLATE

Custom labeling of an LED-only panel is facilitated through a Microsoft Word file available from the following URL:


http://www.gedigitalenergy.com/products/support/ur/GET-8494A.doc

This file provides templates and instructions for creating appropriate labeling for the LED panel. The following procedures are contained in the downloadable file. The panel templates provide relative LED locations and located example text (x) edit boxes. The following procedure demonstrates how to install/uninstall the custom panel labeling.

1. Remove the clear Lexan Front Cover (GE Multilin part number: 1501-0014).

2. Pop out the LED module and/or the blank module with a screwdriver as shown below. Be careful not to damage the plastic covers.

- 3. Place the left side of the customized module back to the front panel frame, then snap back the right side.
- 4. Put the clear Lexan front cover back into place.

The following items are required to customize the F60 display module:

- Black and white or color printer (color preferred)
- Microsoft Word 97 or later software for editing the template
- 1 each of: 8.5" x 11" white paper, exacto knife, ruler, custom display module (GE Multilin Part Number: 1516-0069), and a custom module cover (GE Multilin Part Number: 1502-0015)

The following procedure describes how to customize the F60 display module:

- Open the LED panel customization template with Microsoft Word. Add text in places of the LED x text placeholders on the template(s). Delete unused place holders as required.
- 2. When complete, save the Word file to your computer for future use.
- 3. Print the template(s) to a local printer.
- 4. From the printout, cut-out the Background Template from the three windows, using the cropmarks as a guide.
- 5. Put the Background Template on top of the custom display module (GE Multilin Part Number: 1513-0069) and snap the clear custom module cover (GE Multilin Part Number: 1502-0015) over it and the templates.

4.2.4 DISPLAY

All messages are displayed on a backlit liquid crystal display (LCD) to make them visible under poor lighting conditions. While the keypad and display are not actively being used, the display defaults to user-defined messages. Any high-priority event-driven message automatically overrides the default message and appears on the display.

4.2.5 BREAKER CONTROL

a) INTRODUCTION

The F60 can interface with associated circuit breakers. In many cases the application monitors the state of the breaker, that can be presented on faceplate LEDs, along with a breaker trouble indication. Breaker operations can be manually initiated from faceplate keypad or automatically initiated from a FlexLogic operand. A setting is provided to assign names to each breaker; this user-assigned name is used for the display of related flash messages. These features are provided for two breakers; the user can use only those portions of the design relevant to a single breaker, which must be breaker 1.

For the following discussion it is assumed the SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ BREAKER \Rightarrow BREAKER 1(2) \Rightarrow BREAKER FUNCTION setting is "Enabled" for each breaker.

b) CONTROL MODE SELECTION AND MONITORING

Installations can require that a breaker is operated in the three-pole only mode (3-pole), or in the one and three-pole (1-pole) mode, selected by setting. If the mode is selected as three-pole, a single input tracks the breaker open or closed position. If the mode is selected as one-pole, all three breaker pole states must be input to the relay. These inputs must be in agreement to indicate the position of the breaker.

For the following discussion it is assumed the SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ BREAKER 1(2) $\Rightarrow \emptyset$ BREAKER 1(2) PUSH BUTTON CONTROL setting is "Enabled" for each breaker.

c) FACEPLATE (USER KEY) CONTROL

After the 30 minute interval during which command functions are permitted after a correct command password, the user cannot open or close a breaker via the keypad. The following discussions begin from the not-permitted state.

d) CONTROL OF TWO BREAKERS

For the following example setup, the (Name) field represents the user-programmed variable name.

For this application (setup shown below), the relay is connected and programmed for both breaker 1 and breaker 2. The USER 1 key performs the selection of which breaker is to be operated by the USER 2 and USER 3 keys. The USER 2 key is used to manually close the breaker and the USER 3 key is used to manually open the breaker.

ENTER COMMAND PASSWORD This message appears when the USER 1, USER 2, or USER 3 key is pressed and a **COMMAND PASSWORD** is required; i.e. if **COMMAND PASSWORD** is enabled and no commands have been issued within the last 30 minutes.

Press USER 1 To Select Breaker This message appears if the correct password is entered or if none is required. This message displays for 30 seconds or until the USER 1 key is pressed again.

BKR1-(Name) SELECTED USER 2=CLS/USER 3=OP

This message is displayed after the USER 1 key is pressed for the second time. Three possible actions can be performed from this state within 30 seconds as per items (1), (2) and (3) below:

(1)

USER 2 OFF/ON To Close BKR1-(Name)

If the USER 2 key is pressed, this message appears for 20 seconds. If the USER 2 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to close breaker 1.

(2)

USER 3 OFF/ON To Open BKR1-(Name) If the USER 3 key is pressed, this message appears for 20 seconds. If the USER 3 key is pressed again within that time, a signal is created that can be programmed to operate an output relay to open breaker 1.

(3)

BKR2-(Name) SELECTED USER 2=CLS/USER 3=OP

If the USER 1 key is pressed at this step, this message appears showing that a different breaker is selected. Three possible actions can be performed from this state as per (1), (2) and (3). Repeatedly pressing the USER 1 key alternates between available breakers. Pressing keys other than USER 1, 2, or 3 at any time aborts the breaker control function.

e) CONTROL OF ONE BREAKER

For this application the relay is connected and programmed for breaker 1 only. Operation for this application is identical to that described above for two breakers.

4.2.6 KEYPAD

Display messages are organized into pages under the following headings: actual values, settings, commands, and targets. The MENU key navigates through these pages. Each heading page is divided further into logical subgroups.

The MESSAGE keys navigate through the subgroups. The VALUE keys increment or decrement numerical setting values when in programming mode. These keys also scroll through alphanumeric values in the text edit mode. Alternatively, values can be entered with the numeric keypad.

The decimal key initiates and advances to the next character in text edit mode or enters a decimal point.

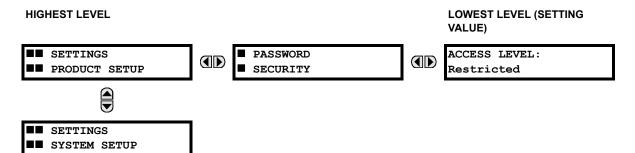
The HELP key can be pressed at any time for context-sensitive help messages.

The ENTER key stores altered setting values.

When entering an IP address on the front panel, key in the first sequence of the number, then press the • key for the decimal place. For example, for 127.0.0.1, press 127, then •, then 0, then •, then 0, then •, then 1. To save the address, press the ENTER key.

4.2.7 MENUS

a) NAVIGATION


Press the MENU key to select a header display page (top-level menu). The header title appears momentarily followed by a header display page menu item. Each press of the MENU key advances through the following main heading pages:

- Actual values
- Settings
- Commands
- Targets

· User displays (when enabled)

b) HIERARCHY

The setting and actual value messages are arranged hierarchically. The header display pages are indicated by double scroll bar characters (\blacksquare), while sub-header pages are indicated by single scroll bar characters (\blacksquare). The header display pages represent the highest level of the hierarchy and the sub-header display pages fall below this level. The MESSAGE UP and DOWN keys move within a group of headers, sub-headers, setting values, or actual values. Continually pressing the MESSAGE RIGHT key from a header display displays specific information for the header category. Conversely, continually pressing the MESSAGE LEFT key from a setting value or actual value display returns to the header display.

c) EXAMPLE MENU NAVIGATION

■■ ACTUAL VALUES ■■ STATUS

Press the MENU key until the header for the first Actual Values page appears. This page contains system and relay status information. Repeatedly press the MESSAGE keys to display the other actual value headers.

Û

■■ SETTINGS ■■ PRODUCT SETUP Press the MENU key until the header for the first page of Settings appears. This page contains settings to configure the relay.

Û

■■ SETTINGS ■■ SYSTEM SETUP

Press the MESSAGE DOWN key to move to the next Settings page. This page contains settings for System Setup. Repeatedly press the MESSAGE UP and DOWN keys to display the other setting headers and then back to the first Settings page header.

Û

■ PASSWORD
■ SECURITY

From the Settings page one header (Product Setup), press the MESSAGE RIGHT key once to display the first sub-header (Password Security).

ACCESS LEVEL: Restricted Press the MESSAGE RIGHT key once more and this will display the first setting for Password Security. Pressing the MESSAGE DOWN key repeatedly will display the remaining setting messages for this sub-header.

■ PASSWORD ■ SECURITY

Û

Press the MESSAGE LEFT key once to move back to the first sub-header message.

■ DISPLAY ■ PROPERTIES Pressing the MESSAGE DOWN key displays the second setting sub-header associated with the Product Setup header.

FLASH MESSAGE TIME: 1.0 s Press the MESSAGE RIGHT key once more to display the first setting for Display Properties.

DEFAULT MESSAGE INTENSITY: 25%

To view the remaining settings associated with the Display Properties subheader, repeatedly press the MESSAGE DOWN key. The last message appears as shown.

4-26

4.2.8 CHANGING SETTINGS

a) ENTERING NUMERICAL DATA

Each numerical setting has its own minimum, maximum, and increment value associated with it. These parameters define what values are acceptable for a setting.

FLASH MESSAGE

For example, select the SETTINGS ⇒ PRODUCT SETUP ⇒ ♣ DISPLAY PROPERTIES ⇒ FLASH

MESSAGE TIME setting.

♣

MINIMUM: 0.5 Press the HELP key to view the minimum and maximum values. Press the HELP key again to view the next context sensitive help message.

Two methods of editing and storing a numerical setting value are available.

- **0 to 9 and decimal point**: The relay numeric keypad works the same as that of any electronic calculator. A number is entered one digit at a time. The leftmost digit is entered first and the rightmost digit is entered last. Pressing the MES-SAGE LEFT key or pressing the ESCAPE key, returns the original value to the display.
- VALUE keys: The VALUE UP key increments the displayed value by the step value, up to the maximum value allowed.
 While at the maximum value, pressing the VALUE UP key again allows the setting selection to continue upward from
 the minimum value. The VALUE DOWN key decrements the displayed value by the step value, down to the minimum
 value. While at the minimum value, pressing the VALUE DOWN key again allows the setting selection to continue
 downward from the maximum value.

As an example, set the flash message time setting to 2.5 seconds. Press the appropriate numeric keys in the sequence "2.5". The display message changes as the digits are being entered.

NEW SETTING
HAS BEEN STORED

Until ENTER is pressed, editing changes are not registered by the relay. Therefore, press ENTER to store the new value in memory. This flash message momentarily appears as confirmation of the storing process. Numerical values which contain decimal places are

rounded-off if more decimal place digits are entered than specified by the step value.

b) ENTERING ENUMERATION DATA

Enumeration settings have data values which are part of a set, whose members are explicitly defined by a name. A set is comprised of two or more members.

ACCESS LEVEL: For example, the selections available for ACCESS LEVEL are "Restricted", "Command", "Setting", and "Factory Service".

Enumeration type values are changed using the VALUE keys. The VALUE UP key displays the next selection while the VALUE DOWN key displays the previous selection.

If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press HELP at any time for the context sensitive help messages.

NEW SETTING
HAS BEEN STORED

If the ACCESS LEVEL needs to be "Setting", press the VALUE keys until the proper selection is displayed. Press HELP at any time for the context sensitive help messages.

Changes are not registered by the relay until the ENTER key is pressed. Pressing ENTER stores the new value in memory. This flash message momentarily appears as

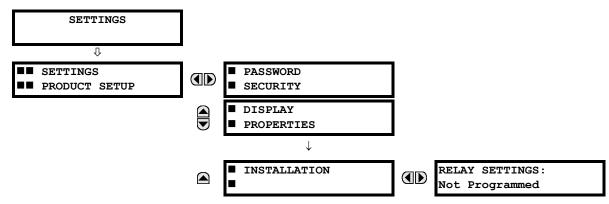
confirmation of the storing process.

c) ENTERING ALPHANUMERIC TEXT

Text settings have data values which are fixed in length, but user-defined in character. They can be upper case letters, lower case letters, numerals, and a selection of special characters.

There are several places where text messages can be programmed to allow the relay to be customized for specific applications. One example is the Message Scratchpad. Use the following procedure to enter alphanumeric text messages.

For example: to enter the text, "Breaker #1".


- 1. Press the decimal point to enter text edit mode.
- 2. Press the VALUE keys until the character 'B' appears; press the decimal key to advance the cursor to the next position.
- 3. Repeat step 2 for the remaining characters: r,e,a,k,e,r, ,#,1.
- 4. Press ENTER to store the text.
- 5. If you have any problem, press HELP to view context sensitive help. Flash messages appear sequentially for several seconds each. For the case of a text setting message, pressing HELP displays how to edit and store new values.

d) ACTIVATING THE RELAY

RELAY SETTINGS: Not Programmed When the relay is powered up, the Trouble LED is on, the In Service LED off, and this message displayed, indicating the relay is in the "Not Programmed" state and is safeguarding (output relays blocked) against the installation of a relay whose settings have not been entered. This message remains until the relay is explicitly put in the "Programmed" state.

To change the RELAY SETTINGS: "Not Programmed" mode to "Programmed", proceed as follows:

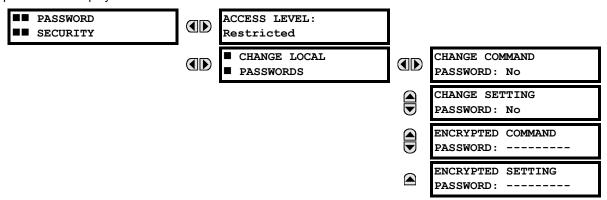
- Press the MENU key until the SETTINGS header flashes momentarily and the PRODUCT SETUP message appears on the display.
- 2. Press the MESSAGE RIGHT key until the PASSWORD SECURITY message appears on the display.
- Press the MESSAGE DOWN key until the INSTALLATION message appears on the display.
- Press the MESSAGE RIGHT key until the RELAY SETTINGS: Not Programmed message is displayed.

- 5. After the **RELAY SETTINGS: Not Programmed** message appears on the display, press the VALUE keys change the selection to "Programmed".
- Press the ENTER key.

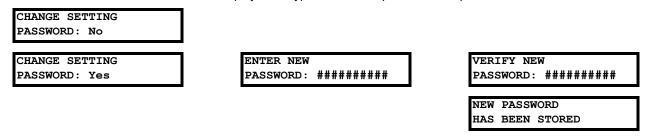
RELAY SETTINGS: Not Programmed RELAY SETTINGS: Programmed NEW SETTING HAS BEEN STORED

7. When the "NEW SETTING HAS BEEN STORED" message appears, the relay is in "Programmed" state and the In Service LED turns on.

e) ENTERING INITIAL PASSWORDS


The information in this section refers to password security. For information on how to set or change CyberSentry passwords, see the Settings > Product Setup > Security > CyberSentry section in the next chapter.

The F60 supports password entry from a local or remote connection.

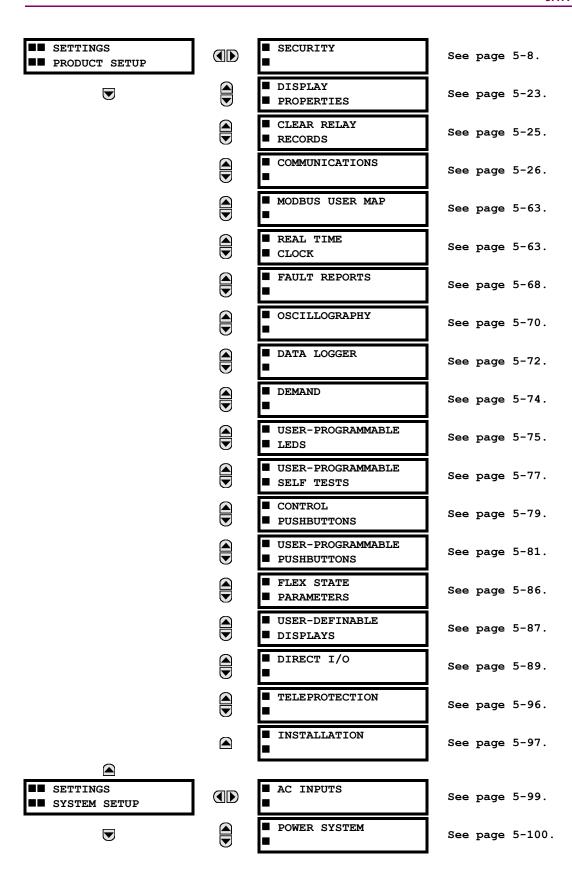

Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the faceplate RS232 connection. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

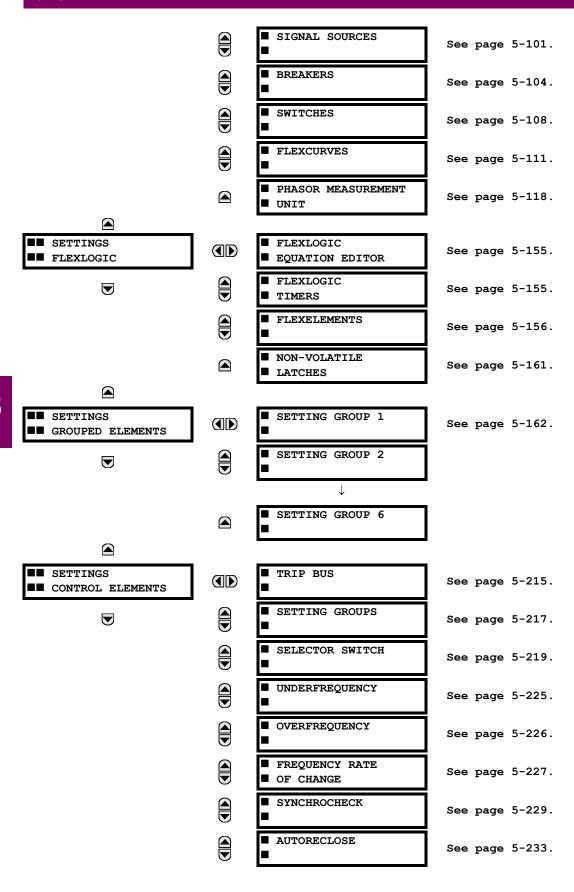
To enter the initial setting (or command) password, proceed as follows:

- Press the MENU key until the SETTINGS header flashes momentarily and the PRODUCT SETUP message appears on the display.
- 2. Press the MESSAGE RIGHT key until the ACCESS LEVEL message appears on the display.
- 3. Press the MESSAGE DOWN key until the CHANGE LOCAL PASSWORDS message appears on the display.
- Press the MESSAGE RIGHT key until the CHANGE SETTING PASSWORD or CHANGE COMMAND PASSWORD message appears on the display.

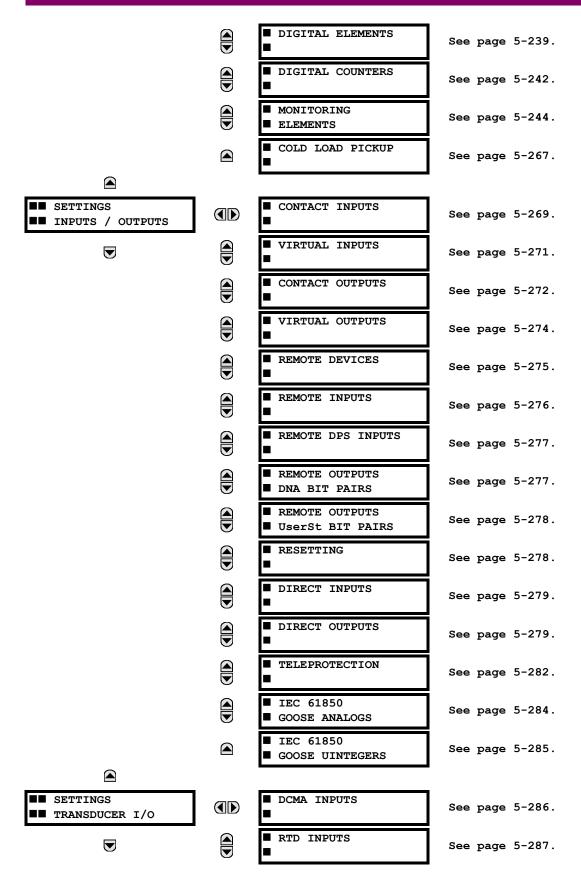
- After the CHANGE...PASSWORD message appears on the display, press the VALUE UP or DOWN key to change the selection to "Yes".
- 6. Press the ENTER key and the display prompts you to ENTER NEW PASSWORD.
- 7. Type in a numerical password (up to 10 characters) and press the ENTER key.
- 8. When the VERIFY NEW PASSWORD is displayed, re-type in the same password and press ENTER.

When the NEW PASSWORD HAS BEEN STORED message appears, your new Setting (or Command) Password will be active.

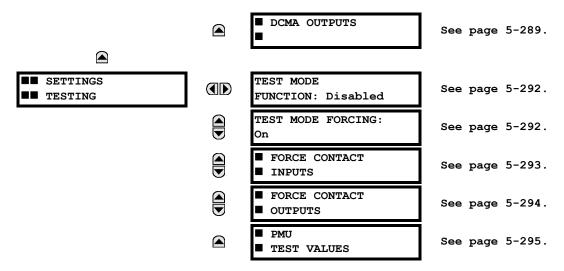

f) CHANGING EXISTING PASSWORD


To change an existing password, follow the instructions in the previous section with the following exception. A message prompts you to type in the existing password (for each security level) before a new password can be entered.

g) INVALID PASSWORD ENTRY


When an incorrect command or setting password has been entered via the faceplate interface three times within a 3-minute time span, the LOCAL ACCESS DENIED FlexLogic operand is set to "On" and the F60 does not allow settings or command level access via the faceplate interface for the next five minutes, or in the event that an incorrect Command Or Setting password has been entered via the any external communications interface three times within a 3-minute time span, the REMOTE ACCESS DENIED FlexLogic operand is set to "On" and the F60 does not allow settings or command access via the any external communications interface for the next five minutes.

In the event that an incorrect Command or Setting password has been entered via the any external communications interface three times within a three-minute time span, the REMOTE ACCESS DENIED FlexLogic operand is set to "On" and the F60 does not allow Settings or Command access via the any external communications interface for the next ten minutes. The REMOTE ACCESS DENIED FlexLogic operand is set to "Off" after the expiration of the ten-minute timeout.



5 SETTINGS 5.1 OVERVIEW

5.1 OVERVIEW 5 SETTINGS

5.1.2 INTRODUCTION TO ELEMENTS

In the design of UR relays, the term *element* is used to describe a feature that is based around a comparator. The comparator is provided with an input (or set of inputs) that is tested against a programmed setting (or group of settings) to determine if the input is within the defined range that will set the output to logic 1, also referred to as *setting the flag*. A single comparator may make multiple tests and provide multiple outputs; for example, the time overcurrent comparator sets a pickup flag when the current input is above the setting and sets an operate flag when the input current has been at a level above the pickup setting for the time specified by the time-current curve settings. All comparators use analog parameter actual values as the input.

The exception to the above rule are the digital elements, which use logic states as inputs.

Elements are arranged into two classes, *grouped* and *control*. Each element classed as a grouped element is provided with six alternate sets of settings, in setting groups numbered 1 through 6. The performance of a grouped element is defined by the setting group that is active at a given time. The performance of a control element is independent of the selected active setting group.

The main characteristics of an element are shown on the element logic diagram. This includes the inputs, settings, fixed logic, and the output operands generated (abbreviations used on scheme logic diagrams are defined in Appendix F).

Some settings for current and voltage elements are specified in per-unit (pu) calculated quantities:

pu quantity = (actual quantity) / (base quantity)

For current elements, the base quantity is the nominal secondary or primary current of the CT.

Where the current source is the sum of two CTs with different ratios, the base quantity will be the common secondary or primary current to which the sum is scaled (that is, normalized to the larger of the two rated CT inputs). For example, if CT1 = 300 / 5 A and CT2 = 100 / 5 A, then in order to sum these, CT2 is scaled to the CT1 ratio. In this case, the base quantity will be 5 A secondary or 300 A primary.

For voltage elements the base quantity is the nominal primary voltage of the protected system which corresponds (based on VT ratio and connection) to secondary VT voltage applied to the relay.

For example, on a system with a 13.8 kV nominal primary voltage and with 14400:120 V delta-connected VTs, the secondary nominal voltage (1 pu) would be:

$$\frac{13800}{14400} \times 120 = 115 \text{ V} \tag{EQ 5.1}$$

For wye-connected VTs, the secondary nominal voltage (1 pu) would be:

$$\frac{13800}{14400} \times \frac{120}{\sqrt{3}} = 66.4 \text{ V}$$
 (EQ 5.2)

5 SETTINGS 5.1 OVERVIEW

Many settings are common to most elements and are discussed below:

• **FUNCTION setting:** This setting programs the element to be operational when selected as "Enabled". The factory default is "Disabled". Once programmed to "Enabled", any element associated with the function becomes active and all options become available.

- **NAME setting:** This setting is used to uniquely identify the element.
- SOURCE setting: This setting is used to select the parameter or set of parameters to be monitored.
- PICKUP setting: For simple elements, this setting is used to program the level of the measured parameter above or below which the pickup state is established. In more complex elements, a set of settings may be provided to define the range of the measured parameters which will cause the element to pickup.
- PICKUP DELAY setting: This setting sets a time-delay-on-pickup, or on-delay, for the duration between the pickup
 and operate output states.
- **RESET DELAY setting:** This setting is used to set a time-delay-on-dropout, or off-delay, for the duration between the Operate output state and the return to logic 0 after the input transits outside the defined pickup range.
- **BLOCK setting:** The default output operand state of all comparators is a logic 0 or "flag not set". The comparator remains in this default state until a logic 1 is asserted at the RUN input, allowing the test to be performed. If the RUN input changes to logic 0 at any time, the comparator returns to the default state. The RUN input is used to supervise the comparator. The BLOCK input is used as one of the inputs to RUN control.
- TARGET setting: This setting is used to define the operation of an element target message. When set to "Disabled", no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to "Self-Reset", the target message and LED indication follow the operate state of the element, and self-resets once the operate element condition clears. When set to "Latched", the target message and LED indication will remain visible after the element output returns to logic 0 until a RESET command is received by the relay.
- **EVENTS setting:** This setting is used to control whether the pickup, dropout or operate states are recorded by the event recorder. When set to "Disabled", element pickup, dropout or operate are not recorded as events. When set to "Enabled", events are created for:

(Element) PKP (pickup) (Element) DPO (dropout) (Element) OP (operate)

The DPO event is created when the measure and decide comparator output transits from the pickup state (logic 1) to the dropout state (logic 0). This could happen when the element is in the operate state if the reset delay time is not 0.

5.1.3 INTRODUCTION TO AC SOURCES

a) BACKGROUND

The F60 may be used on systems with breaker-and-a-half or ring bus configurations. In these applications, each of the two three-phase sets of individual phase currents (one associated with each breaker) can be used as an input to a breaker failure element. The sum of both breaker phase currents and 3I_0 residual currents may be required for the circuit relaying and metering functions. For a three-winding transformer application, it may be required to calculate watts and vars for each of three windings, using voltage from different sets of VTs. These requirements can be satisfied with a single UR, equipped with sufficient CT and VT input channels, by selecting the parameter to measure. A mechanism is provided to specify the AC parameter (or group of parameters) used as the input to protection/control comparators and some metering elements.

Selection of the parameter(s) to measure is partially performed by the design of a measuring element or protection/control comparator by identifying the type of parameter (fundamental frequency phasor, harmonic phasor, symmetrical component, total waveform RMS magnitude, phase-phase or phase-ground voltage, etc.) to measure. The user completes the process by selecting the instrument transformer input channels to use and some of the parameters calculated from these channels. The input parameters available include the summation of currents from multiple input channels. For the summed currents of phase, 3I_0, and ground current, current from CTs with different ratios are adjusted to a single ratio before summation.

A mechanism called a *source* configures the routing of CT and VT input channels to measurement sub-systems. Sources, in the context of UR series relays, refer to the logical grouping of current and voltage signals such that one source contains all the signals required to measure the load or fault in a particular power apparatus. A given source may contain all or some of the following signals: three-phase currents, single-phase ground current, three-phase voltages and an auxiliary voltage from a single VT for checking for synchronism.

5.1 OVERVIEW 5 SETTINGS

To illustrate the concept of sources, as applied to current inputs only, consider the breaker-and-a-half scheme below. In this application, the current flows as shown by the arrows. Some current flows through the upper bus bar to some other location or power equipment, and some current flows into transformer winding 1. The current into winding 1 is the phasor sum (or difference) of the currents in CT1 and CT2 (whether the sum or difference is used depends on the relative polarity of the CT connections). The same considerations apply to transformer winding 2. The protection elements require access to the net current for transformer protection, but some elements may need access to the individual currents from CT1 and CT2.

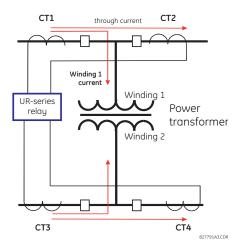


Figure 5-1: BREAKER-AND-A-HALF SCHEME

In conventional analog or electronic relays, the sum of the currents is obtained from an appropriate external connection of all CTs through which any portion of the current for the element being protected could flow. Auxiliary CTs are required to perform ratio matching if the ratios of the primary CTs to be summed are not identical. In the UR series of relays, provisions have been included for all the current signals to be brought to the UR device where grouping, ratio correction and summation are applied internally via configuration settings.

A major advantage of using internal summation is that the individual currents are available to the protection device; for example, as additional information to calculate a restraint current, or to allow the provision of additional protection features that operate on the individual currents such as breaker failure.

Given the flexibility of this approach, it becomes necessary to add configuration settings to the platform to allow the user to select which sets of CT inputs will be added to form the net current into the protected device.

The internal grouping of current and voltage signals forms an internal source. This source can be given a specific name through the settings, and becomes available to protection and metering elements in the UR platform. Individual names can be given to each source to help identify them more clearly for later use. For example, in the scheme shown in the above diagram, the user configures one source to be the sum of CT1 and CT2 and can name this source as "Wdg1 I".

Once the sources have been configured, the user has them available as selections for the choice of input signal for the protection elements and as metered quantities.

b) CT/VT MODULE CONFIGURATION

CT and VT input channels are contained in CT/VT modules. The type of input channel can be phase/neutral/other voltage, phase/ground current, or sensitive ground current. The CT/VT modules calculate total waveform RMS levels, fundamental frequency phasors, symmetrical components and harmonics for voltage or current, as allowed by the hardware in each channel. These modules may calculate other parameters as directed by the CPU module.

A CT/VT module contains up to eight input channels, numbered 1 through 8. The channel numbering corresponds to the module terminal numbering 1 through 8 and is arranged as follows: Channels 1, 2, 3 and 4 are always provided as a group, hereafter called a "bank," and all four are either current or voltage, as are channels 5, 6, 7 and 8. Channels 1, 2, 3 and 5, 6, 7 are arranged as phase A, B and C respectively. Channels 4 and 8 are either another current or voltage.

5 SETTINGS 5.1 OVERVIEW

Banks are ordered sequentially from the block of lower-numbered channels to the block of higher-numbered channels, and from the CT/VT module with the lowest slot position letter to the module with the highest slot position letter, as follows:

INCREASING SLOT POSITION LETTER>			
CT/VT MODULE 1	CT/VT MODULE 2	CT/VT MODULE 3	
< bank 1 >	< bank 3 >	< bank 5 >	
< bank 2 >	< bank 4 >	< bank 6 >	

The UR platform allows for a maximum of six sets of three-phase voltages and six sets of three-phase currents. The result of these restrictions leads to the maximum number of CT/VT modules in a chassis to three. The maximum number of sources is six. A summary of CT/VT module configurations is shown below.

ITEM	MAXIMUM NUMBER
CT/VT Module	2
CT Bank (3 phase channels, 1 ground channel)	4
VT Bank (3 phase channels, 1 auxiliary channel)	2

c) CT/VT INPUT CHANNEL CONFIGURATION

Upon relay startup, configuration settings for every bank of current or voltage input channels in the relay are automatically generated from the order code. Within each bank, a channel identification label is automatically assigned to each bank of channels in a given product. The *bank* naming convention is based on the physical location of the channels, required by the user to know how to connect the relay to external circuits. Bank identification consists of the letter designation of the slot in which the CT/VT module is mounted as the first character, followed by numbers indicating the channel, either 1 or 5.

For three-phase channel sets, the number of the lowest numbered channel identifies the set. For example, F1 represents the three-phase channel set of F1/F2/F3, where F is the slot letter and 1 is the first channel of the set of three channels.

Upon startup, the CPU configures the settings required to characterize the current and voltage inputs, and will display them in the appropriate section in the sequence of the banks (as described above) as follows for a maximum configuration: F1, F5, M1, M5, U1, and U5.

The above section explains how the input channels are identified and configured to the specific application instrument transformers and the connections of these transformers. The specific parameters to be used by each measuring element and comparator, and some actual values are controlled by selecting a specific source. The source is a group of current and voltage input channels selected by the user to facilitate this selection. With this mechanism, a user does not have to make multiple selections of voltage and current for those elements that need both parameters, such as a distance element or a watt calculation. It also gathers associated parameters for display purposes.

The basic idea of arranging a source is to select a point on the power system where information is of interest. An application example of the grouping of parameters in a source is a transformer winding, on which a three phase voltage is measured, and the sum of the currents from CTs on each of two breakers is required to measure the winding current flow.

5.2.1 SECURITY

a) SECURITY OVERVIEW

The following security features are available:

- · Password security Basic security present in the default offering of the product
- EnerVista security Role-based access to various EnerVista software screens and configuration elements. The feature is available in the default offering of the product and only in the EnerVista software.
- CyberSentry security Advanced security options available as a software option. When purchased, the options are
 automatically enabled, and the default Password security and EnerVista security are disabled.

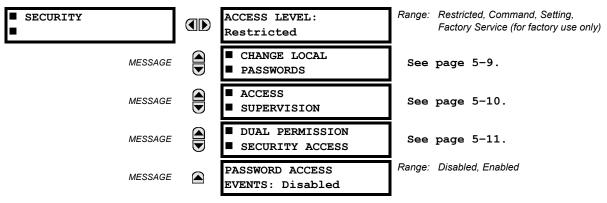
b) LOST PASSWORD

If all passwords are lost, recovery is possible by resetting the unit to default values.

To reset the unit after a lost password:

- 1. Email GE customer service at multilin.tech@ge.com with the serial number and using a recognizable corporate email account. Customer service provides a code to reset the relay to the factory defaults.
- 2. Enter the reset code on the front panel, under Commands > Commands Relay Maintenance > Service Command.
- Change the default password of ChangeMe1# as outlined in the Setting Up CyberSentry and Changing Default Password section in the first chapter.

c) PASSWORD REQUIREMENTS


A user account requires an alpha-numeric password that meets the following requirements:

- Password is case-sensitive
- · Password cannot contain the user account name or parts of the user account that exceed two consecutive characters
- · Password must be 6 to 20 characters in length
- Password must contain characters from three of the following four categories:
 - English uppercase characters (A through Z)
 - English lowercase characters (a through z)
 - Base 10 digits (0 through 9)
 - Non-alphabetic characters (for example, ~, !, @, #, \$,%, &)

d) PASSWORD SECURITY

PATH: SETTINGS

⇒ PRODUCT SETUP
⇒ SECURITY

The F60 supports password entry from a local or remote connection.

5 SETTINGS 5.2 PRODUCT SETUP

Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the through the faceplate RS232 port. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

When entering a settings or command password via EnerVista or any serial interface, the user must enter the corresponding connection password. If the connection is to the back of the F60, the remote password must be used. If the connection is to the RS232 port of the faceplate, the local password must be used.

The PASSWORD ACCESS EVENTS settings allows recording of password access events in the event recorder.

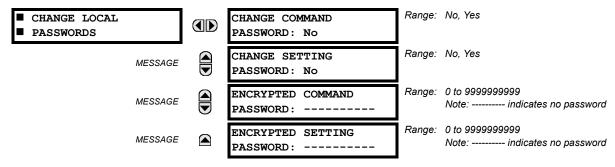
The local setting and command sessions are initiated by the user through the front panel display and are disabled either by the user or by timeout (via the setting and command level access timeout settings). The remote setting and command sessions are initiated by the user through the EnerVista UR Setup software and are disabled either by the user or by timeout.

The state of the session (local or remote, setting or command) determines the state of the following FlexLogic operands.

- ACCESS LOC SETG OFF: Asserted when local setting access is disabled
- ACCESS LOC SETG ON: Asserted when local setting access is enabled
- · ACCESS LOC CMND OFF: Asserted when local command access is disabled
- · ACCESS LOC CMND ON: Asserted when local command access is enabled
- ACCESS REM SETG OFF: Asserted when remote setting access is disabled
- ACCESS REM SETG ON: Asserted when remote setting access is enabled
- ACCESS REM CMND OFF: Asserted when remote command access is disabled
- · ACCESS REM CMND ON: Asserted when remote command access is enabled

A command or setting write operation is required to update the state of all the remote and local security operands shown above.

LOCAL PASSWORDS


PATH: SETTINGS

PRODUCT SETUP

SECURITY

U

CHANGE LOCAL PASSWORDS

Proper password codes are required to enable each access level. When a **CHANGE COMMAND PASSWORD** or **CHANGE SETTING PASSWORD** setting is programmed to "Yes" via the front panel interface, the following message sequence is invoked:

- ENTER NEW PASSWORD: _____
- 2. VERIFY NEW PASSWORD: .
- 3. NEW PASSWORD HAS BEEN STORED.

To gain write access to a "Restricted" setting, program the ACCESS LEVEL setting in the main security menu to "Setting" and then change the setting, or attempt to change the setting and follow the prompt to enter the programmed password. If the password is correctly entered, access is allowed. Access automatically reverts to the "Restricted" level according to the access level timeout setting values.

If the setting and command passwords are identical, then this one password allows access to both commands and settings.

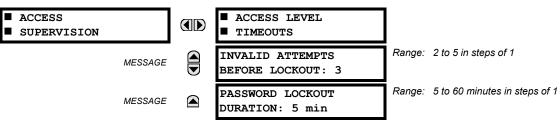
If a remote connection is established, local passcodes are not visible.

REMOTE PASSWORDS

The remote password settings are visible only from a remote connection via the EnerVista UR Setup software.

Proper passwords are required to enable each command or setting level access.

To set the command or setting password:


- In the EnerVista software, navigate to Settings > Product Setup > Security menu item to open the remote password settings window.
- 2. Click the command or setting password Change button.
- Enter the new password in the New Password field. Requirements are outlined in the Password Requirements section
 at the beginning of the chapter. When an original password has already been used, enter it in the Enter Password
 field and click the Send Password to Device button.
- 4. Re-enter the password in the **Confirm Password** field.
- 5. Click the **OK** button. The password is checked to ensure that is meets requirements.

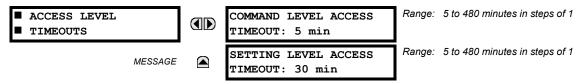
If you establish a local connection to the relay (serial), you cannot view remote passcodes.

ACCESS SUPERVISION

The following access supervision settings are available.

- INVALID ATTEMPTS BEFORE LOCKOUT: This setting specifies the number of times an incorrect password can be
 entered within a three-minute time span before lockout occurs. When lockout occurs, the LOCAL ACCESS DENIED or
 REMOTE ACCESS DENIED FlexLogic operands are set to "On". These operands are returned to the "Off" state upon
 expiration of the lockout.
- PASSWORD LOCKOUT DURATION: This setting specifies the time that the F60 will lockout password access after the number of invalid password entries specified by the INVALID ATTEMPTS BEFORE LOCKOUT setting has occurred.

The F60 provides a means to raise an alarm upon failed password entry. Should password verification fail while accessing a password-protected level of the relay (either settings or commands), the UNAUTHORIZED ACCESS FlexLogic operand is asserted. The operand can be programmed to raise an alarm via contact outputs or communications. This feature can be used to protect against both unauthorized and accidental access attempts.


5 SETTINGS 5.2 PRODUCT SETUP

The UNAUTHORIZED ACCESS operand is reset with the **COMMANDS** ⇒ ⊕ **CLEAR RECORDS** ⇒ ⊕ **RESET UNAUTHORIZED ALARMS** command. Therefore, to apply this feature with security, the command level should be password-protected. The operand does not generate events or targets.

If events or targets are required, the UNAUTHORIZED ACCESS operand can be assigned to a digital element programmed with event logs or targets enabled.

The access level timeout settings are shown below.

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ SECURITY ⇒ ♣ ACCESS SUPERVISION ⇒ ACCESS LEVEL TIMEOUTS

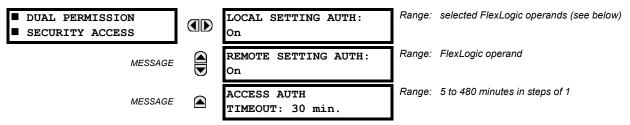
These settings allow the user to specify the length of inactivity required before returning to the restricted access level. Note that the access level will set as restricted if control power is cycled.

- **COMMAND LEVEL ACCESS TIMEOUT**: This setting specifies the length of inactivity (no local or remote access) required to return to restricted access from the command password level.
- **SETTING LEVEL ACCESS TIMEOUT**: This setting specifies the length of inactivity (no local or remote access) required to return to restricted access from the command password level.

DUAL PERMISSION SECURITY ACCESS

PATH: SETTINGS

PRODUCT SETUP


SECURITY

U

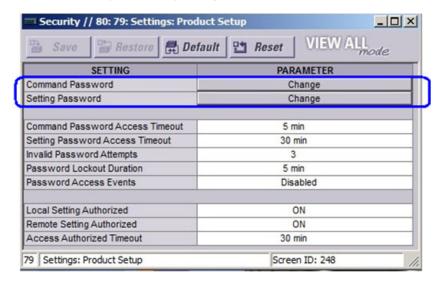
U

U

DUAL PERMISSION SECURITY ACCESS

The dual permission security access feature provides a mechanism for customers to prevent unauthorized or unintended upload of settings to a relay through the local or remote interfaces interface.

The following settings are available through the local (front panel) interface only.


• **LOCAL SETTING AUTH**: This setting is used for local (front panel or RS232 interface) setting access supervision. Valid values for the FlexLogic operands are either "On" (default) or any physical "Contact Input ~~ On" value.

If this setting is "On", then local setting access functions as normal; that is, a local setting password is required. If this setting is any contact input on FlexLogic operand, then the operand must be asserted (set as on) prior to providing the local setting password to gain setting access.

If setting access is *not* authorized for local operation (front panel or RS232 interface) and the user attempts to obtain setting access, then the **UNAUTHORIZED ACCESS** message is displayed on the front panel.

- **REMOTE SETTING AUTH**: This setting is used for remote (Ethernet or RS485 interfaces) setting access supervision.
 - If this setting is "On" (the default setting), then remote setting access functions as normal; that is, a remote password is required). If this setting is "Off", then remote setting access is blocked even if the correct remote setting password is provided. If this setting is any other FlexLogic operand, then the operand must be asserted (set as on) prior to providing the remote setting password to gain setting access.
- ACCESS AUTH TIMEOUT: This setting represents the timeout delay for local setting access. This setting is applicable when the LOCAL SETTING AUTH setting is programmed to any operand except "On". The state of the FlexLogic operand is continuously monitored for an off-to-on transition. When this occurs, local access is permitted and the timer programmed with the ACCESS AUTH TIMEOUT setting value is started. When this timer expires, local setting access is immediately denied. If access is permitted and an off-to-on transition of the FlexLogic operand is detected, the timeout is restarted. The status of this timer is updated every 5 seconds.

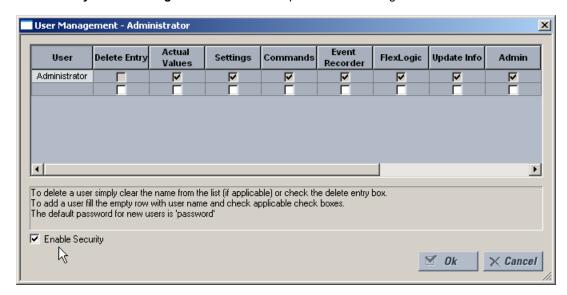
The following settings are available through the remote (EnerVista UR Setup) interface only. Select the **Settings > Product Setup > Security** menu item to display the security settings window.

The **Remote Settings Authorized** setting is used for remote (Ethernet or RS485 interfaces) setting access supervision. If this setting is "On" (the default setting), then remote setting access functions as normal; that is, a remote password is required). If this setting is "Off", then remote setting access is blocked even if the correct remote setting password is provided. If this setting is any other FlexLogic operand, then the operand must be asserted (set as on) prior to providing the remote setting password to gain setting access.

The **Access Authorized Timeout** setting represents the timeout delay remote setting access. This setting is applicable when the **Remote Settings Authorized** setting is programmed to any operand except "On" or "Off". The state of the Flex-Logic operand is continuously monitored for an off-to-on transition. When this occurs, remote setting access is permitted and the timer programmed with the **Access Authorized Timeout** setting value is started. When this timer expires, remote setting access is immediately denied. If access is permitted and an off-to-on transition of the FlexLogic operand is detected, the timeout is restarted. The status of this timer is updated every 5 seconds.

e) ENERVISTA SECURITY

ENABLING THE SECURITY MANAGEMENT SYSTEM


The EnerVista security system allows an administrator to manage access privileges of multiple users to the EnerVista application.

It is disabled by default to allow the administrator direct access to the EnerVista software immediately after installation. When security is disabled, all users have administrator access. GE recommends enabling the EnerVista security before placing the device in service.

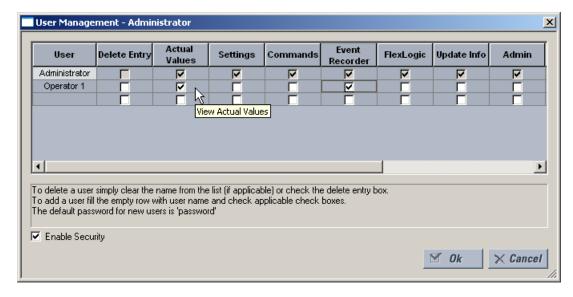
To enable the security system and require password use:

5.2 PRODUCT SETUP

1. Select the **Security > User Management** menu item to open the user management window.

2. Check the Enable Security box in the lower-left corner to enable the security management system.

Security is now enabled for the EnerVista UR Setup software. Upon starting the software, users are now required to enter a username and password.


ADDING A NEW USER

The following pre-requisites are required to add user accounts to the EnerVista security management system:

- · The user adding the account must have administrator rights
- The EnerVista security management system must be enabled (previous section)

To add user accounts:

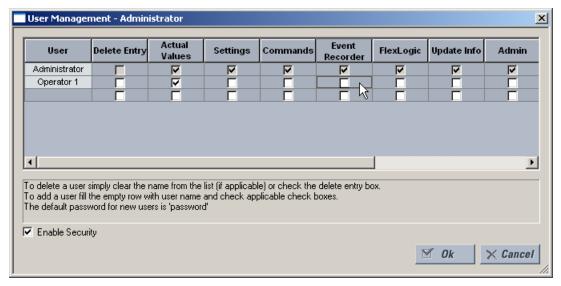
- 1. Select the **Security > User Management** menu item to open the user management window.
- 2. Enter a username in the **User** field. The username must be 4 to 20 characters in length.
- 3. Select the user access rights by enabling the check box of one or more of the fields.

The table outlines access rights.

Table 5-1: ACCESS RIGHTS SUMMARY

FIELD	DESCRIPTION
Delete Entry	Deletes the user account when exiting the user management window
Actual Values	Allows the user to read actual values
Settings	Allows the user to read setting values
Commands	Allows the user to execute commands
Event Recorder	Allows the user to use the digital fault recorder
FlexLogic	Allows the user to read FlexLogic values
Update Info	Allows the user to write to any function to which they have read privileges. When any of the Settings, Event Recorder, and FlexLogic check boxes are enabled by themselves, the user is granted read access. When any of them are enabled in conjunction with the Update Info box, they are granted read and write access. The user is not granted write access to functions that are not checked, even if the Update Info field is checked.
Admin	The user is an EnerVista UR Setup administrator, therefore receiving all of the administrative rights. Exercise caution when granting administrator rights.

4. Click **OK** to add the user account to the security management system.


MODIFYING USER PRIVILEGES

The following pre-requisites are required to modify user privileges in the EnerVista security management system:

- The user modifying the privileges must have administrator rights
- The EnerVista security management system must be enabled

To modify user privileges:

- Select the Security > User Management menu item to open the user management window.
- 2. Locate the username in the User field.
- 3. Modify the user access rights by enabling or disabling one or more of the check boxes.

The table outlines access rights.

Table 5-2: ACCESS RIGHTS SUMMARY

FIELD	DESCRIPTION			
Delete Entry	eletes the user account when exiting the user management window			
Actual Values	Allows the user to read actual values			
Settings	Allows the user to read setting values			
Commands	Allows the user to execute commands			

Table 5-2: ACCESS RIGHTS SUMMARY

FIELD	DESCRIPTION
Event Recorder	Allows the user to use the digital fault recorder
FlexLogic	Allows the user to read FlexLogic values
Update Info	Allows the user to write to any function to which they have read privileges. When any of the Settings, Event Recorder, and FlexLogic check boxes are enabled by themselves, the user is granted read access. When any of them are enabled in conjunction with the Update Info box, they are granted read and write access. The user is not granted write access to functions that are not checked, even if the Update Info field is checked.
Admin	The user is an EnerVista UR Setup administrator, therefore receiving all of the administrative rights. Exercise caution when granting administrator rights.


4. Click **OK** to save the changes.

f) CYBERSENTRY SECURITY

The EnerVista software provides the means to configure and authenticate UR using either server or device or authentication. Access to various functionality depends on user role.

The login screen of EnerVista has two options for access to the UR, server and device authentication.

Figure 5-2: LOGIN SCREEN FOR CYBERSENTRY

When the "Server" Authentication Type option is selected, the UR uses the RADIUS server and not its local authentication database to authenticate the user.

When the "Device" button is selected, the UR uses its local authentication database and not the RADIUS server to authenticate the user. In this case, it uses built-in roles (Administrator, Engineer, Supervisor, Operator, Observer) as login accounts and the associated passwords are stored on the UR device. In this case, access is not user-attributable. In cases where user-attributable access is required, especially for auditable processes for compliance reasons, use server authentication (RADIUS) only.

No password or security information is displayed in plain text by the EnerVista software or UR device, nor are they ever transmitted without cryptographic protection.

CYBERSENTRY SETTINGS THROUGH ENERVISTA

CyberSentry security settings are configured under Device > Settings > Product Setup > Security.

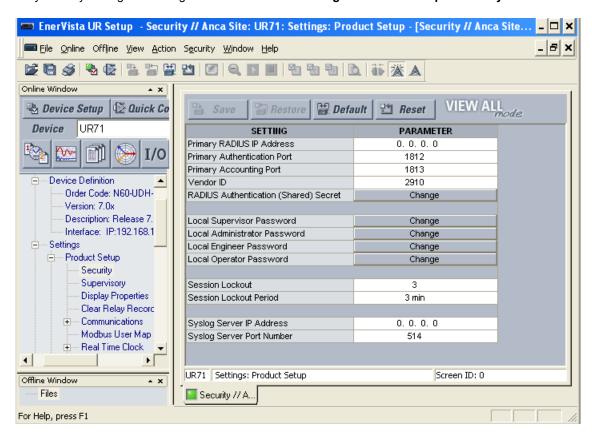


Figure 5-3: CYBERSENTRY SECURITY PANEL

For the **Device > Settings > Product Setup > Supervisory** option, the panel looks like the following.

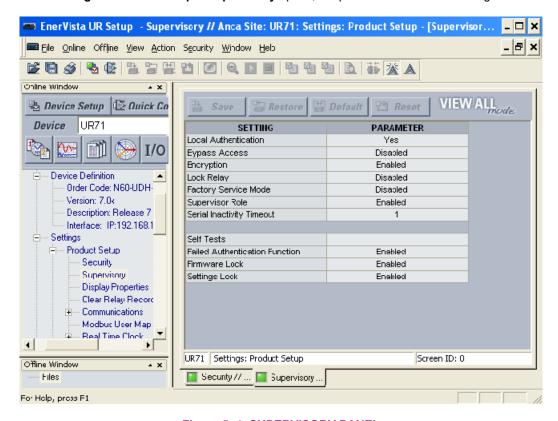


Figure 5-4: SUPERVISORY PANEL

For the Security panel, the following settings are available.

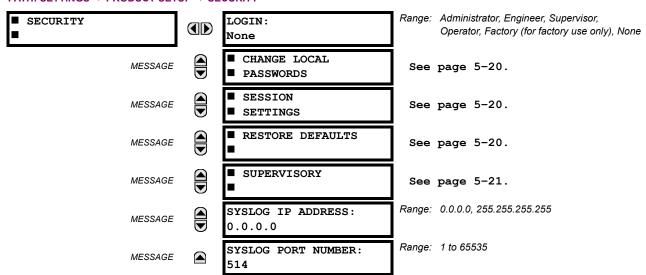
RADIUS Server Settings

SETTING NAME	DESCRIPTION	MIN	MAX	DEFAULT	UNITS	MINIMUM PERMISSION
Primary RADIUS IP Address IP address of the main RADIUS server. Default value indicates no Primary RADIUS server is configured, and hence RADIUS is disabled.		0.0.0.0	223.255.255.254	0.0.0.0	-	Administrator
Primary Authentication Port	RADIUS authentication port		65535	1812	-	Administrator
Primary Accounting Port	ary Accounting RADIUS accounting port		65535	1813	-	Administrator
Vendor ID	endor ID An identifier that specifies RADIUS vendor-specific attributes used with the protocol			Value that represents General Electric		Administrator
RADIUS Authentication (Shared) Secret	uthentication displays as asterisks. This setting must		See the following password section for requirements	N/A	-	Administrator
RADIUS Authentication method used by RADIUS server. Currently fixed to EAP-TTLS.		EAP-TTLS	EAP-TTLS	EAP-TTLS	-	Administrator
Timeout	Timeout in seconds between retransmission requests	0	9999	10	sec	Administrator
Retries	Number of retries before giving up	0	9999	3	-	Administrator

	Confirmation of the shared secret. The entry displays as asterisks.	See the Password Requirement s section	N/A	-	Administrator	
		3 Section				

General Security Settings

SETTING NAME	DESCRIPTION	MIN	MAX	DEFAULT	UNITS	MINIMUM PERMISSION
Session Lockout	ion Lockout Number of failed authentications before the device blocks subsequent authentication attempts for the lockout period		99	3	-	Administrator
Session Lockout Period	The period in minutes that a user is prevented from logging in after being locked out	0 (no period)	9999	3	min	Administrator
Syslog Server IP Address	The IP address of the target Syslog server to which all security events are transmitted	0.0.0.0	223.255. 255.254	0.0.0.0	-	Administrator
Syslog Server Port Number	The UDP port number of the target syslog server to which all security events are transmitted	1	65535	514	-	Administrator
Device Authentication	When enabled, local device authentication with roles is allowed. When disabled, the UR only authenticates to the AAA server (RADIUS). NOTE: Administrator and Supervisor (if still enabled) remain active even after device authentication is disabled. The only permission for local Administrator is to re-enable device authentication when device authentication is disabled. To re-enable device authentication, the Supervisor unlocks the device for setting changes, and then the Administrator can re-enable device authentication.	Disabled	Enabled	Enabled	-	Administrator
Firmware Locked	Indicates if the device receives firmware upgrades. If Yes and the firmware upgrade attempt is made, the device denies the upgrade and displays an error message that the lock is set. On each firmware upgrade, this setting goes back to the default.		Yes	Yes	-	Administrator
Factory Service Mode	When enabled (checkbox selected), the device can go into factory service mode. To enable, Supervisor authentication is necessary.	Disabled	Enabled	Disabled	-	Supervisor (Administrator when Supervisor is disabled)
Restore to Defaults	Sets the device to factory defaults	No	Yes	No	-	Administrator
Supervisor role	When enabled (checkbox selected), the Supervisor role is active. To enable, Administrator authentication is necessary. When disabled, the Supervisor role is inactive. To disable, Supervisor authentication is necessary.		Enabled	Enabled	-	Administrator to enable and Supervisor to disable
RADIUS user names	Ensure that RADIUS user names are not the same as local/device role names	See RADIUS server documents	See RADIUS server documents		-	Administrator
Password	Local/device roles except for Observer are password-protected. All RADIUS users are password-protected.	See the Password Requirement s section	See the following password section for requireme nts	Change Me1#	Text	The specified role and Administrator, except for Supervisor, where it is only itself


Security Alarm Settings

SETTING NAME	DESCRIPTION / DETAILS	MIN	MAX	DEFAULT	UNITS	MINIMUM PERMISSIONS
Failed Authentications	A threshold number indicating when an alarm is set off to indicate too many failed authentication attempts	0 (disabled)	99	3	-	Administrator
Firmware lock	A Boolean value indicating if the device can receive a firmware upgrade. If Yes and a firmware upgrade attempt is made, the device alarm activates. If No the device alarm does not activate. On each firmware upgrade this setting goes back to the default.	No	Yes	Yes	-	Administrator
Settings lock	A Boolean value indicating if the device can accept any settings changes. If Yes and a settings change attempt is made, the device alarm activates. If No, the device alarm does not activate.	No	Yes	Yes	-	Supervisor (Administrator if Supervisor has been disabled)

CYBERSENTRY SETTINGS THROUGH THE FRONT PANEL

PATH: SETTINGS

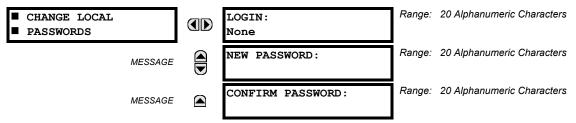
⇒ PRODUCT SETUP
⇒ SECURITY

LOGIN: This setting is applicable for *Device Authentication* only. This setting allows a user to login with a specific role, see descriptions below. For the Supervisor role, the "Supervisor Role" setting should be enabled.

Whenever a new role is logged in, the user is prompted with a display to enter a password. Passwords must obey the requirements specified at the beginning of the chapter in the Password Requirements section. The UR device supports five roles. All roles have their corresponding passwords. The Observer role is the only role that does not require a password.

The roles are defined as follows:

- Administrator: Complete read and write access to all settings and commands. This role does not allow concurrent access. This role has an operand to indicate when it is logged on.
- Engineer: Complete read and write access to all settings and commands with the exception of configuring Security settings and Firmware upgrades. This role does not allow concurrent access.
- Operator: The Operator has read/write access to all settings under the command menu/section. This role does not
 exist offline.
- Supervisor: This is only an approving role. This role's authentication commits setting changes submitted by Administrator or Engineer. The Supervisor role authenticates to unlock the UR relay for setting changes and not approve changes after the fact. Only Supervisor can set the Settings and Firmware Lock in the Security Settings. This role also has the ability to forcefully logoff any other role and clear the security event log. This role can also be disabled, but only through a Supervisor authentication. When this role is disabled its permissions are assigned to the Administrator role.


Observer: This role has read only access to all UR settings. This role allows unlimited concurrent access but it has no
download access to any files on the device. Observer is the default role if no authentication has been done to the
device. This role displays as "None" on the front panel.

The Factory service role is not available and is intended for factory use only.

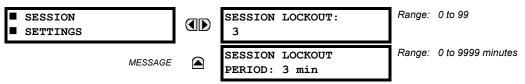
Local Passwords

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ SECURITY ⇒ \$\Partial Change Local Passwords

The Change Local Passwords menu is shown on the front panel and Enervista on a successful login of Administrator role.

The "login setting" in this menu is similar to the login setting described in **PATH: SETTINGS > PRODUCT SETUP > SECU-RITY** except for the factory role.

Passwords are stored in text format. No encryption is applied.



Notes:

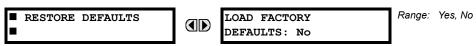
- In Device Authentication mode, the Observer role does not have a password associated with it. In Server Authentication mode the Observer role requires a password.
- The default password is "ChangeMe1#".
- Once the passwords are set, the Administrator with Supervisor approval can change the role associated password.
- In CyberSentry, password encryption is not supported.

Session Settings

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ SECURITY ⇒ \$\Partial SESSION SETTINGS

The following session settings are available.

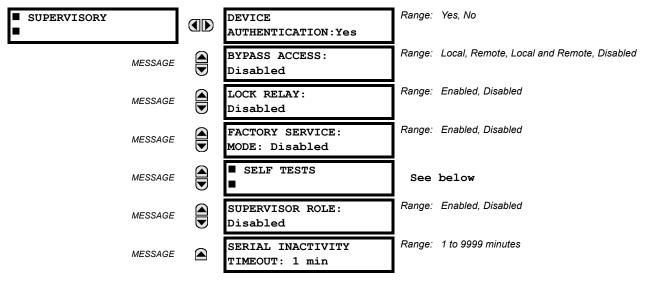
- SESSION LOCKOUT: This setting specifies the number of failed authentications (the default is three and the maximum is 99) before the device blocks subsequent authentication attempts for the lockout period. A value of zero means lockout is disabled.
- SESSION LOCKOUT PERIOD: This setting specifies the period of time in minutes of a lockout period (the default is three and the maximum is 9999). A value of 0 means that there is no lockout period.


Restore Defaults

PATH: SETTINGS

PRODUCT SETUP

SECURITY


RESTORE DEFAULTS

LOAD FACTORY DEFAULTS: This setting is used to reset all the settings, communication and security passwords. An
Administrator role is used to change this setting and a Supervisor role (if not disabled) approves it.

Supervisory

PATH: SETTINGS PRODUCT SETUP SECURITY USUPERVISORY

The Supervisory menu settings are available for Supervisor role only or if the Supervisor role is disabled then for the Administrator role only.

Device Authentication: This setting is enabled by default, meaning "Yes" is selected. When enabled, Device Authentication with roles is enabled. When this setting is disabled, the UR only authenticates to the AAA server (Radius). However, the Administrator and Supervisor (when enabled) remain active even after device authentication is disabled and their only permission is to re-enable device authentication. To re-enable device authentication, the Supervisor unlocks the device for setting changes, then the Administrator re-enables device authentication.

Bypass Access: The bypass security feature provides an easier access, with no authentication and encryption for those special situations when this is considered safe. Only the Supervisor, or the Administrator when the Supervisor role is disabled, can enable this feature.

MODE	FRONT PANEL OR SERIAL (RS232, RS485)	ETHERNET
Normal mode	Authentication — Role Based Access Control (RBAC) and passwords in clear	Authentication — RBAC and passwords encrypted SSH tunneling
Bypass access mode	No passwords for allowed RBAC levels	No passwords for allowed RBAC levels No SSH tunneling

The bypass options are as follows:

- Local Bypasses authentication for push buttons, keypad, RS232, and RS485
- Remote Bypasses authentication for Ethernet
- Local and Remote Bypasses authentication for push buttons, keypad, RS232, RS485, and Ethernet

Lock Relay: This setting uses a Boolean value (Enable/Disable) to indicate if the device accepts setting changes and whether the device can receive a firmware upgrade. This setting can be changed only by the Supervisor role, if it is enabled or by the Administrator if the Supervisor role is disabled. The Supervisor role enables this setting for the relay to start accepting setting changes or command changes or firmware upgrade. After all the setting changes are applied or commands executed, the Supervisor disables to lock setting changes.

Example: If this setting is "Yes" and an attempt is made to change settings or upgrade the firmware, the UR device denies the setting changes and denies upgrading the firmware. If this setting is "No", the UR device accepts setting changes and firmware upgrade.

This role is disabled by default.

Factory Service Mode: When enabled (meaning "Yes" is selected) the device can go into factory service mode. For this setting to become enabled a Supervisor authentication is necessary. The default value is Disabled.

Supervisor Role: When enabled (meaning "Yes" is selected) the Supervisor role is active. When "No" is selected this role is disabled. To disabled this setting a Supervisor authentication is necessary. If disabled, the Supervisor role is not allowed to log on. In this case the Administrator can change the settings under the Supervisory menu.

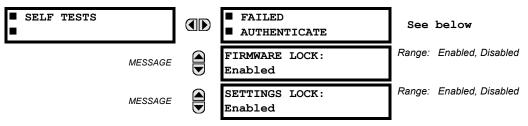
If enabled, Supervisor authentication is required to change the settings in the Supervisory menu. If the Supervisor disables his role after authentication, the Supervisor session remains valid until he switches to another role using MMI or until he ends the current Supervisor session if using communications.

This role is disabled by default.

Serial Inactivity Timeout: The role logged via a serial port is auto logged off after the Serial Inactivity timer times out. A separate timer is maintained for RS232 and RS485 connections. The default value is 1 minute.

a) SELF TESTS

PATH: SETTINGS

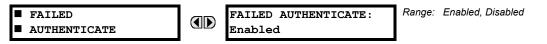

⇒ PRODUCT SETUP

⇒ SECURITY

⇒

\$\Partial \text{SUPERVISORY}

⇒ \text{SELF TESTS}



Failed Authentications: If this setting is Enabled then the number of failed authentications is compared with the Session lockout threshold. When the Session lockout threshold is exceeded, this minor alarm indication comes up.

Firmware Lock: If this setting is Enabled then any firmware upgrade operation attempt when the "LOCK FIRMWARE UPGRADE" setting is set to "Yes" brings up this self test alarm.

Settings Lock: If this setting is Enabled then an unauthorized write attempt to a setting for a given role activates this self test.

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow SECURITY \Rightarrow \P SUPERVISORY \Rightarrow SELF TESTS \Rightarrow FAILED AUTHENTICATE

CYBERSENTRY SETUP

When first using CyberSentry security, use the following procedure for set up.

- 1. Log in to the relay as Administrator by using the Value keys on the front panel to enter the default password "ChangeMe1#". Note that the "Lock relay" setting needs to be disabled in the **Security > Supervisory** menu. When this setting is disabled, configuration and firmware upgrade are possible. By default, this setting is disabled.
- 2. Enable the Supervisor role if you have a need for it.
- 3. Make any required changes in configuration, such as setting a valid IP address for communication over Ethernet.
- 4. Log out of the Administrator account by choosing None.

Next, device or server authentication can be chosen on the login screen, but the choice is available only in EnerVista. Use device authentication to log in using the five pre-configured roles (Administrator, Supervisor, Engineer, Operator, Observer). When using a serial connection, only device authentication is supported. When server authentication is required, characteristics for communication with a RADIUS server must be configured. This is possible only in the EnerVista software. The RADIUS server itself also must be configured. The appendix called RADIUS Server gives an example of how to setup a simple RADIUS server. Once both the RADIUS server and the parameters for connecting UR to the server have been configured, you can choose server authentication on the login screen of EnerVista.

5-22

The use of CyberSentry for devices communicating through an Ethernet-to-RS485 gateway is not supported. Because these gateways do not support the secure protocols necessary to communicate with such devices, the connection cannot be established. Use the device as a non-CyberSentry device.

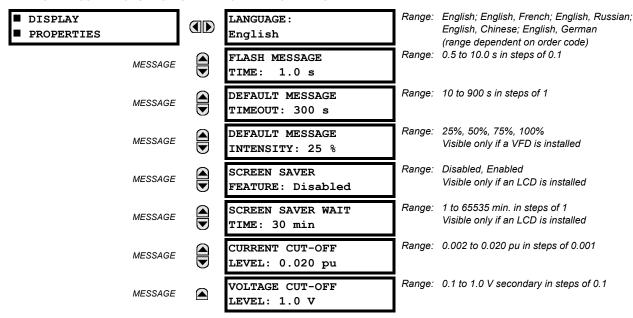
Users logged in through the front panel are not timed out and cannot be forcefully logged out by a supervisor. Roles logged in through the front panel that do no allow multiple instances (Administrator, Supervisor, Engineer, Operator) must switch to None (equivalent to a logout) when they are done in order to log out.

For all user roles except Observer, only one instance can be logged in at one time, for both login by front panel and software.

To configure server authentication:

- In the EnerVista software, choose device authentication and log in as Administrator.
- 2. Configure the following RADIUS server parameters: IP address, authentication port, shared secret, and vendor ID.
- On the RADIUS server, configure the user accounts. Do not use the five pre-defined roles as user names (Administrator, Supervisor, Engineer, Operator, Observer) in the RADIUS server. If you do, the UR relay automatically provides the authentication from the device.
- 4. In the EnerVista software, choose server authentication and log in using the user name and password configured on the RADIUS server for server authentication login.
- 5. After making any required changes, log out.

When changing settings offline, ensure that only settings permitted by the role that performs the settings download are changed because only those changes are applied.


Pushbuttons (both user-control buttons and user-programmable buttons) located on the front panel can be pressed by an Administrator or Engineer role. This also applies to the reset button, which resets targets, where targets are errors displayed on the front panel or the Targets panel of the EnerVista software. The reset button has special behavior in that it allows these two roles to press it even when they are logged in through the RS232 port and not through the front panel.

To reset the security event log and self-test operands:

 Log in as Supervisor (if the role is enabled) or Administrator (if the Supervisor role is disabled) and execute a clear security command under Commands > Security > Clear Security.

5.2.2 DISPLAY PROPERTIES

Some relay messaging characteristics can be modified to suit different situations using the display properties settings.

5.2 PRODUCT SETUP

- **LANGUAGE**: This setting selects the language used to display settings, actual values, and targets. The range is dependent on the order code of the relay.
- FLASH MESSAGE TIME: Flash messages are status, warning, error, or information messages displayed for several
 seconds in response to certain key presses during setting programming. These messages override any normal messages. The duration of a flash message on the display can be changed to accommodate different reading rates.
- **DEFAULT MESSAGE TIMEOUT**: If the keypad is inactive for a period of time, the relay automatically reverts to a default message. The inactivity time is modified via this setting to ensure messages remain on the screen long enough during programming or reading of actual values.
- **DEFAULT MESSAGE INTENSITY**: To extend phosphor life in the vacuum fluorescent display, the brightness can be attenuated during default message display. During keypad interrogation, the display always operates at full brightness.
- SCREEN SAVER FEATURE and SCREEN SAVER WAIT TIME: These settings are only visible if the F60 has a liquid
 crystal display (LCD) and control its backlighting. When the SCREEN SAVER FEATURE is "Enabled", the LCD backlighting
 is turned off after the DEFAULT MESSAGE TIMEOUT followed by the SCREEN SAVER WAIT TIME, providing that no keys
 have been pressed and no target messages are active. When a keypress occurs or a target becomes active, the LCD
 backlighting is turned on.
- CURRENT CUT-OFF LEVEL: This setting modifies the current cut-off threshold. Very low currents (1 to 2% of the rated value) are very susceptible to noise. Some customers prefer very low currents to display as zero, while others prefer the current be displayed even when the value reflects noise rather than the actual signal. The F60 applies a cut-off value to the magnitudes and angles of the measured currents. If the magnitude is below the cut-off level, it is substituted with zero. This applies to phase and ground current phasors as well as true RMS values and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Note that the cut-off level for the sensitive ground input is 10 times lower that the CURRENT CUT-OFF LEVEL setting value. Raw current samples available via oscillography are not subject to cut-off.
- VOLTAGE CUT-OFF LEVEL: This setting modifies the voltage cut-off threshold. Very low secondary voltage measurements (at the fractional volt level) can be affected by noise. Some customers prefer these low voltages to be displayed as zero, while others prefer the voltage to be displayed even when the value reflects noise rather than the actual signal. The F60 applies a cut-off value to the magnitudes and angles of the measured voltages. If the magnitude is below the cut-off level, it is substituted with zero. This operation applies to phase and auxiliary voltages, and symmetrical components. The cut-off operation applies to quantities used for metering, protection, and control, as well as those used by communications protocols. Raw samples of the voltages available via oscillography are not subject cut-off.

The **CURRENT CUT-OFF LEVEL** and the **VOLTAGE CUT-OFF LEVEL** are used to determine the metered power cut-off levels. The power cut-off level is calculated as shown below. For Delta connections:

3-phase power cut-off =
$$\frac{\sqrt{3} \times \text{CURRENT CUT-OFF LEVEL} \times \text{VOLTAGE CUT-OFF LEVEL} \times \text{VT primary} \times \text{CT primary}}{\text{VT secondary}}$$
 (EQ 5.3)

For Wye connections:

3-phase power cut-off =
$$\frac{3 \times \text{CURRENT CUT-OFF LEVEL} \times \text{VOLTAGE CUT-OFF LEVEL} \times \text{VT primary} \times \text{CT primary}}{\text{VT secondary}}$$
 (EQ 5.4)

per-phase power cut-off =
$$\frac{\text{CURRENT CUT-OFF LEVEL} \times \text{VOLTAGE CUT-OFF LEVEL} \times \text{VT primary} \times \text{CT primary}}{\text{VT secondary}}$$
 (EQ 5.5)

where VT primary = VT secondary \times VT ratio and CT primary = CT secondary \times CT ratio.

For example, given the following settings:

CURRENT CUT-OFF LEVEL: "0.02 pu"
VOLTAGE CUT-OFF LEVEL: "1.0 V"
PHASE CT PRIMARY: "100 A"
PHASE VT SECONDARY: "66.4 V"
PHASE VT RATIO: "208.00: 1"
PHASE VT CONNECTION: "Delta".

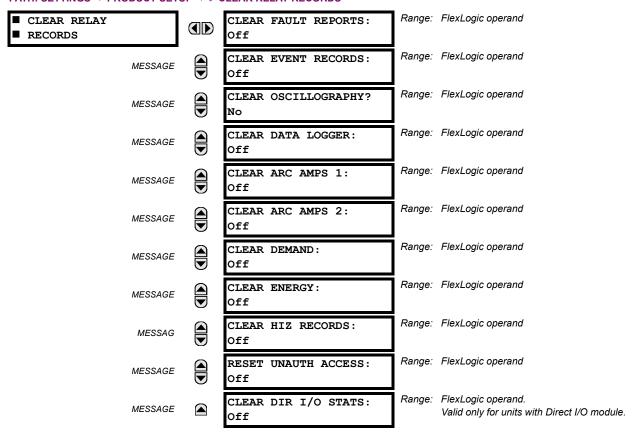
We have:

```
CT primary = "100 A", and
```

VT primary = PHASE VT SECONDARY x PHASE VT RATIO = 66.4 V x 208 = 13811.2 V

The power cut-off is therefore:

power cut-off = (CURRENT CUT-OFF LEVEL \times VOLTAGE CUT-OFF LEVEL \times CT primary \times VT primary)/VT secondary = ($\sqrt{3} \times 0.02$ pu \times 1.0 V \times 100 A \times 13811.2 V) / 66.4 V = 720.5 watts


Any calculated power value below this cut-off will not be displayed. As well, the three-phase energy data will not accumulate if the total power from all three phases does not exceed the power cut-off.

Lower the VOLTAGE CUT-OFF LEVEL and CURRENT CUT-OFF LEVEL with care as the relay accepts lower signals as valid measurements. Unless dictated otherwise by a specific application, the default settings of "0.02 pu" for CURRENT CUT-OFF LEVEL and "1.0 V" for VOLTAGE CUT-OFF LEVEL are recommended.

5.2.3 CLEAR RELAY RECORDS

PATH: SETTINGS PRODUCT SETUP U CLEAR RELAY RECORDS

Selected records can be cleared from user-programmable conditions with FlexLogic operands. Assigning user-programmable pushbuttons to clear specific records are typical applications for these commands. Since the F60 responds to rising edges of the configured FlexLogic operands, they must be asserted for at least 50 ms to take effect.

Clearing records with user-programmable operands is not protected by the command password. However, user-programmable pushbuttons are protected by the command password. Thus, if they are used to clear records, the user-programmable pushbuttons can provide extra security if required.

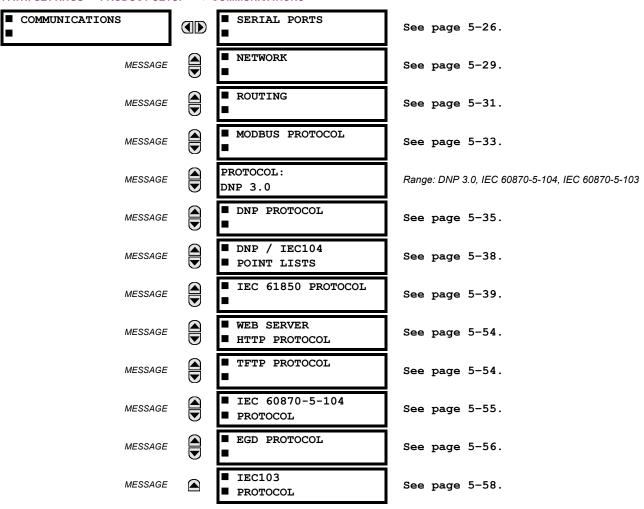
For example, to assign user-programmable pushbutton 1 to clear demand records, the following settings should be applied.

Assign the clear demand function to pushbutton 1 by making the following change in the SETTINGS

PRODUCT SETUP

CLEAR RELAY RECORDS menu:

CLEAR DEMAND: "PUSHBUTTON 1 ON"


2. Set the properties for user-programmable pushbutton 1 by making the following changes in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 menu:

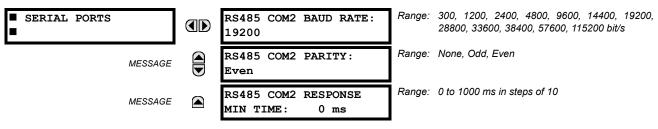
PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBTN 1 DROP-OUT TIME: "0.20 s"

5.2.4 COMMUNICATIONS

a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\partial\$ COMMUNICATIONS

b) SERIAL PORTS


PATH: SETTINGS

PRODUCT SETUP

U

COMMUNICATIONS

SERIAL PORTS

RS485 COM2 BAUD RATE and PARITY: The F60 is equipped with up to two independent serial communication ports. The faceplate RS232 port is intended for local use and is fixed at 19200 bit/s baud and even parity. The rear COM2 port is RS485 and has settings for baud rate and parity. It is important that these parameters agree with the settings used on the computer or other equipment that is connected to these ports. Any of these ports can be connected to a computer running EnerVista

UR Setup. This software can download and upload setting files, view measured parameters, and upgrade the relay firmware. A maximum of 32 relays can be daisy-chained and connected to a DCS, PLC, or computer using the RS485 ports. If IEC 60870-103 is chosen as the protocol, valid baud rates are 9600 and 19200 bit/s, and valid parity is Even.

RS485 COM2 RESPONSE MIN TIME: This setting specifies the minimum time before the rear RS485 port transmits after receiving data from a host. This feature allows operation with hosts that hold the RS485 transmitter active for some time after each transmission.

c) ETHERNET NETWORK TOPOLOGY

When using more than one Ethernet port, configure each to belong to a different network or subnet using the IP addresses and mask, else communication becomes unpredictable when more than one port is configured to the same subnet.

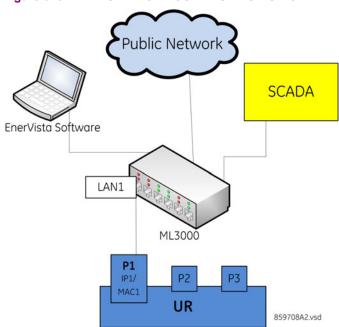
Example 1

IP1/Mask1: 10.1.1.2/255.255.255.0 (where LAN 1 is 10.1.1.x/255.255.255.0)
IP2/Mask2: 10.2.1.2/255.255.255.0 (where LAN2 is 10.2.1.x/255.255.255.0)
IP3/Mask3: 10.3.1.2/255.255.255.0 (where LAN3 is 10.3.1.x/255.255.255.0)

Example 2

IP1/Mask1: 10.1.1.2/255.0.0.0 (where LAN1 is 10.x.x.x/255.0.0.0) IP2/Mask2: 11.1.1.2/255.0.0.0 (where LAN2 is 11.x.x.x/255.0.0.0) IP3/Mask3: 12.1.1.2/255.0.0.0 (where LAN3 is 12.x.x.x/255.0.0.0)

Example 3 — Incorrect


IP1/Mask1: 10.1.1.2/255.0.0.0 IP2/Mask2: 10.2.1.2/255.0.0.0 IP3/Mask3: 10.3.1.2/255.0.0.0

This example is incorrect because the mask of 255.0.0.0 used for the three IP addresses makes them belong to the same network of 10.x.x.x.

Single LAN, No Redundancy

The topology shown in the following figure allows communications to SCADA, local configuration/monitoring through EnerVista, and access to the public network shared on the same LAN. No redundancy is provided.

Figure 5-5: NETWORK CONFIGURATION FOR SINGLE LAN

Multiple LANS, with Redundancy

The topology in the following figure provides local configuration/monitoring through EnerVista software and access to the public network shared on LAN1, to which port 1 (P1) is connected. There is no redundancy provided on LAN1. Communications to SCADA is provided through LAN2 and LAN3, to which P2 and respectively P3 are connected and configured to work in redundant mode. In this configuration, P3 uses the IP and MAC address of P2.

Public Network **SCADA** EnerVista Software LAN1 LAN2 LAN2 ML3000 ML3000 ML3000 P1 P2 **P3** IP1/ MAC1 Redundancy mode UR 859709A2.vsd

Figure 5-6: MULTIPLE LANS, WITH REDUNDANCY

Multiple LANS, No Redundancy

The following topology provides local configuration/monitoring through EnerVista software on LAN1, to which port 1 (P1) is connected, access to the public network on LAN2, to which port 2 (P2) is connected and communications with SCADA on LAN3, to which port 3 (P3) is connected. There is no redundancy.

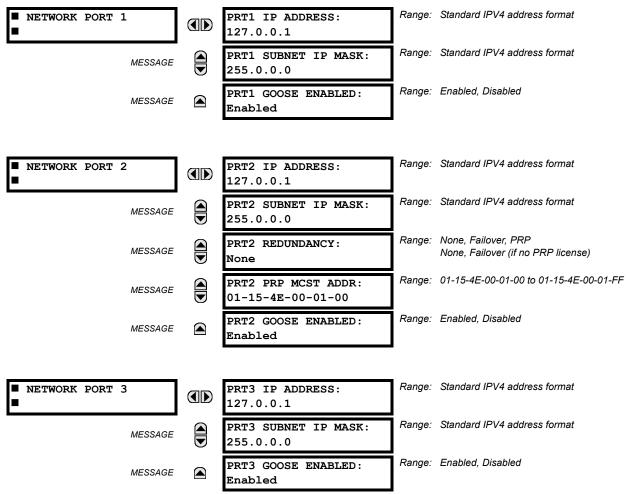
Public Network SCADA EnerVista Software LAN2 LAN1 LAN3 ML3000 ML3000 ML3000 P1 P2 P3 MAC₃ MAC1 UR 859710A2.vsd

Figure 5-7: MULTIPLE LANS, NO REDUNDANCY

d) NETWORK

As outlined in the previous section, when using more than one Ethernet port, configure each to belong to a different network or subnet using the IP addresses and mask. Configure the network IP and subnet settings before configuring the routing settings.

PATH: SETTINGS


PRODUCT SETUP

U

COMMUNICATIONS

U

NETWORK 1(3)

The IP addresses are used with the DNP, Modbus/TCP, IEC 61580, IEC 60870-5-104, TFTP, HTTP, and PRP protocols. The next section explains PRP.

Do not set more than one protocol to the same TCP/UDP port number, as this results in unreliable operation of those protocols.

PRT1 (2 OR 3) IP ADDRESS: This setting sets the ports IPv4 address in standard IPV4 format. This setting is valid on port 3 if port 2 REDUNDANCY is set to None.

PRT1 (2 OR 3) SUBNET MASK: This setting sets the ports IPv4 subnet mask in standard IPV4 format. This setting is valid on port 3 if port 2 REDUNDANCY is set to None.

PRT2 REDUNDANCY is available when the hardware has multiple ports (modules T, U, and V). It determines if ports 2 and 3 operate in redundant or independent mode. If a license for PRP was purchased, the options are None, Failover, and PRP. If a license for PRP was not purchased, the available options are None and Failover. In non-redundant mode (**REDUNDANCY** set to None), ports 2 and 3 operate independently with their own MAC, IP, and mask addresses. If **REDUNDANCY** is set to Failover, the operation of ports 2 and 3 is as follows:

- Ports 2 and 3 use the port 2 MAC address, IP address, and mask
- The configuration fields for IP address and mask on port 3 are hidden

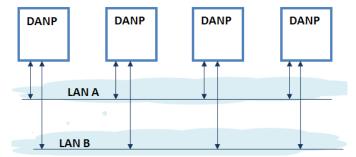
• Port 3 is in standby mode and does not actively communicate on the Ethernet network but monitors its link to the Multilink switch. If port 2 detects a problem with the link, communications is switched to Port 3. Port 3 is, in effect, acting as a redundant or backup link to the network for port 2. Once Port 2 detects that the link between port 2 and the switch is good, communications automatically switch back to port 2 and port 3 goes back into standby mode.

If **REDUNDANCY** is set to PRP, the operation of ports 2 and 3 is as follows:

- Ports 2 and 3 use the port 2 MAC address, IP address, and mask
- The configuration fields for IP address and mask on port 3 are overwritten with those from port 2. This is visible on the front panel but not displayed in the EnerVista software.
- Port 2 MCST ADDRESS field is visible
- The port 2 PTP function still uses only port 2 and the port 3 PTP function still uses only port 3. The relay still synchronizes to whichever port has the best master. When ports 2 and 3 see the same master, as is typically the case for PRP networks, the port with the better connectivity is used.

The two ports must be connected to completely independent LANS with no single point of failure, such as common power supplies that feed switches on both LANS.

For this setting change to take effect, restart the unit.


PRT2 PRP MCST ADDR: This setting allows the user to change the multicast address used by the PRP supervision frames. The setting applies to UR CPUs that support multiple ports (T, U, and V). This setting is available if the hardware has multiple ports and **REDUNDANCY** is set to PRP.

e) PARALLEL REDUNDANCY PROTOCOL (PRP)

The Parallel Redundancy Protocol (PRP) defines a redundancy protocol for high availability in substation automation networks. It applies to networks based on Ethernet technology (ISO/IEC 8802-3) and is based on the second edition (July 2012) of the IEC 62439-3, clause 4.

PRP is designed to provide seamless recovery in case of a single failure in the network, by using a combination of LAN duplication and frame duplication technique. Identical frames are sent on two completely independent networks that connect source and destination. Under normal circumstances both frames reach the destination and one of them is sent up the OSI stack to the destination application, while the second one is discarded. If an error occurs in one of the networks and traffic is prevented from flowing on that path, connectivity is still provided through the other network to ensure continuous communication. Take care when designing the two LANs, so that no single point of failure (such as a common power supply) is encountered, as such scenarios can bring down both LANs simultaneously.

Figure 5-8: EXAMPLE OF PARALLEL REDUNDANT NETWORK

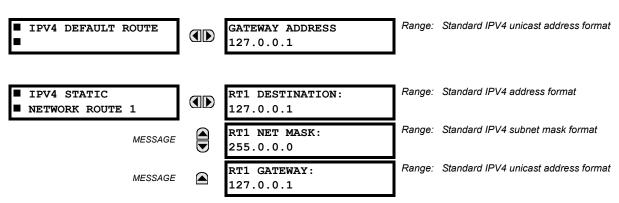
PRP uses specialized nodes called doubly attached nodes (DANPs) for handling the duplicated frames. DANPs devices have an additional module, called Link Redundancy Entity (LRE). LRE is responsible for duplicating frames and adding the specific PRP trailer when sending the frames out on the LAN, as well as making decisions on received frames as to which one is sent up the OSI stack to the application layer and which one is discarded. LRE is responsible for making PRP transparent to the higher layers of the stack. There is a second type of specialized device used in PRP networks, called RedBox, with the role of connecting Single Attached Nodes (SANs) to a redundant network.

UR relays implement only the DANP functionality. The RedBox functionality is not implemented.

The original standard IEC 62439-3 (2010) was amended to align PRP with the High-availability Seamless Redundancy (HSR) protocol. To achieve this, the original PRP was modified at the cost of losing compatibility with the PRP 2010 version. The revised standard IEC 62439-3 (2012) is commonly referred to as PRP-1, while the original standard is PRP-0. The UR relays support only PRP-1.

The relay implements PRP on two of its Ethernet ports, specifically Port 2 and 3 of the CPU module. Use the previous section (network port configuration) to configure PRP.

PRP is purchased as a separate option. If purchased (valid order code), PRP can be enabled in configuration through a setting available on the network configuration menu, REDUNDANCY, which already has the capability of enabling failover redundancy. The options on this setting must be changed to accommodate two types of redundancy: failover and PRP. When REDUNDANCY is set to either failover or PRP, the ports dedicated for PRP (Port 2 and 3) operate in redundant mode. In this mode, Port 3 uses the Mac, IP address, and mask of Port 2.


f) ROUTING

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ ROUTING 1(6)

A default route and a maximum number of six static routes can be configured.

The default route is used as the last choice when no other route towards a given destination is found.

Configure the network IP and subnet settings before configuring the routing settings.

ADDING AND DELETING STATIC ROUTES

Host routes are not supported at present.

The routing table configuration is available on the serial port and front panel. This is a deliberate decision, to avoid loss of connectivity when remotely configuring the UR.

By default the value of the destination field is 127.0.0.1 for all static routes (1 to 6). This is equivalent to saying that the static routes are not configured. When the destination address is 127.0.0.1, the mask and gateway must be also kept on default values.

By default, the value of the route gateway address is 127.0.0.1. This means the default route is not configured.

To add a route:

1. Use any of the static network route entries numbered 1 to 6 to configure a static network route. Once a route destination is configured for any of the entries 1 to 6, that entry becomes a static route and it must meet all the rules listed in the next section, General Conditions to be Satisfied by Static Routes.

2. To configure the default route, enter a default gateway address. Once a default gateway address is configured, it must be validated against condition 2 of the General Conditions to be Satisfied by Static Routes.

To delete a route:

- Replace the route destination with the default loopback address (127.0.0.1). When deleting a route, the mask and gateway must be also brought back to default values.
- Delete the default route by replacing the default gateway with the default value 127.0.0.1.

GENERAL CONDITIONS TO BE SATISFIED BY STATIC ROUTES

The following rules must be adhered to for routing to work.

- The route destination must not be a connected network.
- The route gateway must be on a connected network. This rule applies to the gateway address of the default route as well.
- The route mask has IP mask format. In binary this is a set of contiguous bits of 1 from left to right, followed by one or more contiguous bits of 0.
- The route destination and mask must match. This means that the result of the "and" bitwise operation between the RtDestination and RtMask must equal RtDestination.

Example of good configuration: RtDestination = 10.1.1.0; Rt Mask = 255.255.255.0

Example of bad configuration: RtDestination = 10.1.1.1; Rt Mask = 255.255.255.0

ROUTING BEHAVIOR COMPARED TO PREVIOUS RELEASES

Prior to release 7.10, the UR did not have an explicit manner of configuring routes. The only available route was the default route configured as part of the network settings (port gateway IP address). This limited the ability to route to specific destinations, particularly if these destinations were reachable through a different interface than the one on which the default gateway was.

Starting with UR 7.10, up to six static network routes can be configured in addition to a default route. The default route configuration was also moved from the network settings into the routing section.

The figure shows an example of topology that benefits from the addition of static routes.

Figure 5-9: USING STATIC ROUTES Router1 Public network Router2 10.1.2.0/24 10.1.3.0/24 10.1.1.0/24 ML3000 ML3000 EnerVista Software P1 P2 **P3** IP1 IP3/ IP2/ .2 .2 MAC1 MAC2 MAC3 UR 859714A1.vsd

In the figure, the UR connects through the following two Ethernet ports:

- Port 1 (IP address 10.1.1.2) connects the UR to LAN 10.1.1.0/24 and to the Internet through Router1. Router 1 has an interface on 10.1.1.0/24 and the IP address of this interface is 10.1.1.1.
- Port 2 (IP address 10.1.2.2) connects the UR to LAN 10.1.2.0/24 and to the EnerVista software through Router 2.
 Router 2 has an interface on 10.1.2.0/24 and the IP address of this interface is 10.1.2.1.

The configuration before release 7.10 was as follows:

PRT1 IP ADDRESS = 10.1.1.2
 PRT1 SUBNET IP MASK = 255.255.255.0

 PRT1 GWY IP ADDRESS = 10.1.1.1
 PRT2 IP ADDRESS = 10.1.2.2

 PRT2 SUBNET IP MASK = 255.255.255.0

The behavior before release 7.10 was as follows. When sending packets to EnerVista, the UR noticed that the destination was not on a connected network and it tried to find a route to destination. Since the default route was the only route it knew, it used it. Yet EnerVista was on a private network, which was not reachable through Router 1. Hence a destination unreachable message was received from the router.

The configuration starting release 7.10 is as follows:

PRT1 IP ADDRESS = 10.1.1.2

PRT1 SUBNET IP MASK = 255.255.255.0

PRT2 IP ADDRESS = 10.1.2.2

PRT2 SUBNET IP MASK = 255.255.255.0

IPV4 DEFAULT ROUTE: GATEWAY ADDRESS = 10.1.1.1

STATIC NETWORK ROUTE 1: RT1 DESTINATION = 10.1.3.0/24; RT1 NET MASK = 255.255.255.0; and RT1 GATE-WAY = 10.1.2.1

The behavior since release 7.10 is as follows. There is one added static network route to the destination 10.1.3.0/24, where a laptop running EnerVista is located. This static route uses a different gateway (10.1.2.1) than the default route. This gateway is the address of Router 2, which has knowledge about 10.1.3.0 and is able to route packets coming from UR and destined to EnerVista.

SHOW ROUTES AND ARP TABLES

This feature is available on the Web interface, where the main menu contains an additional Communications menu and two submenus:

- Routing Table
- ARP Table

The tables outline the information displayed when the two submenus are selected.

Table 5-3: ROUTING TABLE INFORMATION

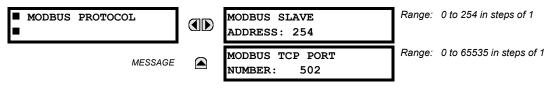
FIELD	DESCRIPTION
Destination	The IP address of the remote network to which this route points
Mask	The network mask for the destination
Gateway	The IP address of the next router to the remote network
Interface	Interface through which the specified network can be reached

Table 5-4: IP ARP INFORMATION

FIELD	DESCRIPTION
IP Address	The network address that corresponds to Hardware Address
Age (min)	Age, in minutes, of the cache entry. A hyphen (-) means the address is local.
Hardware Address	LAN hardware address, a MAC address that corresponds to network address
Туре	Dynamic or Static
Interface	Interface to which this address mapping has been assigned

g) MODBUS PROTOCOL

PATH: SETTINGS


PRODUCT SETUP

U

COMMUNICATIONS

U

MODBUS PROTOCOL

The serial communication ports utilize the Modbus protocol, unless configured for DNP operation (see descriptions below). This allows the EnerVista UR Setup software to be used. The UR operates as a Modbus slave device only. When using Modbus protocol on the RS232 port, the F60 responds regardless of the **MODBUS SLAVE ADDRESS** programmed. For the RS485 port, each F60 must have a unique address from 1 to 254. Address 0 is the broadcast address which all Modbus slave devices listen to. Addresses do not have to be sequential, but no two devices can have the same address or conflicts resulting in errors will occur. Generally, each device added to the link should use the next higher address starting at 1. See Appendix B for more information on the Modbus protocol.

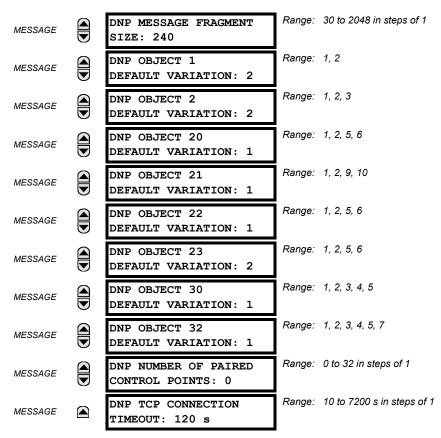
A value of 0 closes the port. When the Modbus port is set to 0, communicate with the relay using the front panel or serial port.

When a 0 value is involved in a change, the changes to the MODBUS TCP PORT NUMBER setting take effect when the F60 is restarted.

h) PROTOCOL

Select among DNP3.0, IEC60870-104, and IEC60870-103, with DNP being the default. For any change to take effect, restart the unit.

The table captures all possible combinations of protocols.


Table 5-5: PORT AND PROTOCOL COMBINATIONS

PROTOCOL	PORT: CHANNEL	RS232	RS485	ETHERNET
DNP	Channel 1: Eth TCP Channel 2: Eth TCP	Modbus	Modbus	DNP, Modbus, IEC 61850
	Channel 1: Eth TCP Channel 2: none	Modbus	Modbus	DNP, Modbus, IEC 61850
	Channel 1: none Channel 2: Eth TCP	Modbus	Modbus	DNP, Modbus, IEC 61850
	Channel 1: Eth UDP Channel 2: none	Modbus	Modbus	DNP, Modbus, IEC 61850
	Channel 1: Eth TCP Channel 2: RS485	Modbus	DNP	DNP, Modbus, IEC 61850
	Channel 1: Eth TCP Channel 2: RS232	DNP	Modbus	DNP, Modbus, IEC 61850
	Channel 1: Eth UDP Channel 2: RS485	Modbus	DNP	DNP, Modbus, IEC 61850
	Channel 1: Eth UDP Channel 2: RS232	DNP	Modbus	DNP, Modbus, IEC 61850
	Channel 1: RS485 Channel 2: Eth TCP	Modbus	DNP	DNP, Modbus, IEC 61850
	Channel 1: RS232 Channel 2: Eth TCP	DNP	Modbus	DNP, Modbus, IEC 61850
	Channel 1: RS485 Channel 2: RS232	DNP	DNP	Modbus, IEC 61850
	Channel 1: RS232 Channel 2: RS485	DNP	DNP	Modbus, IEC 61850
	Channel 1: RS485 Channel 2: none	Modbus	DNP	Modbus, IEC 61850
IEC 104		Modbus	Modbus	IEC 104, Modbus, IEC 61850
IEC 103		Modbus	IEC 103	Modbus, IEC 61850

i) DNP PROTOCOL

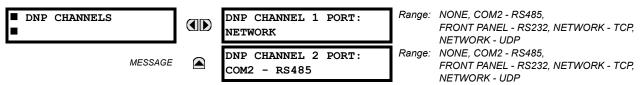
PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ DNP PROTOCOL

■ DNP PROTOCOL		■ DNP CHANNELS	Range:	see sub-menu below
	MESSAGE	DNP ADDRESS:	Range:	0 to 65519 in steps of 1
	MESSAGE	■ DNP NETWORK ■ CLIENT ADDRESSES	Range:	see sub-menu below
	MESSAGE	DNP TCP/UDP PORT NUMBER: 20000	Range:	0 to 65535 in steps of 1
	MESSAGE	DNP UNSOL RESPONSE FUNCTION: Disabled	Range:	Enabled, Disabled
	MESSAGE	DNP UNSOL RESPONSE TIMEOUT: 5 s	Range:	0 to 60 s in steps of 1
	MESSAGE	DNP UNSOL RESPONSE MAX RETRIES: 10	Range:	1 to 255 in steps of 1
	MESSAGE	DNP UNSOL RESPONSE DEST ADDRESS: 1		0 to 65519 in steps of 1
	MESSAGE	DNP CURRENT SCALE FACTOR: 1		0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP VOLTAGE SCALE FACTOR: 1		0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP POWER SCALE FACTOR: 1	Range:	100000
	MESSAGE	DNP ENERGY SCALE FACTOR: 1		0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000
	MESSAGE	DNP PF SCALE FACTOR: 1		0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 100000 0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000,
	MESSAGE	DNP OTHER SCALE FACTOR: 1		0.001, 0.01. 0.1, 1, 10, 100, 1000, 10000, 10000, 100000 0 to 1000000000 in steps of 1
	MESSAGE	DNP CURRENT DEFAULT DEADBAND: 30000		0 to 100000000 in steps of 1
	MESSAGE	DNP POWER DEFAULT		0 to 100000000 in steps of 1
	MESSAGE	DNP POWER DEFAULT DEADBAND: 30000 DNP ENERGY DEFAULT		0 to 100000000 in steps of 1
	MESSAGE	DEADBAND: 30000		0 to 100000000 in steps of 1
	MESSAGE	DNP PF DEFAULT DEADBAND: 30000 DNP OTHER DEFAULT		0 to 100000000 in steps of 1
	MESSAGE	DEADBAND: 30000 DNP TIME SYNC IIN		1 to 10080 min. in steps of 1
	MESSAGE	PERIOD: 1440 min	u.igo.	

The F60 supports the Distributed Network Protocol (DNP) version 3.0. The F60 can be used as a DNP slave device connected to multiple DNP masters (usually an RTU or a SCADA master station). Since the F60 maintains two sets of DNP data change buffers and connection information, two DNP masters can actively communicate with the F60 at one time.

The IEC 60870-5-104 and DNP protocols cannot be used simultaneously. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol is not operational. When this setting is changed it does not become active until power to the relay has been cycled (off-to-on).

The DNP Channels sub-menu is shown below.

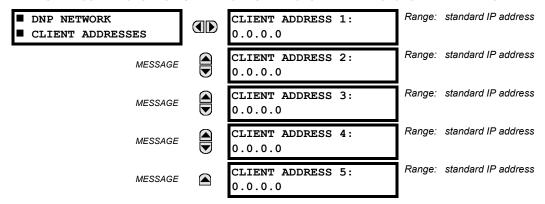

PATH: SETTINGS

PRODUCT SETUP

COMMUNICATIONS

DUP PROTOCOL

DUP CHANNELS


The **DNP CHANNEL 1 PORT** and **DNP CHANNEL 2 PORT** settings select the communications port assigned to the DNP protocol for each channel. Once DNP is assigned to a serial port, DNP is the only protocol running on that port; Modbus or IEC 60870-5-103 are disabled. If DNP is assigned to RS485, the protocol must be set to DNP on the serial port configuration as well, for the change to take effect. When this setting is set to "Network - TCP", the DNP protocol can be used over TCP/IP on channels 1 or 2. When this value is set to "Network - UDP", the DNP protocol can be used over UDP/IP on channel 1 only. See the DNP appendix for information on the DNP protocol.

Changes to these settings take effect when power has been cycled to the relay.

The **DNP NETWORK CLIENT ADDRESS** settings can force the F60 to respond to a maximum of five specific DNP masters. The settings in this sub-menu are shown below.

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ DNP PROTOCOL ⇒ DNP NETWORK CLIENT ADDRESSES

The **DNP UNSOL RESPONSE FUNCTION** should be "Disabled" for RS485 applications since there is no collision avoidance mechanism. The **DNP UNSOL RESPONSE TIMEOUT** sets the time the F60 waits for a DNP master to confirm an unsolicited response. The **DNP UNSOL RESPONSE MAX RETRIES** setting determines the number of times the F60 retransmits an unsolicited response without receiving confirmation from the master; a value of "255" allows infinite re-tries. The **DNP UNSOL RESPONSE DEST ADDRESS** is the DNP address to which all unsolicited responses are sent. The IP address to which unsolicited responses are sent is determined by the F60 from the current TCP connection or the most recent UDP message.

The DNP scale factor settings are numbers used to scale analog input point values. These settings group the F60 analog input data into the following types: current, voltage, power, energy, power factor, and other. Each setting represents the scale factor for all analog input points of that type. For example, if the **DNP VOLTAGE SCALE FACTOR** setting is set to "1000", all DNP analog input points that are voltages will be returned with values 1000 times smaller (for example, a value of 72000 V on the F60 will be returned as 72). These settings are useful when analog input values must be adjusted to fit within certain ranges in DNP masters. Note that a scale factor of 0.1 is equivalent to a multiplier of 10 (that is, the value will be 10 times larger).

The **DNP DEFAULT DEADBAND** settings determine when to trigger unsolicited responses containing analog input data. These settings group the F60 analog input data into the following types: current, voltage, power, energy, power factor, and other. Each setting represents the default deadband value for all analog input points of that type. For example, to trigger unsolicited responses from the F60 when any current values change by 15 A, the **DNP CURRENT DEFAULT DEADBAND** setting should be set to "15". Note that these settings are the deadband default values. DNP object 34 points can be used to change deadband values, from the default, for each individual DNP analog input point. Whenever power is removed and re-applied to the F60, the default deadbands will be in effect.

The **DNP TIME SYNC IIN PERIOD** setting determines how often the Need Time Internal Indication (IIN) bit is set by the F60. Changing this time allows the DNP master to send time synchronization commands more or less often, as required.

The **DNP MESSAGE FRAGMENT SIZE** setting determines the size, in bytes, at which message fragmentation occurs. Large fragment sizes allow for more efficient throughput; smaller fragment sizes cause more application layer confirmations to be necessary which can provide for more robust data transfer over noisy communication channels.

When the DNP data points (analog inputs and/or binary inputs) are configured for Ethernet-enabled relays, check the "DNP Points Lists" F60 web page to view the points lists. This page can be viewed with a web browser by entering the F60 IP address to access the F60 "Main Menu", then by selecting the "Device Information Menu" > "DNP Points Lists" menu item.

The **DNP OBJECT 1 DEFAULT VARIATION** to **DNP OBJECT 32 DEFAULT VARIATION** settings allow the user to select the DNP default variation number for object types 1, 2, 20, 21, 22, 23, 30, and 32. The default variation refers to the variation response when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. See the *DNP Implementation* section in the DNP appendix.

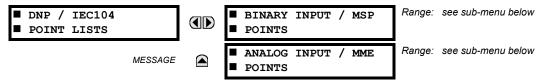
The DNP binary outputs typically map one-to-one to IED data points. That is, each DNP binary output controls a single physical or virtual control point in an IED. In the F60 relay, DNP binary outputs are mapped to virtual inputs. However, some legacy DNP implementations use a mapping of one DNP binary output to two physical or virtual control points to support the concept of trip/close (for circuit breakers) or raise/lower (for tap changers) using a single control point. That is, the DNP master can operate a single point for both trip and close, or raise and lower, operations. The F60 can be configured to sup-

port paired control points, with each paired control point operating two virtual inputs. The **DNP NUMBER OF PAIRED CONTROL POINTS** setting allows configuration of from 0 to 32 binary output paired controls. Points not configured as paired operate on a one-to-one basis.

The **DNP ADDRESS** setting is the DNP slave address. This number identifies the F60 on a DNP communications link. Each DNP slave should be assigned a unique address.

The **DNP TCP CONNECTION TIMEOUT** setting specifies a time delay for the detection of dead network TCP connections. If there is no data traffic on a DNP TCP connection for greater than the time specified by this setting, the connection will be aborted by the F60. This frees up the connection to be re-used by a client.

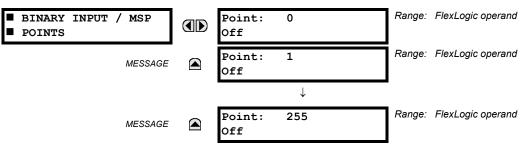
Relay power must be re-cycled after changing the **DNP TCP CONNECTION TIMEOUT** setting for the changes to take effect.


i) DNP / IEC 60870-5-104 POINT LISTS

PATH: SETTINGS

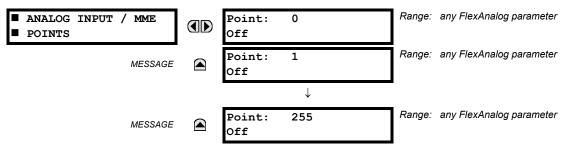
PRODUCT SETUP

COMMUNICATIONS


DNP / IEC104 POINT LISTS

The binary and analog inputs points for the DNP protocol, or the MSP and MME points for IEC 60870-5-104 protocol, can configured to a maximum of 256 points. The value for each point is user-programmable and can be configured by assigning FlexLogic operands for binary inputs / MSP points or FlexAnalog parameters for analog inputs / MME points.

The menu for the binary input points (DNP) or MSP points (IEC 60870-5-104) is shown below.


PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ U COMMUNICATIONS ⇒ U DNP / IEC104 POINT LISTS ⇒ BINARY INPUT / MSP POINTS

Up to 256 binary input points can be configured for the DNP or IEC 60870-5-104 protocols. The points are configured by assigning an appropriate FlexLogic operand. See the *Introduction to FlexLogic* section in this chapter for the full range of assignable operands.

The menu for the analog input points (DNP) or MME points (IEC 60870-5-104) is shown below.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ DNP / IEC104 POINT LISTS $\Rightarrow \emptyset$ ANALOG INPUT / MME POINTS

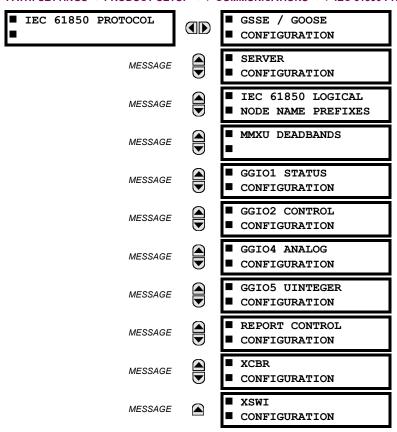
Up to 256 analog input points can be configured for the DNP or IEC 60870-5-104 protocols. The analog point list is configured by assigning an appropriate FlexAnalog parameter to each point. Refer to Appendix A: *FlexAnalog Parameters* for the full range of assignable parameters.

The DNP / IEC 60870-5-104 point lists always begin with point 0 and end at the first "Off" value. Since DNP / IEC 60870-5-104 point lists must be in one continuous block, any points assigned after the first "Off" point are ignored.

Changes to the DNP / IEC 60870-5-104 point lists will not take effect until the F60 is restarted.

k) IEC 61850 PROTOCOL

PATH: SETTINGS


PRODUCT SETUP

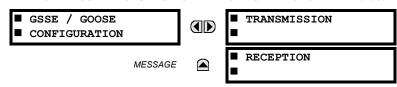
U

COMMUNICATIONS

U

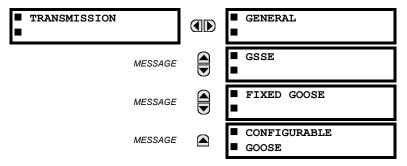
IEC 61850 PROTOCOL

The F60 Feeder Protection System is provided with optional IEC 61850 communications capability. This feature is specified as a software option at the time of ordering. See the *Order Codes* section in chapter 2 for details.



Use independent ports for IEC 61850 communication and take care when configuring the settings, else loss of protection or misoperation of the relay can result.

The F60 supports the Manufacturing Message Specification (MMS) protocol as specified by IEC 61850. MMS is supported over two protocol stacks: TCP/IP over Ethernet. The F60 operates as an IEC 61850 server. The *Remote Inputs and Outputs* section in this chapter describe the peer-to-peer GSSE/GOOSE message scheme.


The GSSE/GOOSE configuration main menu is divided into two areas: transmission and reception.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION

The main transmission menu is shown below:

PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \oplus COMMUNICATIONS \Rightarrow \oplus IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION

The general transmission settings are shown below:

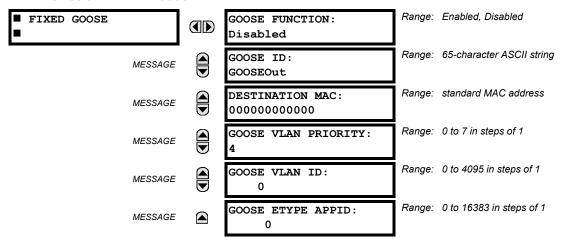
PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \oplus COMMUNICATIONS \Rightarrow \oplus IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION \Rightarrow GENERAL

The **DEFAULT GSSE/GOOSE UPDATE TIME** sets the time between GSSE or GOOSE messages when there are no remote output state changes to be sent. When remote output data changes, GSSE or GOOSE messages are sent immediately. This setting controls the steady-state *heartbeat* time interval.

The **DEFAULT GSSE/GOOSE UPDATE TIME** setting is applicable to GSSE, fixed F60 GOOSE, and configurable GOOSE.

The GSSE settings are shown below:

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION $\Rightarrow \emptyset$ GSEE



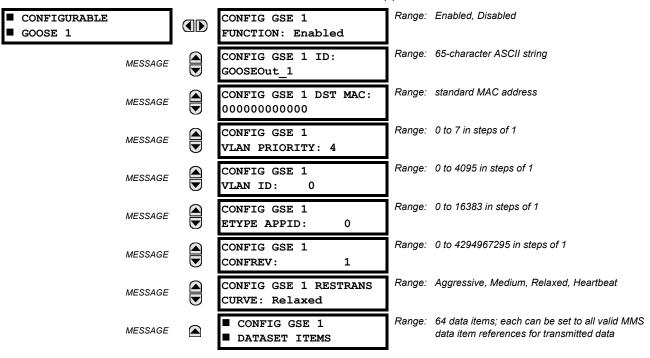
These settings are applicable to GSSE only. If the fixed GOOSE function is enabled, GSSE messages are not transmitted.

The GSSE ID setting represents the IEC 61850 GSSE application ID name string sent as part of each GSSE message. This string identifies the GSSE message to the receiving device. In F60 releases previous to 5.0x, this name string was represented by the RELAY NAME setting.

The fixed GOOSE settings are shown below:

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION $\Rightarrow \emptyset$ FIXED GOOSE

These settings are applicable to fixed (DNA/UserSt) GOOSE only.


The **GOOSE ID** setting represents the IEC 61850 GOOSE application ID (GoID) name string sent as part of each GOOSE message. This string identifies the GOOSE message to the receiving device. In revisions previous to 5.0x, this name string was represented by the **RELAY NAME** setting.

The **DESTINATION MAC** setting allows the destination Ethernet MAC address to be set. This address must be a multicast address; the least significant bit of the first byte must be set. In F60 releases previous to 5.0x, the destination Ethernet MAC address was determined automatically by taking the sending MAC address (that is, the unique, local MAC address of the F60) and setting the multicast bit.

The **GOOSE VLAN PRIORITY** setting indicates the Ethernet priority of GOOSE messages. This allows GOOSE messages to have higher priority than other Ethernet data. The **GOOSE ETYPE APPID** setting allows the selection of a specific application ID for each GOOSE sending device. This value can be left at its default if the feature is not required. Both the **GOOSE VLAN PRIORITY** and **GOOSE ETYPE APPID** settings are required by IEC 61850.

The configurable GOOSE settings are shown below.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION $\Rightarrow \emptyset$ CONFIGURABLE GOOSE \Rightarrow CONFIGURABLE GOOSE 1(8)

The configurable GOOSE settings allow the F60 to be configured to transmit a number of different datasets within IEC 61850 GOOSE messages. Up to eight different configurable datasets can be configured and transmitted. This is useful for intercommunication between F60 IEDs and devices from other manufacturers that support IEC 61850.

The configurable GOOSE feature allows for the configuration of the datasets to be transmitted or received from the F60. The F60 supports the configuration of eight (8) transmission and reception datasets, allowing for the optimization of data transfer between devices.

Items programmed for dataset 1 and 2 will have changes in their status transmitted as soon as the change is detected. Datasets 1 and 2 should be used for high-speed transmission of data that is required for applications such as transfer tripping, blocking, and breaker fail initiate. At least one digital status value needs to be configured in the required dataset to enable transmission of configured data. Configuring analog data only to dataset 1 or 2 will not activate transmission.

Items programmed for datasets 3 through 8 will have changes in their status transmitted at a maximum rate of every 100 ms. Datasets 3 through 8 will regularly analyze each data item configured within them every 100 ms to identify if any changes have been made. If any changes in the data items are detected, these changes will be transmitted through a GOOSE message. If there are no changes detected during this 100 ms period, no GOOSE message will be sent.

For all datasets 1 through 8, the integrity GOOSE message will still continue to be sent at the pre-configured rate even if no changes in the data items are detected.

The GOOSE functionality was enhanced to prevent the relay from flooding a communications network with GOOSE messages due to an oscillation being created that is triggering a message.

The F60 has the ability of detecting if a data item in one of the GOOSE datasets is erroneously oscillating. This can be caused by events such as errors in logic programming, inputs improperly being asserted and de-asserted, or failed station components. If erroneously oscillation is detected, the F60 will stop sending GOOSE messages from the dataset for a minimum period of one second. Should the oscillation persist after the one second time-out period, the F60 will continue to block transmission of the dataset. The F60 will assert the MAINTENANCE ALERT: GGIO Ind XXX oscill self-test error message on the front panel display, where XXX denotes the data item detected as oscillating.

For versions 5.70 and higher, the F60 supports four retransmission schemes: aggressive, medium, relaxed, and heartbeat. The aggressive scheme is only supported in fast type 1A GOOSE messages (GOOSEOut 1 and GOOSEOut 2). For slow GOOSE messages (GOOSEOut 3 to GOOSEOut 8) the aggressive scheme is the same as the medium scheme.

The details about each scheme are shown in the following table.

Table 5-6: GOOSE RETRANSMISSION SCHEMES

SCHEME	SQ NUM	TIME FROM THE EVENT	TIME BETWEEN MESSAGES	COMMENT	TIME ALLOWED TO LIVE IN MESSAGE
Aggressive	0	0 ms	0 ms	Event	2000 ms
	1	4 ms	4 ms	T1	2000 ms
	2	8 ms	4 ms	T1	2000 ms
	3	16 ms	8 ms	T2	Heartbeat * 4.5
	4	Heartbeat	Heartbeat	ТО	Heartbeat * 4.5
	5	Heartbeat	Heartbeat	T0	Heartbeat * 4.5
Medium	0	0 ms	0 ms	Event	2000 ms
	1	16 ms	16 ms	T1	2000 ms
	2	32 ms	16 ms	T1	2000 ms
	3	64 ms	32 ms	T2	Heartbeat * 4.5
	4	Heartbeat	Heartbeat	T0	Heartbeat * 4.5
	5	Heartbeat	Heartbeat	T0	Heartbeat * 4.5
Relaxed	0	0 ms	0 ms	Event	2000 ms
	1	100 ms	100 ms	T1	2000 ms
	2	200 ms	100 ms	T1	2000 ms
	3	700 ms	500 ms	T2	Heartbeat * 4.5
	4	Heartbeat	Heartbeat	T0	Heartbeat * 4.5
	5	Heartbeat	Heartbeat	T0	Heartbeat * 4.5
Heartbeat	0	0 ms	0 ms	Event	2000 ms
	1	Heartbeat	Heartbeat	T1	2000 ms
	2	Heartbeat	Heartbeat	T1	2000 ms
	3	Heartbeat	Heartbeat	T2	Heartbeat * 4.5
	4	Heartbeat	Heartbeat	T0	Heartbeat * 4.5
	5	Heartbeat	Heartbeat	T0	Heartbeat * 4.5

The configurable GOOSE feature is recommended for applications that require GOOSE data transfer between UR-series IEDs and devices from other manufacturers. Fixed GOOSE is recommended for applications that require GOOSE data transfer between UR-series IEDs.

IEC 61850 GOOSE messaging contains a number of configurable parameters, all of which must be correct to achieve the successful transfer of data. It is critical that the configured datasets at the transmission and reception devices are an exact match in terms of data structure, and that the GOOSE addresses and name strings match exactly. Manual configuration is possible, but third-party substation configuration software may be used to automate the process. The EnerVista UR Setup software can produce IEC 61850 ICD files and import IEC 61850 SCD files produced by a substation configurator (as outlined in the IEC 61850 appendix).

The following example illustrates the configuration required to transfer IEC 61850 data items between two devices. The general steps required for transmission configuration are:

- 1. Configure the transmission dataset.
- 2. Configure the GOOSE service settings.
- Configure the data.

The general steps required for reception configuration are:

- 1. Configure the reception dataset.
- 2. Configure the GOOSE service settings.
- 3. Configure the data.

This example shows how to configure the transmission and reception of three IEC 61850 data items: a single point status value, its associated quality flags, and a floating point analog value.

The following procedure illustrates the transmission configuration.

1. Configure the transmission dataset by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ TRANSMISSION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 ⇒ ♣ CONFIG GSE 1 DATASET ITEMS Settings menu:

- Set ITEM 1 to "GGIO1.ST.Ind1.q" to indicate quality flags for GGIO1 status indication 1.
- Set ITEM 2 to "GGIO1.ST.Ind1.stVal" to indicate the status value for GGIO1 status indication 1.
- Set ITEM 3 to "MMXU1.MX.Hz.mag.f" to indicate the analog frequency magnitude for MMXU1 (the metered frequency for SRC1).

The transmission dataset now contains a quality flag, a single point status Boolean value, and a floating point analog value. The reception dataset on the receiving device must exactly match this structure.

- 2. Configure the GOOSE service settings by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ TRANSMISSION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 settings menu:
 - Set CONFIG GSE 1 FUNCTION to "Enabled".
 - Set CONFIG GSE 1 ID to an appropriate descriptive string (the default value is "GOOSEOut 1").
 - Set CONFIG GSE 1 DST MAC to a multicast address (for example, 01 00 00 12 34 56).
 - Set the CONFIG GSE 1 VLAN PRIORITY; the default value of "4" is OK for this example.
 - Set the **CONFIG GSE 1 VLAN ID** value; the default value is "0", but some switches may require this value to be "1".
 - Set the CONFIG GSE 1 ETYPE APPID value. This setting represents the ETHERTYPE application ID and must match
 the configuration on the receiver (the default value is "0").
 - Set the CONFIG GSE 1 CONFREV value. This value changes automatically as described in IEC 61850 part 7-2. For this example it can be left at its default value.
- 3. Configure the data by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTO-COL ⇒ GGIO1 STATUS CONFIGURATION settings menu:
 - Set GGIO1 INDICATION 1 to a FlexLogic operand used to provide the status of GGIO1.ST.Ind1.stVal (for example, a contact input, virtual input, a protection element status, etc.).
- - Set MMXU1 HZ DEADBAND to "0.050%". This will result in an update to the MMXU1.MX.mag.f analog value with a change greater than 45 mHz, from the previous MMXU1.MX.mag.f value, in the source frequency.

The F60 must be rebooted (control power removed and re-applied) before these settings take effect.

The following procedure illustrates the reception configuration.

- 1. Configure the reception dataset by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ ♣ RECEPTION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 ⇒ ♣ CONFIG GSE 1 DATASET ITEMS Settings menu:
 - Set ITEM 1 to "GGIO3.ST.Ind1.q" to indicate quality flags for GGIO3 status indication 1.
 - Set ITEM 2 to "GGIO3.ST.Ind1.stVal" to indicate the status value for GGIO3 status indication 1.
 - Set ITEM 3 to "GGIO3.MX.AnIn1.mag.f" to indicate the analog magnitude for GGIO3 analog input 1.

The reception dataset now contains a quality flag, a single point status Boolean value, and a floating point analog value. This matches the transmission dataset configuration above.

- 2. Configure the GOOSE service settings by making the following changes in the INPUTS/OUTPUTS ⇒ ♣ REMOTE DEVICES ⇒ ♣ REMOTE DEVICE 1 settings menu:
 - Set REMOTE DEVICE 1 ID to match the GOOSE ID string for the transmitting device. Enter "GOOSEOut 1".

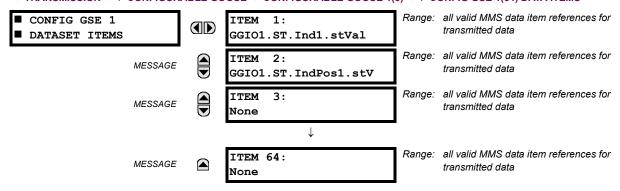
 Set REMOTE DEVICE 1 ETYPE APPID to match the ETHERTYPE application ID from the transmitting device. This is "0" in the example above.

- Set the REMOTE DEVICE 1 DATASET value. This value represents the dataset number in use. Since we are using configurable GOOSE 1 in this example, program this value as "GOOSEIn 1".
- 3. Configure the Boolean data by making the following changes in the INPUTS/OUTPUTS ⇒ ♣ REMOTE INPUT 1 settings menu:
 - Set REMOTE IN 1 DEVICE to "GOOSEOut 1".
 - Set REMOTE IN 1 ITEM to "Dataset Item 2". This assigns the value of the GGIO3.ST.Ind1.stVal single point status item to remote input 1.
- 4. Configure the analog data by making the following changes in the INPUTS/OUTPUTS ⇒ U IEC 61850 GOOSE ANALOG INPUTS settings menu:
 - Set the IEC61850 GOOSE ANALOG INPUT 1 DEFAULT VALUE to "60.000".
 - Enter "Hz" for the IEC61850 GOOSE ANALOG INPUT 1 UNITS setting.

The GOOSE analog input 1 can now be used as a FlexAnalog value in a FlexElement or in other settings. The F60 must be rebooted (control power removed and re-applied) before these settings take effect.

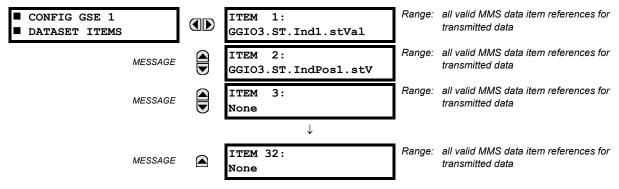
The value of GOOSE analog input 1 in the receiving device will be determined by the MMXU1.MX.Hz.mag.f value in the sending device. This MMXU value is determined by the source 1 frequency value and the MMXU Hz deadband setting of the sending device.

Remote input 1 can now be used in FlexLogic equations or other settings. The F60 must be rebooted (control power removed and re-applied) before these settings take effect.


The value of remote input 1 (Boolean on or off) in the receiving device will be determined by the GGIO1.ST.Ind1.stVal value in the sending device. The above settings will be automatically populated by the EnerVista UR Setup software when a complete SCD file is created by third party substation configurator software.

For intercommunication between F60 IEDs, the fixed (DNA/UserSt) dataset can be used. The DNA/UserSt dataset contains the same DNA and UserSt bit pairs that are included in GSSE messages. All GOOSE messages transmitted by the F60 (DNA/UserSt dataset and configurable datasets) use the IEC 61850 GOOSE messaging services (for example, VLAN support).

Set the **CONFIG GSE 1 FUNCTION** function to "Disabled" when configuration changes are required. Once changes are entered, return the **CONFIG GSE 1 FUNCTION** to "Enabled" and restart the unit for changes to take effect.


PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ TRANSMISSION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1(8) ⇒ ♣ CONFIG GSE 1(64) DATA ITEMS

To create a configurable GOOSE dataset that contains an IEC 61850 Single Point Status indication and its associated quality flags, the following dataset items can be selected: "GGIO1.ST.Ind1.stVal" and "GGIO1.ST.Ind1.q". The F60 will then create a dataset containing these two data items. The status value for GGIO1.ST.Ind1.stVal is determined by the FlexLogic operand assigned to GGIO1 indication 1. Changes to this operand will result in the transmission of GOOSE messages containing the defined dataset.

The main reception menu is applicable to configurable GOOSE only and contains the configurable GOOSE dataset items for reception:

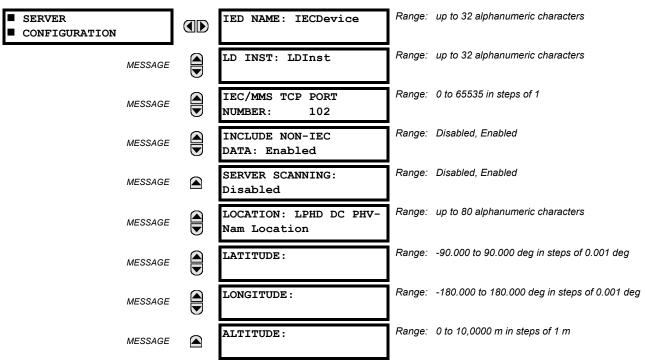
PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ RECEPTION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1(16) ⇒ ♣ CONFIG GSE 1(32) DATA ITEMS

The configurable GOOSE settings allow the F60 to be configured to receive a number of different datasets within IEC 61850 GOOSE messages. Up to sixteen different configurable datasets can be configured for reception. This is useful for intercommunication between F60 IEDs and devices from other manufacturers that support IEC 61850.

For intercommunication between F60 IEDs, the fixed (DNA/UserSt) dataset can be used. The DNA/UserSt dataset contains the same DNA and UserSt bit pairs that are included in GSSE messages.

To set up a F60 to receive a configurable GOOSE dataset that contains two IEC 61850 single point status indications, the following dataset items can be selected (for example, for configurable GOOSE dataset 1): "GGIO3.ST.Ind1.stVal" and "GGIO3.ST.Ind2.stVal". The F60 will then create a dataset containing these two data items. The Boolean status values from these data items can be utilized as remote input FlexLogic operands. First, the **REMOTE DEVICE 1(16) DATASET** setting must be set to contain dataset "GOOSEIn 1" (that is, the first configurable dataset). Then **REMOTE IN 1(16) ITEM** settings must be set to "Dataset Item 1" and "Dataset Item 2". These remote input FlexLogic operands will then change state in accordance with the status values of the data items in the configured dataset.

Double-point status values may be included in the GOOSE dataset. Received values are populated in the GGIO3.ST.IndPos1.stVal and higher items.


Floating point analog values originating from MMXU logical nodes may be included in GOOSE datasets. Deadband (non-instantaneous) values can be transmitted. Received values are used to populate the GGIO3.MX.AnIn1 and higher items. Received values are also available as FlexAnalog parameters (GOOSE analog In1 and up).

GGIO3.MX.AnIn1 to GGIO3.MX.AnIn32 can only be used once for all sixteen reception datasets.

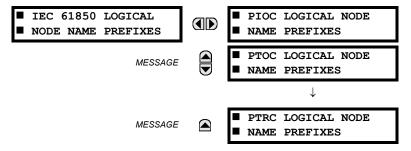
The main menu for the IEC 61850 server configuration is shown below.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ SERVER CONFIGURATION

The **IED NAME** and **LD INST** settings represent the MMS domain name (IEC 61850 logical device) where all IEC/MMS logical nodes are located. Valid characters for these values are upper and lowercase letters, numbers, and the underscore (_) character, and the first character in the string must be a letter. This conforms to the IEC 61850 standard. The **LOCATION** is a variable string and can be composed of ASCII characters. This string appears within the PhyName of the LPHD node.

The IEC/MMS TCP PORT NUMBER setting allows the user to change the TCP port number for MMS connections. The INCLUDE NON-IEC DATA setting determines whether or not the "UR" MMS domain will be available. This domain contains a large number of UR-series specific data items that are not available in the IEC 61850 logical nodes. This data does not follow the IEC 61850 naming conventions. For communications schemes that strictly follow the IEC 61850 standard, this setting should be "Disabled".

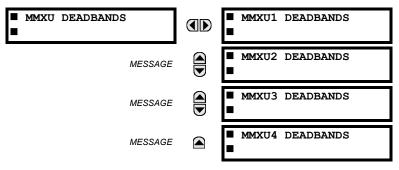
When a 0 value is involved in a change, the changes to the IEC/MMS TCP PORT NUMBER setting take effect when the F60 is restarted.


The **SERVER SCANNING** feature should be set to "Disabled" when IEC 61850 client/server functionality is not required. IEC 61850 has two modes of functionality: GOOSE/GSSE inter-device communication and client/server communication. If the GOOSE/GSSE functionality is required without the IEC 61850 client server feature, then server scanning can be disabled to increase CPU resources. When server scanning is disabled, there is no updating of the IEC 61850 logical node status values in the F60. Clients are still able to connect to the server (F60 relay), but most data values are not updated. This setting does not affect GOOSE/GSSE operation.

Changes to the IED NAME setting, LD INST setting, and GOOSE dataset take effect when the F60 is restarted.

The main menu for the IEC 61850 logical node name prefixes is shown below.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ IEC 61850 LOGICAL NODE NAME PREFIXES

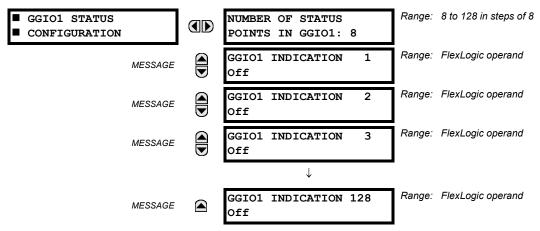


The IEC 61850 logical node name prefix settings are used to create name prefixes to uniquely identify each logical node. For example, the logical node "PTOC1" may have the name prefix "abc". The full logical node name will then be "abcMMXU1". Valid characters for the logical node name prefixes are upper and lowercase letters, numbers, and the underscore (_) character, and the first character in the prefix must be a letter. This conforms to the IEC 61850 standard.

Changes to the logical node prefixes will not take effect until the F60 is restarted.

The main menu for the IEC 61850 MMXU deadbands is shown below.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ MMXU DEADBANDS


The MMXU deadband settings represent the deadband values used to determine when the update the MMXU "mag" and "cVal" values from the associated "instmag" and "instcVal" values. The "mag" and "cVal" values are used for the IEC 61850 buffered and unbuffered reports. These settings correspond to the associated "db" data items in the CF functional constraint of the MMXU logical node, as per the IEC 61850 standard. According to IEC 61850-7-3, the db value "shall represent the percentage of difference between the maximum and minimum in units of 0.001%". Thus, it is important to know the maximum value for each MMXU measured quantity, since this represents the 100.00% value for the deadband.

The minimum value for all quantities is 0; the maximum values are as follows:

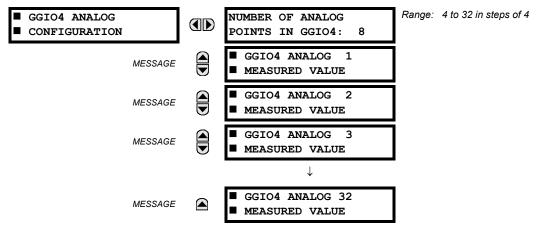
- phase current: 46 × phase CT primary setting
- neutral current: 46 × ground CT primary setting
- voltage: 275 × VT ratio setting
- power (real, reactive, and apparent): 46 × phase CT primary setting × 275 × VT ratio setting
- frequency: 90 Hz
- power factor: 2

The GGIO1 status configuration points are shown below:

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ GGIO1 STATUS CONFIGURATION

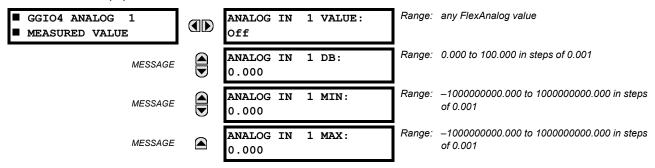
The **NUMBER OF STATUS POINTS IN GGIO1** setting specifies the number of "Ind" (single point status indications) that are instantiated in the GGIO1 logical node. Changes to the **NUMBER OF STATUS POINTS IN GGIO1** setting will not take effect until the F60 is restarted.

The GGIO2 control configuration points are shown below:


PATH: SETTINGS \Rightarrow PRODUCT SETUP \Rightarrow \diamondsuit COMMUNICATIONS \Rightarrow \diamondsuit IEC 61850 PROTOCOL \Rightarrow \diamondsuit GGIO2 CONTROL CONFIGURATION \Rightarrow GGIO2 CF SPSCO 1(64)

The GGIO2 control configuration settings are used to set the control model for each input. The available choices are "0" (status only), "1" (direct control), and "2" (SBO with normal security). The GGIO2 control points are used to control the F60 virtual inputs.

The GGIO4 analog configuration points are shown below:

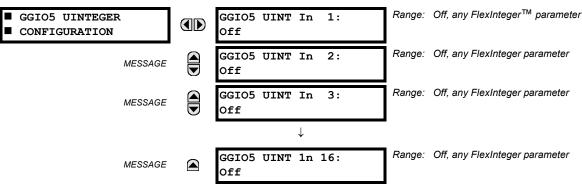

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ COMMUNICATIONS ⇒ \$\Partial\$ IEC 61850 PROTOCOL ⇒ \$\Partial\$ GGIO4 ANALOG CONFIGURATION

The **NUMBER OF ANALOG POINTS** setting determines how many analog data points will exist in GGIO4. When this value is changed, the F60 must be rebooted in order to allow the GGIO4 logical node to be re-instantiated and contain the newly configured number of analog points.

The measured value settings for each of the 32 analog values are shown below.

PATH: SETTINGS ⇒ PRODUCT... ⇒ ♣ COMMUNICATIONS ⇒ ♣ IEC 61850 PROTOCOL ⇒ ♣ GGIO4 ANALOG CONFIGURATION ⇒ GGIO4 ANALOG 1(32) MEASURED VALUE

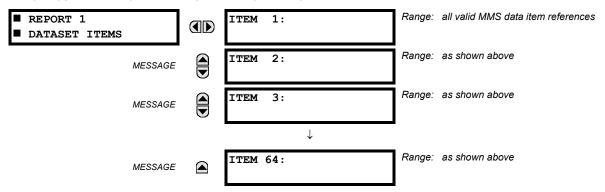
These settings are configured as follows.


- ANALOG IN 1 VALUE: This setting selects the FlexAnalog value to drive the instantaneous value of each GGIO4 analog status value (GGIO4.MX.AnIn1.instMag.f).
- **ANALOG IN 1 DB**: This setting specifies the deadband for each analog value. Refer to IEC 61850-7-1 and 61850-7-3 for details. The deadband is used to determine when to update the deadbanded magnitude from the instantaneous magnitude. The deadband is a percentage of the difference between the maximum and minimum values.
- **ANALOG IN 1 MIN**: This setting specifies the minimum value for each analog value. Refer to IEC 61850-7-1 and 61850-7-3 for details. This minimum value is used to determine the deadband. The deadband is used in the determination of the deadbanded magnitude from the instantaneous magnitude.
- ANALOG IN 1 MAX: This setting defines the maximum value for each analog value. Refer to IEC 61850-7-1 and 61850-7-3 for details. This maximum value is used to determine the deadband. The deadband is used in the determination of the deadbanded magnitude from the instantaneous magnitude.

Note that the **ANALOG IN 1 MIN** and **ANALOG IN 1 MAX** settings are stored as IEEE 754 / IEC 60559 floating point numbers. Because of the large range of these settings, not all values can be stored. Some values may be rounded to the closest possible floating point number.

The GGIO5 integer configuration points are shown below:

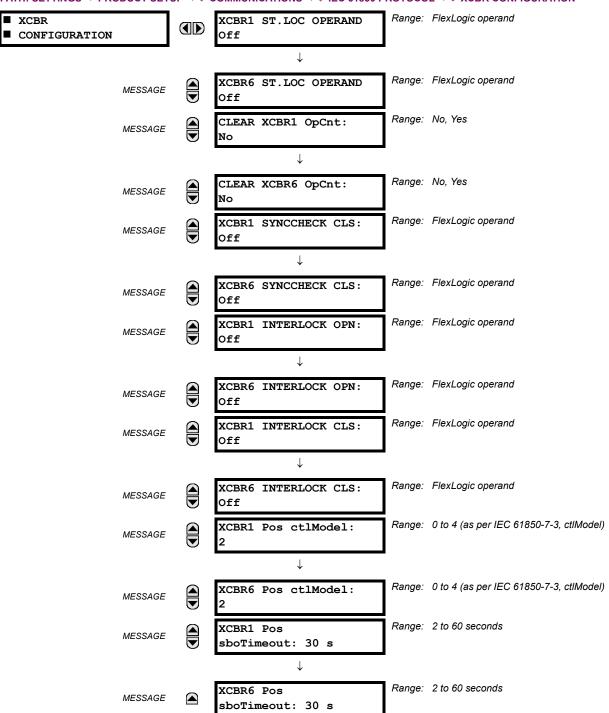
PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ IEC 61850 PROTOCOL ⇒ ♣ GGIO5 ANALOG CONFIGURATION


The GGIO5 logical node allows IEC 61850 client access to integer data values. This allows access to as many as 16 unsigned integer value points, associated timestamps, and quality flags. The method of configuration is similar to that of GGIO1 (binary status values). The settings allow the selection of FlexInteger values for each GGIO5 integer value point.

It is intended that clients use GGIO5 to access generic integer values from the F60. Additional settings are provided to allow the selection of the number of integer values available in GGIO5 (1 to 16), and to assign FlexInteger values to the GGIO5 integer inputs. The following setting is available for all GGIO5 configuration points.

• **GGIO5 UINT IN 1 VALUE**: This setting selects the FlexInteger value to drive each GGIO5 integer status value (GGIO5.ST.UIntIn1). This setting is stored as an 32-bit unsigned integer value.

The report control configuration settings are shown below:


PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ REPORT CONTROL CONFIGURATION \Rightarrow CONFIGURABLE REPORT 1 \Rightarrow REPORT 1 DATASET ITEMS

To create the dataset for logical node LN, program the ITEM 1 to ITEM 64 settings to a value from the list of IEC 61850 data attributes supported by the F60. Changes to the dataset will only take effect when the F60 is restarted. It is recommended to use reporting service from logical node LLN0 if a user needs some (but not all) data from already existing GGIO1, GGIO4, and MMXU4 points and their quantity is not greater than 64 minus the number items in this dataset.

The breaker configuration settings are shown below. Changes to these values take effect when the UR is restarted:

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ XCBR CONFIGURATION

The XCBR1 ST.LOC OPERAND setting is used to inhibit 61850 control commands to close or open breaker through UR Breaker Control element. See the Breaker Control element logic diagram for more information.

The CLEAR XCBR1 OpCnt setting allows clearing the breaker operating counter. As breakers operate by opening and closing, the XCBR operating counter status attribute (OpCnt) increments with every operation. Frequent breaker operation can result in very large OpCnt values over time. This setting allows the OpCnt to be reset to "0" for XCBR1.

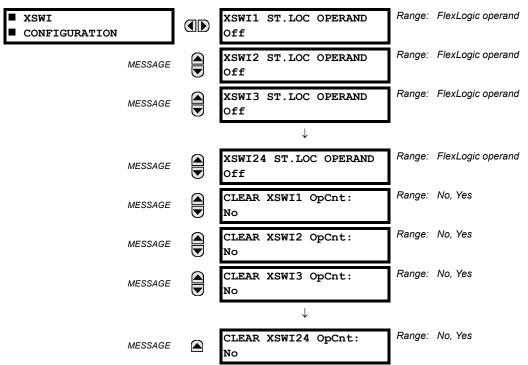
The XCBR1 SYNCCHECK CLS setting is used to supervise a close command with a synchrocheck condition within XCBR logical node. If a Close with SynchroCheck is requested (through a SelectWithValue service) and the SynchroCheck condition is not satisfied, a Negative Response (-Rsp) is issued with the REASON CODE of Blocked-by-synchrocheck.

The XCBR1 INTERLOCK OPN/CLS settings are used to assign an operand, which is linked into the EnaOpn or EnaCls INTERLOCKED inputs respectively of the XCBR. When this operand is asserted, XCBR logical node inhibits execution of the open and close commands respectively. If select before operate (SBO) with Extended Security is requested and Interlock condition exists, the UR responds with a Negative response (-Rsp) with the Reason Code Blocked-by-interlocking.

The XCBR1 Pos ctlModel setting is used to select control model per IEC 61850-7-3. The following control models are supported by URs:

- 0 Status only
- 1 Direct control with normal security (direct-operate)
- 2 SBO control with normal security (operate-once)
- 3 Direct control with enhanced security (direct-operate)
- 4 SBO control with enhanced security (operate-once)

See IEC 61850-7-2 for complete details on these control models.


The XCBR1 Pos sboTimeout setting is used to select SBO timeout value. To be successful, the IEC 61850 "operate" command must be executed after the "select" command within the XCBR1 Pos sboTimeout setting value.

The disconnect switch configuration settings are shown below. Changes to these values will not take effect until the UR is restarted:

PATH: SETTINGS

PRODUCT SETUP

\$\Prightarrow\$ COMMUNICATIONS \$\Rightarrow\$ \$\Prightarrow\$ IEC 61850 PROTOCOL \$\Rightarrow\$ \$\Prightarrow\$ XSWI CONFIGURATION

The CLEAR XSWI1 OpCnt setting represents the disconnect switch operating counter. As disconnect switches operate by opening and closing, the XSWI operating counter status attribute (OpCnt) increments with every operation. Frequent switch operation may result in very large OpCnt values over time. This setting allows the OpCnt to be reset to "0" for XSWI1.

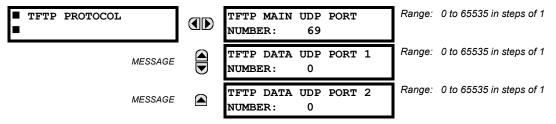
Since GSSE/GOOSE messages are multicast Ethernet by specification, they are not usually be forwarded by network routers. However, GOOSE messages may be forwarded by routers if the router has been configured for VLAN functionality.

I) WEB SERVER HTTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ WEB SERVER HTTP PROTOCOL

■ WEB SERVER
■ HTTP PROTOCOL

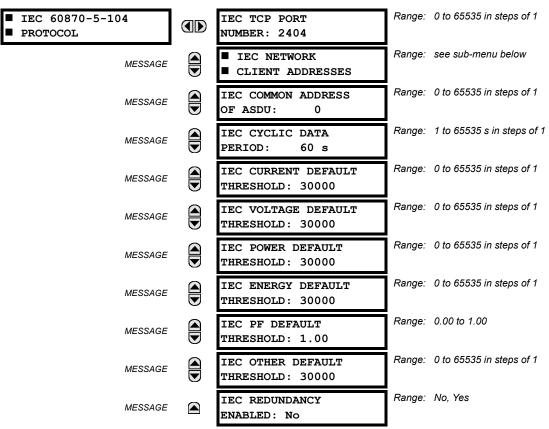
HTTP TCP PORT
NUMBER: 80


The F60 contains an embedded web server and is capable of transferring web pages to a web browser such as Internet Explorer or Firefox. The web pages are organized as a series of menus that can be accessed starting at the F60 "Main Menu". Web pages are available showing DNP and IEC 60870-5-104 points lists, Modbus registers, event records, fault reports, and so on. First connect the UR and a computer to an Ethernet network, then enter the IP address of the F60 into the "Address" box of the web browser.

When the port is set to 0, the change takes effect when the F60 is restarted.

m) TFTP PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ TFTP PROTOCOL


The Trivial File Transfer Protocol (TFTP) can be used to transfer files from the F60 over a network. The F60 operates as a TFTP server. TFTP client software is available from various sources, including Microsoft Windows NT. The dir.txt file obtained from the F60 contains a list and description of all available files (event records, oscillography, etc.).

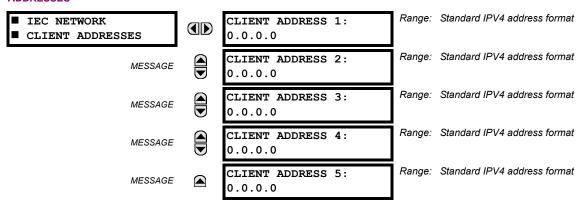
When the TFTP MAIN UDP PORT NUMBER is set to 0, the change takes effect when the F60 is restarted.

n) IEC 60870-5-104 PROTOCOL

PATH: SETTINGS → PRODUCT SETUP → ↓ COMMUNICATIONS → ↓ IEC 60870-5-104 PROTOCOL

The F60 supports the IEC 60870-5-104 protocol. The F60 can be used as an IEC 60870-5-104 slave device connected to a maximum of two masters (usually either an RTU or a SCADA master station). Since the F60 maintains two sets of IEC 60870-5-104 data change buffers, no more than two masters should actively communicate with the F60 at one time.

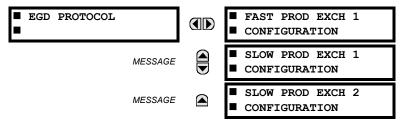
The IEC ------ DEFAULT THRESHOLD settings are used to determine when to trigger spontaneous responses containing M_ME_NC_1 analog data. These settings group the F60 analog data into types: current, voltage, power, energy, and other. Each setting represents the default threshold value for all M_ME_NC_1 analog points of that type. For example, to trigger spontaneous responses from the F60 when any current values change by 15 A, the IEC CURRENT DEFAULT THRESHOLD setting should be set to 15. Note that these settings are the default values of the deadbands. P_ME_NC_1 (parameter of measured value, short floating point value) points can be used to change threshold values, from the default, for each individual M_ME_NC_1 analog point. Whenever power is removed and re-applied to the F60, the default thresholds are in effect.


The **IEC REDUNDANCY** setting decides whether multiple client connections are accepted or not. If redundancy is set to Yes, two simultaneous connections can be active at any given time.

When the IEC port number is set to 0, the change takes effect when the F60 is restarted.

The IEC 60870-5-104 and DNP protocols cannot be used simultaneously. When the IEC 60870-5-104 FUNCTION setting is set to "Enabled", the DNP protocol does not operate. When this setting is changed, it takes effect when power to the relay is cycled (off-to-on).

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \oplus$ COMMUNICATIONS $\Rightarrow \oplus$ IEC 60870-5-104 PROTOCOL $\Rightarrow \oplus$ IEC NETWORK CLIENT ADDRESSES



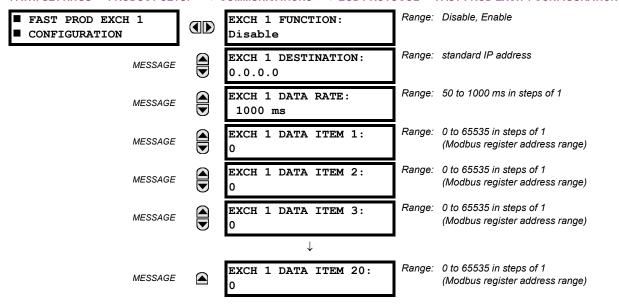
The UR can specify a maximum of five clients for its IEC 104 connections. These are IP addresses for the controllers to which the UR can connect.

A maximum of two simultaneous connections are supported at any given time.

o) EGD PROTOCOL

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ EGD PROTOCOL

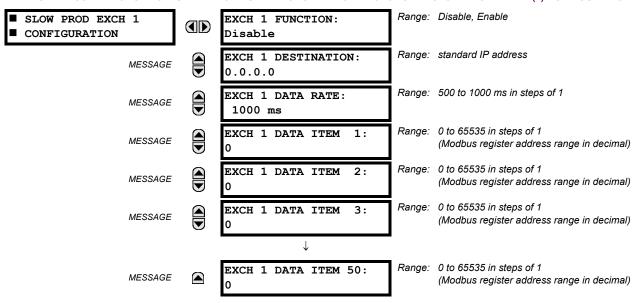
The F60 Feeder Protection System is provided with optional Ethernet Global Data (EGD) communications capability. This feature is specified as a software option at the time of ordering. See the *Order Codes* section in chapter 2 for details.


The relay supports one fast Ethernet Global Data (EGD) exchange and two slow EGD exchanges. There are 20 data items in the fast-produced EGD exchange and 50 data items in each slow-produced exchange.

Ethernet Global Data (EGD) is a suite of protocols used for the real-time transfer of data for display and control purposes. The relay can be configured to 'produce' EGD data exchanges, and other devices can be configured to 'consume' EGD data exchanges. The number of produced exchanges (up to three), the data items in each exchange (up to 50), and the exchange production rate can be configured.

EGD cannot be used to transfer data between UR-series relays. The relay supports EGD production only. An EGD exchange will not be transmitted unless the destination address is non-zero, and at least the first data item address is set to a valid Modbus register address. Note that the default setting value of "0" is considered invalid.

The settings menu for the fast EGD exchange is shown below:

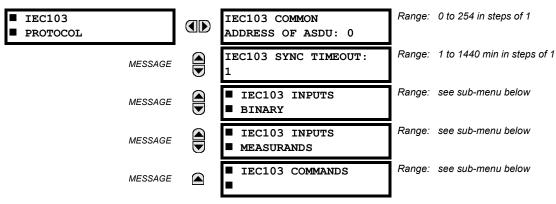

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ EGD PROTOCOL \Rightarrow FAST PROD EXCH 1 CONFIGURATION

Fast exchanges (50 to 1000 ms) are generally used in control schemes. The F60 has one fast exchange (exchange 1) and two slow exchanges (exchange 2 and 3).

The settings menu for the slow EGD exchanges is shown below:

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial \text{ COMMUNICATIONS} ⇒ \$\Partial \text{EGD PROTOCOL} ⇒ SLOW PROD EXCH 1(2) CONFIGURATION

Slow EGD exchanges (500 to 1000 ms) are generally used for the transfer and display of data items. The settings for the fast and slow exchanges are described below:

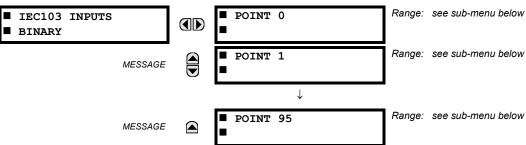

- EXCH 1 DESTINATION: This setting specifies the destination IP address of the produced EGD exchange. This is usually unicast or broadcast.
- **EXCH 1 DATA RATE**: This setting specifies the rate at which this EGD exchange is transmitted. If the setting is 50 ms, the exchange data will be updated and sent once every 50 ms. If the setting is 1000 ms, the exchange data will be updated and sent once per second. EGD exchange 1 has a setting range of 50 to 1000 ms. Exchanges 2 and 3 have a setting range of 500 to 1000 ms.

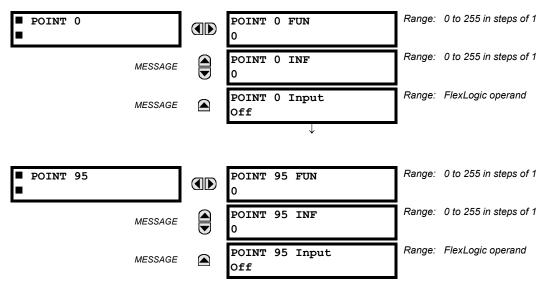
• **EXCH 1 DATA ITEM 1 to 20/50**: These settings specify the data items that are part of this EGD exchange. Almost any data from the F60 memory map can be configured to be included in an EGD exchange. The settings are the starting Modbus register address for the data item in decimal format. Refer to *Appendix B* for the complete Modbus memory map. Note that the Modbus memory map displays shows addresses in hexadecimal format. as such, it will be necessary to convert these values to decimal format before entering them as values for these setpoints.

To select a data item to be part of an exchange, it is only necessary to choose the starting Modbus address of the item. That is, for items occupying more than one Modbus register (for example, 32 bit integers and floating point values), only the first Modbus address is required. The EGD exchange configured with these settings contains the data items up to the first setting that contains a Modbus address with no data, or 0. That is, if the first three settings contain valid Modbus addresses and the fourth is 0, the produced EGD exchange will contain three data items.

p) IEC 60870-5-103 PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ COMMUNICATIONS \$\Rightarrow\$ IEC 60870-5-103

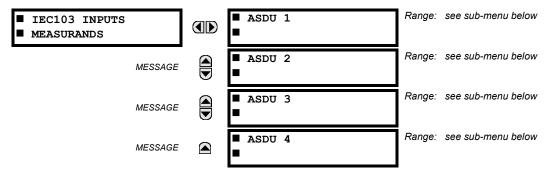

The F60 Feeder Protection System is provided with optional IEC 60870-5-103 communications capability. This feature is specified as a software option at the time of ordering. See the *Order Codes* section in chapter 2 for details.

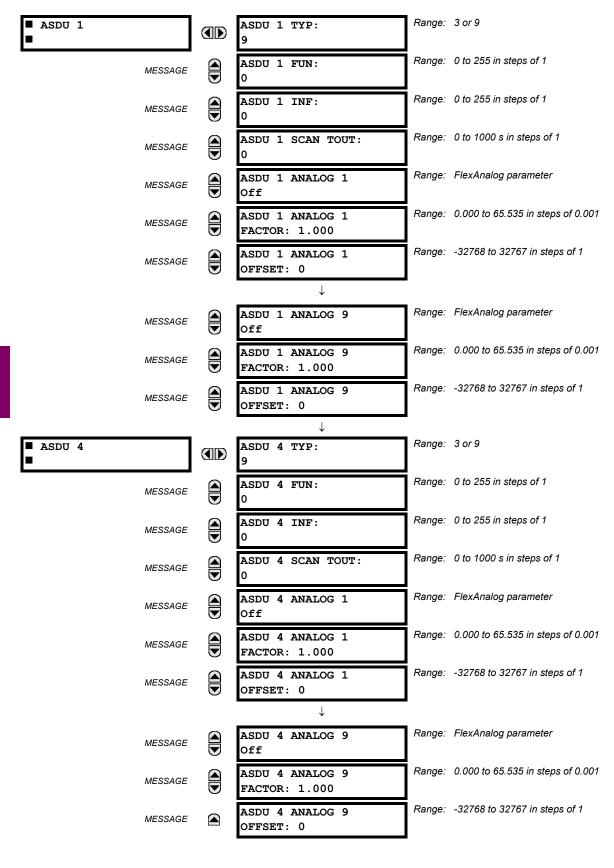

IEC103 COMMON ADDRESS OF ASDU: This setting uniquely defines this F60 on the serial line. Select an ID between 0 and 254. This ID does not need to be in sequential order for all stations that communicate with a controller, but it is recommended. Note that RS485 only allows a maximum of 32 slave stations on a communication line, so the entire range of 254 addresses is never exhausted.

IEC103 SYNC TIMEOUT: This setting defines the time that the F60 waits for a synchronization message. The F60 synchronizes its clock using all available sources, with the source synching more frequently overwriting the time of the other sources. Since the synchronization message received from the IEC 60870-5-103 master is less frequent than IRIG-B, PTP, or SNTP, its time is overwritten by these three sources, if any of them is active. If the synchronization timeout occurs and none of IRIG-B, PTP, or SNTP is active, the F60 sets the invalid bit in the time stamp of a time-tagged message.

The settings for the remaining menus are outlined as follows.

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \oplus$ COMMUNICATIONS $\Rightarrow \oplus$ IEC60870-5-103 \Rightarrow IEC103 INPUTS BINARY


The binary input points are mapped using elements from a list of possible FlexLogic operands. A maximum of 96 binary inputs (points) can be mapped this way.


The IEC60870-5-103 point list always starts with point 0 and ends at the first "Off" value. Since the IEC 60870-5-103 point list must be in a continuous block, any points assigned after the first "Off" point are ignored.

For each defined point, set appropriate values for the Function Type (FUN) and Information Number (INF), which form the Information Object Identifier field of the ASDU, as defined in IEC60870-5-103.

The binary input points are sent as Class 1 data. They are sent either as a response to a general interrogation received from the controller or reported spontaneously. Spontaneous transmission occurs as a response to cyclic Class 2 requests. If the F60 wants to transmit Class 1 data at that time, it demands access for Class 1 data transmission (ACD=1 in the control field of the response).

PATH: SETTINGS PRODUCT SETUP U COMMUNICATIONS U IEC60870-5-103 IEC103 INPUTS MEASURANDS

The configuration menu allows a maximum of four ASDUs containing measurands.

Measurands are sent as a response to Class 2 requests, which are cyclic requests coming from the master.

TYPE IDENTIFICATION (TYP): The configuration field TYP indicates how many measurands are present in the corresponding ASDU. Each ASDU can take either 4 or 9 measurands maximum, depending on the type identification (3 respectively 9).

FUNCTION TYPE (FUN) AND INFORMATION NUMBER (INF): These two fields form the Information Object Identifier of the ASDU as defined in IEC60870-103.

SCAN TIMEOUT (SCAN TOUT): This is the cyclic period used by the F60 to decide when a measurand ASDU is included in a response. The measurand is sent as response to a Class 2 request when the corresponding timeout expires. The default value 0 means 500 ms.

ANALOG #: This field contains the actual measurand to be sent in the response to the master. The measurands can be mapped using elements from a list of FlexAnalog operands. The measurands sent are voltage, current, power, power factor, and frequency. If any other FlexAnalog is chosen, the F60 sends 0 instead of its value. Note that the power is transmitted in KW, not W. Measurands are transmitted as ASDU 3 or ASDU 9 (type identification value set to measurands I, respectively measurands II).

Each IEC60870-5-103 measurands list ends at the first unconfigured ("Off") value. Any measurand assigned after the first "Off" value is ignored.

At least one measurand per ASDU must be configured in order to configure the following ASDU. For example, the user can configure only one measurand for each ASDU, but the user is not allowed to skip ASDU2 and configure measurands in ASDU3.

ANALOG # FACTOR AND OFFSET: For each measurand included in the ASDU, a factor and offset can also be configured. The factor and offset allow for scaling to be performed on measurands. The final measurement sent to the IEC60870-103 master is then "a*x + b", where x is the measurand, a is the multiplying factor and b is the offset. The master has to perform the reversed operation in order to retrieve the actual value if such scaling is done. By default a = 1 and b = 0, so no scaling is done if these values are left at their defaults. Examples of when scaling is appropriate are as follows:

- If the measured value contains decimals and it is important to preserve the resolution. Since the format for transmitting the measurand does not permit decimals, a factor a>1 can be applied before transmission. For example, a frequency F=59.9Hz can be transmitted as Ft = 10 * F = 10 * 59.9 = 599. In this case a = 10, b = 0. The master receives 599 and has to divide by 10 to retrieve the real value 59.9.
- If the measured value is larger than what fits in the format defined in IEC103. The format defined in the standard allows for signed integers up to 4095. By offsetting, unsigned integers up to 4096 + 4095 = 8191 are supported. Scaling using factors <1 can be required in such cases. The calculation is outlined in the IEC60870-5-103 appendix. Two examples follow, where you decide factors a and b.

Example 1: Nominal power Pn = 100MW = 100000KW (power is transmitted in KW)

Since P can be both positive and negative:

```
Transmitted power Pt = (4095/(Pn^2.4)) * P = (4095/(100000 * 2.4)) * P
```

= 0.017 * P

a = 0.017

b = 0

Pt = 0.017 * P

For a max power 100000KW * 2.4 = 240000KW, we transmit

Pt = 0.017 * 240000 = 4080

A value above 240 MW is indicated by overflow.

Example 2: Nominal voltage Vn = 500000V

Since RMS voltage V can be only positive:

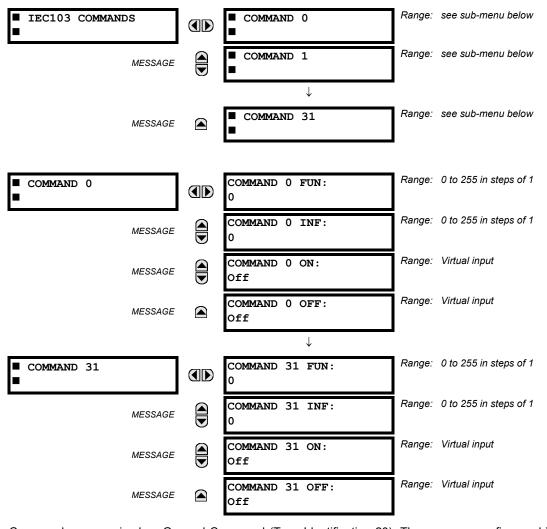
Transmitted voltage Vt = (8191/(Vn*2.4)) * V - 4096 =

= (8191/(500000 * 2.4)) * V - 4096 = 0.0068 * V - 4096

a = 0.0068

Since the step is in increments of 0.001, we round it at:

a = 0.006


b = -4096

Vt = 0.006 * V - 4096

For max voltage 500000V * 2.4 = 1200000V, we transmit

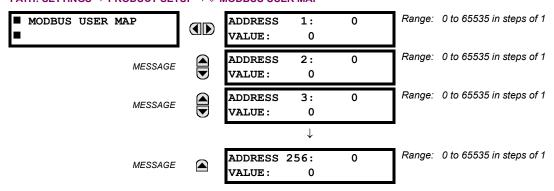
Vt = 0.006 * 1200000 - 4096 = 7200 - 4096 = 3104

PATH: SETTINGS PRODUCT SETUP COMMUNICATIONS UEC60870-5-103 EC103 COMMANDS

Commands are received as General Command (Type Identification 20). The user can configure which action to perform when an ASDU command comes.

A list of available mappings is provided on the F60. This includes 64 virtual inputs (see the following table). The ON and OFF for the same ASDU command can be mapped to different virtual inputs.

Each command is identified by the unique combination made by the function type (FUN), and information number (INF). If the master sends an ASDU command that does not have the FUN and INF of any configured command, the relay rejects it.

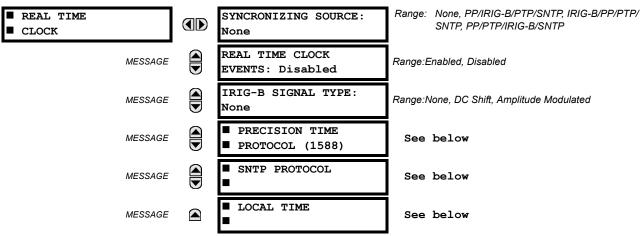

Table 5-7: COMMANDS MAPPING TABLE

DESCRIPTION	VALUE
Off	0

DESCRIPTION	VALUE
Virtual Input 1	1
Virtual Input 2	2
Virtual Input 64	64

5.2.5 MODBUS USER MAP

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\mathcal{P}\$ MODBUS USER MAP



The Modbus user map provides read-only access for up to 256 registers. To obtain a memory map value, enter the desired address in the **ADDRESS** line (converted from hex to decimal format). The corresponding value displays in the **VALUE** line. A value of "0" in subsequent register **ADDRESS** lines automatically returns values for the previous **ADDRESS** lines incremented by "1". An address value of "0" in the initial register means "none" and values of "0" display for all registers. Different **ADDRESS** values can be entered as required in any of the register positions.

5.2.6 REAL TIME CLOCK

a) MAIN MENU

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ REAL TIME CLOCK

The relay contains a real time clock (RTC) to create timestamps for communications protocols as well as for historical data, such as event records and oscillography. When the relay restarts, the RTC initializes from an onboard battery-backed clock, which has the same accuracy as an electronic watch, approximately ±1 minute per month (~23 ppm). Once the RTC is synchronized with the Precision Time Protocol (PTP), IRIG-B, or SNTP, its accuracy approaches that of the synchronizing time delivered to the relay.

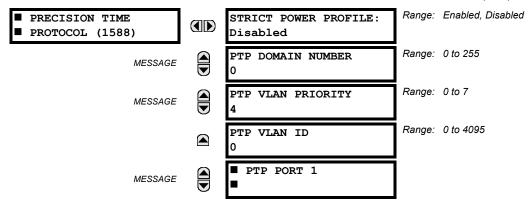
The **SYNCHRONIZING SOURCE** setting configures the priority sequence of the time synchronization source, to determine which of the available external time sources to use for time synchronization. A setting of None causes the RTC and the synchrophasor clock to free-run. A setting of PP/IRIG-B/PTP/SNTP, IRIG-B/PP/PTP/SNTP, or PP/PTP/IRIG-B/SNTP causes the relay to track the first source named that is enabled and operational, or free-run if none of these are available. Here, PP

means a time source that is strictly compliant with PP, and PTP means a time source that is not strictly compliant with PP. When a time source fails or recovers, the relay automatically transfers synchronization as required by this setting.

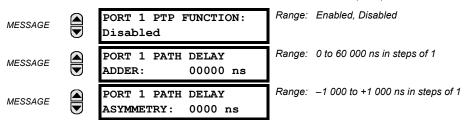
SCADA protocols, such as IEC 60870-5-103, IEC 60870-5-104, Modbus, and DNP, are low accuracy time synchronization methods. If none of the higher accuracy methods (IRIG-B, PTP, SNTP) is active, the F60 updates its clock when one of the SCADA time synchronizations is done.

The UR clock is updated by all sources active in the device, including IEC 60870-5-103. This means that whenever a time synchronization message is received through any of the active protocols, the UR clock updates. However, given that IEC 60870-5-103, IEC 60870-5-104, Modbus, and DNP are low accuracy time synchronization methods, their impact is insignificant when better accuracy time protocols, such as IRIG-B, PTP, and SNTP, are active in the system.

See the COMMANDS ⇒SET DATE AND TIME menu section of this manual to manually set the RTC.


The **REAL TIME CLOCK EVENTS** setting allows changes to the date and/or time to be captured in the event record. The event records the RTC time before the adjustment.

To enable IRIG-B synchronization, the input IRIG-B SIGNAL TYPE must be set to DC Shift or Amplitude Modulated. IRIG-B synchronization can be disabled by making this setting None.


To configure and enable PTP and/or SNTP, or to set local time parameters (for example time zone, daylight savings), use the following sections.

b) PRECISION TIME PROTOCOL (1588)

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⇩ REAL TIME CLOCK ⇒ ⇩ PRECISION TIME PROTOCOL (1588)

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial \text{ REAL TIME CLOCK} ⇒ \$\Partial \text{ PRECISION TIME PROTOCOL (1588) ⇒ \$\Partial \text{ PTP PORT 1(3)}}

The UR supports the Precision Time Protocol (PTP) specified in IEEE Std 1588 2008 using the Power Profile (PP) specified in IEEE Std C37.238 2011. This enables the relay to synchronize to the international time standard over an Ethernet network that implements PP.

The relay can be configured to operate on some PTP networks that are not strictly PP. Time accuracy can be less than specified for a PP network. Tolerated deviations from strict PP include 1) missing declaration of PP compliance in the messages, 2) connection to a network device that does not support the PTP peer delay mechanism, 3) jitter substantially greater than 1 µs in received event messages, and 4) certain non-compliant announce and sync message update rates.

The relay implements PTP according to IEEE Std 1588 2008 and the equivalent IEC 61588:2009(E), sometimes referred to as version 2 PTP. It does not support the previous version of the standard (version 1).

PTP is a protocol that allows multiple clocks in a network to synchronize with one another. It permits synchronization accuracies better than 1 ns, but this requires each and every component in the network achieve very high levels of accuracy and a very high baud rate, faster than normally used for relay communications. When operating over a generic Ethernet network, time error may amount to 1 ms or more. PP is a profile of PTP which specifies a limited subset of PTP suitable for use in power system protection, control, automation and data communication applications, and thereby facilitates interoperability between different vendor's clocks and switches. PP specifies a worst-case delivered time error of less than 1 µs over a 16-hop network.

In a PTP system and in a PP system, the clocks automatically organize themselves into a master-slave synchronization hierarchy with the "best" clock available making itself the "grandmaster" at the top of the hierarchy; all others make themselves "slaves" and track the grandmaster. Typically the grandmaster clock receives its time from GPS satellites or some other link to the international time standard. If the grandmaster fails, the next "best" clock available in the domain assumes the grandmaster role. Should a clock on starting up discover it is "better" that the present grandmaster, it assumes the grandmaster role and the previous grandmaster reverts to slave.

Time messages issued by the grandmaster are delayed as they pass through the network both due to the finite speed of the signal in the interconnecting fiber or wire. Each clock and switch implementing PP measures the propagation delay to each of its PP neighbors, and compensates for these delays in the time received. Each network device implementing PP measures the processing delay it introduces in each time message and compensates for this delay in the time it transmits. As a result, the time delivered to end-devices such as the UR are virtually identical to the grandmaster time. Should one of the network devices in the hierarchy not fully implement PP, the associated propagation delay and/or latency may not be compensated for, and the time received at the end-device could be in error by more than 100 µs.

See the **Settings > Product Setup > Real Time Clock** section of this manual for a description of when time values received via PTP are used to update the relay's real time clock.

The following settings are available for configuring the relay for PTP.

STRICT POWER PROFILE

- Power profile (IEEE Std C37.238 2011) requires that the relay only select as a grandmaster power profile compliant clocks, that the delivered time have worst-case error of ±1 μs, and that the peer delay mechanism be implemented. With the strict power profile setting enabled, the relay will only select as master clocks displaying the IEEE_C37_238 identification codes. It will use a port only when the peer delay mechanism is operational. With the strict power profile setting disabled, the relay will use clocks without the power profile identification when no power profile clocks are present, and will use ports even if the peer delay mechanism is non-operational.
- This setting applies to all of the relay's PTP capable ports.

PTP DOMAIN NUMBER

- This setting should be set to the domain number of the grandmaster-capable clock(s) to be synchronized to. A network may support multiple time distribution domains, each distinguished with a unique domain number. More commonly, there is a single domain using the default domain number zero.
- This setting applies to all of the relay's PTP capable ports.

PTP VLAN PRIORITY

- This setting selects the value of the priority field in the 802.1Q VLAN tag in request messages issued by the relay's peer delay mechanism. In compliance with PP the default VLAN priority is 4, but it is recommended that in accordance with PTP it be set to 7.
- Depending on the characteristics of the device to which the relay is directly linked, VLAN Priority may have no effect.
- This setting applies to all of the relay's PTP capable ports.

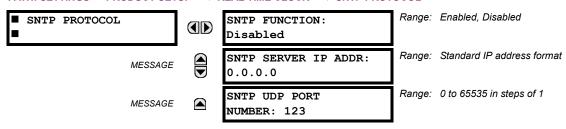
PTP VLAN ID

- This setting selects the value of the ID field in the 802.1Q VLAN tag in request messages issued by the relay's peer delay mechanism. It is provided in compliance with PP. As these messages have a destination address that indicates they are not to be bridged, their VLAN ID serves no function, and so may be left at its default value.
- Depending on the characteristics of the device to which the relay is directly linked, VLAN ID may have no effect.
- This setting applies to all of the relay's PTP capable ports.

PORT 1 ... 3 FUNCTION

• While this port setting is selected to disabled, PTP is disabled on this port. The relay does not generate or listen to PTP messages on this port.

PORT 1 ... 3 PATH DELAY ADDER


- The time delivered by PTP is advanced by the time value in this setting prior to the time being used to synchronize the
 relay's real time clock. This is to compensate to the extent practical for time delivery delays not compensated for in the
 network. In a fully compliant PP network, the peer delay and the processing delay mechanisms compensate for all the
 delays between the grandmaster and the relay. In such networks, this setting should be zero.
- In networks containing one or more switches and/or clocks that do not implement both of these mechanisms, not all delays are compensated, so the time of message arrival at the relay will be later than the time indicated in the message. This setting can be used to approximately compensate for this delay. However, as the relay is not aware of network switching that dynamically changes the amount of uncompensated delay, there is no setting that will always completely correct for uncompensated delay. A setting can be chosen that will reduce worst-case error to half of the range between minimum and maximum uncompensated delay, if these values are known.

PORT 1 ... 3 PATH DELAY ASYMMETRY

- This setting corresponds to "delayAsymmetry" in PTP, which is used by the peer delay mechanism to compensate for any difference in the propagation delay between the two directions of a link. Except in unusual cases, the two fibers are of essentially identical length and composition, so this setting should be set to zero.
- In unusual cases where the length of the link is different in different directions, this setting should be set to the number of nanoseconds the Ethernet propagation delay to the relay is longer than the mean of path propagation delays to and from the relay. For instance, if it is known say from the physical length of the fibers and the propagation speed in the fibers that the delay from the relay to the Ethernet switch it is connected to is 9 000 ns and the that the delay from the switch to the relay is 11 000 ns, then the mean delay is 10 000 ns, and the path delay asymmetry is 11000 10000 = +1000 ns.

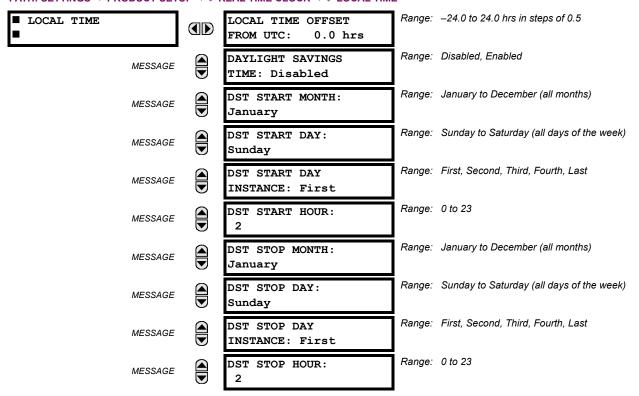
c) SNTP PROTOCOL

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ REAL TIME CLOCK ⇒ ⊕ SNTP PROTOCOL

The F60 supports the Simple Network Time Protocol specified in RFC-2030. With SNTP, the F60 can obtain clock time over an Ethernet network. The F60 acts as an SNTP client to receive time values from an SNTP/NTP server, usually a dedicated product using a GPS receiver to provide an accurate time. Unicast SNTP is supported. The UR-series relays do not support the broadcast, multicast or anycast SNTP functionality.

The **SNTP FUNCTION** setting enables or disabled the SNTP feature on the F60.

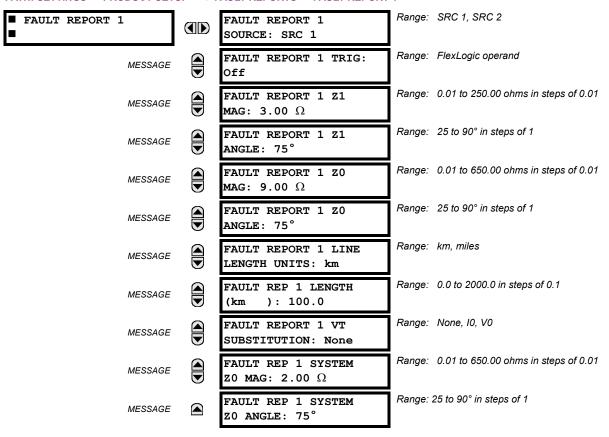
To use SNTP, **SNTP SERVER IP ADDR** must be set to the SNTP/NTP server IP address. Once this address is set and **SNTP FUNCTION** is "Enabled", the F60 attempts to obtain time values from the SNTP/NTP server. Since many time values are obtained and averaged, it generally takes three to four minutes until the F60 clock is closely synchronized with the SNTP/NTP server. It takes up to two minutes for the F60 to signal an SNTP self-test error if the server is offline.


The SNTP UDP PORT NUMBER is 123 for normal SNTP operation. If SNTP is not required, close the port by setting it to 0.

When the SNTP UDP PORT NUMBER is set to 0, the change takes effect when the F60 is restarted.

d) LOCAL TIME

PATH: SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ REAL TIME CLOCK $\Rightarrow \emptyset$ LOCAL TIME


The UR device maintains two times: local time and Universal Coordinated Time (UTC). Local time can be provided by IRIG-B signals. UTC time is provided by SNTP servers.

The real-time clock (RTC) and communication protocol times are not correct unless Local Time is configured for the current location. When the RTC is synchronized with IRIG-B, Local Time must be configured for the current location or else the timestamps may not be accurate. Furthermore, times reported in historical records and communication protocols may be incorrect if the Local Time setting is not configured properly.

The LOCAL TIME OFFSET FROM UTC setting is used to specify the local time zone offset from UTC (Greenwich Mean Time) in hours. Time zones in the eastern hemisphere have positive values; time zones in the western hemisphere have negative values. A value of zero causes the relay to use UTC for local time. This setting has two uses. When the system RTC is synchronized with a communications protocol providing only local time or it is free-running, the offset setting is used to calculate UTC from the local time these provide. When the RTC is synchronized with a communications protocol providing only UTC (such as PTP or SNTP), the time offset setting is used to determine local time from the UTC provided. PTP ALTERNATE_TIME_OFFSET_INDICATOR TLVs are not used to calculate local time. When a communications protocol other than PTP provides UTC to local time offset (meaning IRIG-B), that offset is used instead of the local time and daylight time settings.

The **DAYLIGHT SAVINGS TIME (DST)** settings can be used to allow the relay to follow the DST rules of the local time zone. Note that when IRIG-B time synchronization is active, the local time in the IRIG-B signal contains any daylight savings time offset and so the DST settings are ignored.

PATH: SETTINGS PRODUCT SETUP FAULT REPORTS FAULT REPORT 1

The F60 relay supports one fault report and an associated fault locator. The signal source and trigger condition, as well as the characteristics of the line or feeder, are entered in this menu.

The fault report stores data, in non-volatile memory, pertinent to an event when triggered. The captured data contained in the FaultReport.txt file includes:

- Fault report number.
- Name of the relay, programmed by the user.
- · Firmware revision of the relay.
- · Date and time of trigger.
- · Name of trigger (specific operand).
- Line or feeder ID via the name of a configured signal source.
- Active setting group at the time of trigger.
- Pre-fault current and voltage phasors (two cycles before either a 50DD disturbance associated with fault report source
 or the trigger operate). Once a disturbance is detected, pre-fault phasors hold for 3 seconds waiting for the fault report
 trigger. If trigger does not occur within this time, the values are cleared to prepare for the next disturbance.
- Fault current and voltage phasors (one cycle after the trigger).
- Elements operated at the time of triggering.
- Events: 9 before trigger and 7 after trigger (only available via the relay webpage).
- Fault duration times for each breaker (created by the breaker arcing current feature).

The captured data also includes the fault type and the distance to the fault location, as well as the reclose shot number (when applicable) To include fault duration times in the fault report, the user must enable and configure breaker arcing current feature for each of the breakers. Fault duration is reported on a per-phase basis.

The relay allows locating faults, including ground faults, from delta-connected VTs. In this case, the missing zero-sequence voltage is substituted either by the externally provided neutral voltage (broken delta VT) connected to the auxiliary voltage channel of a VT bank, or by the zero-sequence voltage approximated as a voltage drop developed by the zero-sequence current, and user-provided zero-sequence equivalent impedance of the system behind the relay.

The trigger can be any FlexLogic operand, but in most applications it is expected to be the same operand, usually a virtual output, that is used to drive an output relay to trip a breaker. To prevent the overwriting of fault events, the disturbance detector should not be used to trigger a fault report. A FAULT RPT TRIG event is automatically created when the report is triggered.

If a number of protection elements are ORed to create a fault report trigger, the first operation of any element causing the OR gate output to become high triggers a fault report. However, If other elements operate during the fault and the first operated element has not been reset (the OR gate output is still high), the fault report is not triggered again. Considering the reset time of protection elements, there is very little chance that fault report can be triggered twice in this manner. As the fault report must capture a usable amount of pre and post-fault data, it can not be triggered faster than every 20 ms.

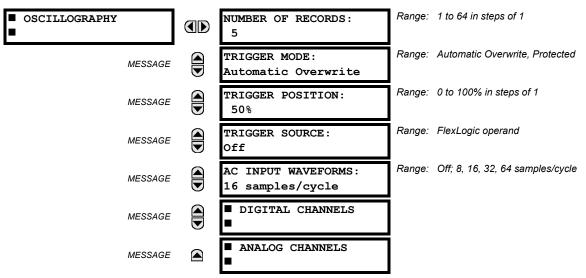
Each fault report is stored as a file; the relay capacity is fifteen (15) files. An sixteenth (16th) trigger overwrites the oldest file.

The EnerVista UR Setup software is required to view all captured data. The relay faceplate display can be used to view the date and time of trigger, the fault type, the distance location of the fault, and the reclose shot number.

The FAULT REPORT 1 SOURCE setting selects the source for input currents and voltages and disturbance detection.

The FAULT 1 REPORT TRIG setting assigns the FlexLogic operand representing the protection element/elements requiring operational fault location calculations. The distance to fault calculations are initiated by this signal. The FAULT REPORT 1 Z1 MAG and FAULT REPORT 1 Z0 MAG impedances are entered in secondary ohms.

The **FAULT REPORT 1 VT SUBSTITUTION** setting shall be set to "None" if the relay is fed from wye-connected VTs. If delta-connected VTs are used, and the relay is supplied with the neutral (3V0) voltage, this setting shall be set to "V0". The method is still exact, as the fault locator would combine the line-to-line voltage measurements with the neutral voltage measurement to re-create the line-to-ground voltages. See the **ACTUAL VALUES** $\Rightarrow \mathbb{R}$ **RECORDS** \Rightarrow **FAULT REPORTS** menu for additional details. It required to configure the delta and neutral voltages under the source indicated as input for the fault report. Also, the relay will check if the auxiliary signal configured is marked as "Vn" by the user (under VT setup), and inhibit the fault location if the auxiliary signal is labeled differently.


If the broken-delta neutral voltage is not available to the relay, an approximation is possible by assuming the missing zero-sequence voltage to be an inverted voltage drop produced by the zero-sequence current and the user-specified equivalent zero-sequence system impedance behind the relay: $V0 = -Z0 \times I0$. In order to enable this mode of operation, the **FAULT REPORT 1 VT SUBSTITUTION** setting shall be set to "I0".

The FAULT REP 1 SYSTEM ZO MAG and FAULT REP 1 SYSTEM ZO ANGLE settings are used only when the VT SUBSTITUTION setting value is "IO". The magnitude is to be entered in secondary ohms. This impedance is an average system equivalent behind the relay. It can be calculated as zero-sequence Thevenin impedance at the local bus with the protected line/feeder disconnected. The method is accurate only if this setting matches perfectly the actual system impedance during the fault. If the system exhibits too much variability, this approach is questionable and the fault location results for single-line-to-ground faults shall be trusted with accordingly. It should be kept in mind that grounding points in vicinity of the installation impact the system zero-sequence impedance (grounded loads, reactors, zig-zag transformers, shunt capacitor banks, etc.).

5 SETTINGS

a) MAIN MENU

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ OSCILLOGRAPHY

Oscillography records contain waveforms captured at the sampling rate as well as other relay data at the point of trigger. Oscillography records are triggered by a programmable FlexLogic operand. Multiple oscillography records may be captured simultaneously.

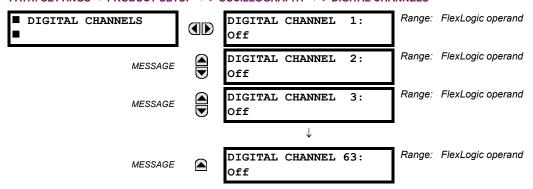
The **NUMBER OF RECORDS** is selectable, but the number of cycles captured in a single record varies considerably based on other factors such as sample rate and the number of operational modules. There is a fixed amount of data storage for oscillography; the more data captured, the less the number of cycles captured per record. See the **ACTUAL VALUES** $\Rightarrow \emptyset$ **RECORDS** $\Rightarrow \emptyset$ **OSCILLOGRAPHY** menu to view the number of cycles captured per record. The following table provides sample configurations with corresponding cycles/record. The minimum number of oscillographic records is three.

Table 5-8: OSCILLOGRAPHY CYCLES/RECORD EXAMPLE

RECORDS	CT/VTS	SAMPLE RATE	DIGITALS	ANALOGS	CYCLES/ RECORD
3	1	8	0	0	14663
3	1	16	16	0	6945
8	1	16	16	0	3472
8	1	16	16	4	2868
8	2	16	16	4	1691
8	2	16	63	16	1221
8	2	32	63	16	749
8	2	64	63	16	422
32	2	64	63	16	124

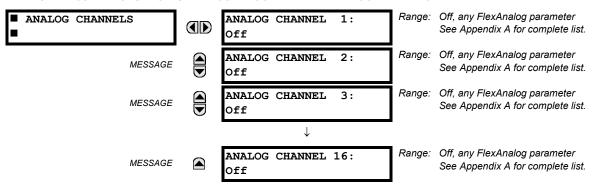
A new record may automatically overwrite an older record if TRIGGER MODE is set to "Automatic Overwrite".

Set the **TRIGGER POSITION** to a percentage of the total buffer size (for example, 10%, 50%, 75%, etc.). A trigger position of 25% consists of 25% pre- and 75% post-trigger data. The **TRIGGER SOURCE** is always captured in oscillography and may be any FlexLogic parameter (element state, contact input, virtual output, etc.). The relay sampling rate is 64 samples per cycle.


The **AC INPUT WAVEFORMS** setting determines the sampling rate at which AC input signals (that is, current and voltage) are stored. Reducing the sampling rate allows longer records to be stored. This setting has no effect on the internal sampling rate of the relay which is always 64 samples per cycle; that is, it has no effect on the fundamental calculations of the device.

When changes are made to the oscillography settings, all existing oscillography records will be CLEARED.

b) DIGITAL CHANNELS


PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial\$ OSCILLOGRAPHY ⇒ \$\Partial\$ DIGITAL CHANNELS

A **DIGITAL 1(63) CHANNEL** setting selects the FlexLogic operand state recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. Upon startup, the relay will automatically prepare the parameter list.

c) ANALOG CHANNELS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ \$\Partial \text{ OSCILLOGRAPHY \$\Rightarrow \Partial \text{ Analog Channels}}\$

These settings select the metering actual value recorded in an oscillography trace. The length of each oscillography trace depends in part on the number of parameters selected here. Parameters set to "Off" are ignored. The parameters available in a given relay are dependent on:

- The type of relay,
- The type and number of CT/VT hardware modules installed, and
- The type and number of analog input hardware modules installed.

Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is presented in Appendix A: FlexAnalog parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad and display - entering this number via the relay keypad will cause the corresponding parameter to be displayed.

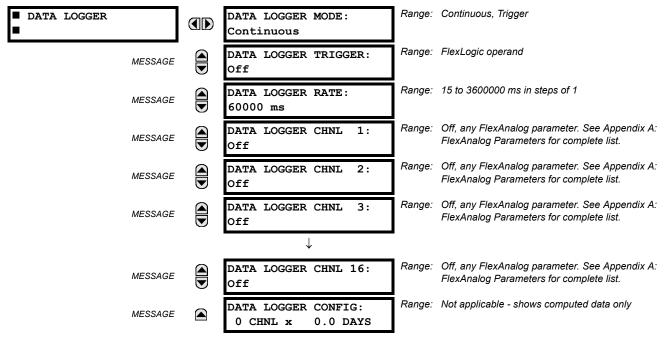
All eight CT/VT module channels are stored in the oscillography file. The CT/VT module channels are named as follows:

<slot letter><terminal number>—<I or V><phase A, B, or C, or 4th input>

The fourth current input in a bank is called IG, and the fourth voltage input in a bank is called VX. For example, F2-IB designates the IB signal on terminal 2 of the CT/VT module in slot F.

If there are no CT/VT modules and analog input modules, no analog traces will appear in the file; only the digital traces will appear.

The source harmonic indices appear as oscillography analog channels numbered from 0 to 23. These correspond directly to the to the 2nd to 25th harmonics in the relay as follows:


Analog channel 0 \leftrightarrow 2nd harmonic Analog channel 1 \leftrightarrow 3rd harmonic

...

Analog channel 23 ↔ 25th harmonic

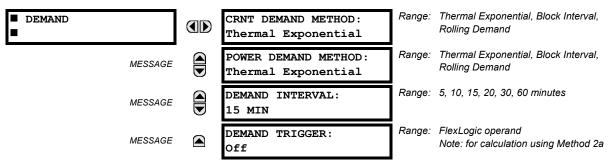
5.2.9 DATA LOGGER

PATH: SETTINGS ⇒ \$\PRODUCT SETUP ⇒ \$\Property Data logger

The data logger samples and records up to 16 analog parameters at a user-defined sampling rate. This recorded data may be downloaded to EnerVista UR Setup and displayed with *parameters* on the vertical axis and *time* on the horizontal axis. All data is stored in non-volatile memory, meaning that the information is retained when power to the relay is lost.

For a fixed sampling rate, the data logger can be configured with a few channels over a long period or a larger number of channels for a shorter period. The relay automatically partitions the available memory between the channels in use. Example storage capacities for a system frequency of 60 Hz are shown in the following table.

Table 5-9: DATA LOGGER STORAGE CAPACITY EXAMPLE


SAMPLING RATE	CHANNELS	DAYS	STORAGE CAPACITY
15 ms	1	0.1	954 s
	8	0.1	120 s
	9	0.1	107 s
	16	0.1	60 s
1000 ms	1	0.7	65457 s
	8	0.1	8182 s
	9	0.1	7273 s
	16	0.1	4091 s
60000 ms	1	45.4	3927420 s
	8	5.6	490920 s
	9	5	436380 s
	16	2.8	254460 s
3600000 ms	1	2727.5	235645200 s
	8	340.9	29455200 s
	9	303	26182800 s

Changing any setting affecting data logger operation will clear any data that is currently in the log.

- DATA LOGGER MODE: This setting configures the mode in which the data logger will operate. When set to "Continuous", the data logger will actively record any configured channels at the rate as defined by the DATA LOGGER RATE. The data logger will be idle in this mode if no channels are configured. When set to "Trigger", the data logger will begin to record any configured channels at the instance of the rising edge of the DATA LOGGER TRIGGER source FlexLogic operand. The data logger will ignore all subsequent triggers and will continue to record data until the active record is full. Once the data logger is full a CLEAR DATA LOGGER command is required to clear the data logger record before a new record can be started. Performing the CLEAR DATA LOGGER command will also stop the current record and reset the data logger to be ready for the next trigger.
- DATA LOGGER TRIGGER: This setting selects the signal used to trigger the start of a new data logger record. Any
 FlexLogic operand can be used as the trigger source. The DATA LOGGER TRIGGER setting only applies when the mode
 is set to "Trigger".
- DATA LOGGER RATE: This setting selects the time interval at which the actual value data will be recorded.
- DATA LOGGER CHNL 1(16): This setting selects the metering actual value that is to be recorded in Channel 1(16) of the data log. The parameters available in a given relay are dependent on: the type of relay, the type and number of CT/VT hardware modules installed, and the type and number of Analog Input hardware modules installed. Upon startup, the relay will automatically prepare the parameter list. A list of all possible analog metering actual value parameters is shown in Appendix A: FlexAnalog Parameters. The parameter index number shown in any of the tables is used to expedite the selection of the parameter on the relay display. It can be quite time-consuming to scan through the list of parameters via the relay keypad/display entering this number via the relay keypad will cause the corresponding parameter to be displayed.
- **DATA LOGGER CONFIG:** This display presents the total amount of time the Data Logger can record the channels not selected to "Off" without over-writing old data.

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ □ DEMAND

The relay measures current demand on each phase, and three-phase demand for real, reactive, and apparent power. Current and Power methods can be chosen separately for the convenience of the user. Settings are provided to allow the user to emulate some common electrical utility demand measuring techniques, for statistical or control purposes. If the **CRNT DEMAND METHOD** is set to "Block Interval" and the **DEMAND TRIGGER** is set to "Off", Method 2 is used (see below). If **DEMAND TRIGGER** is assigned to any other FlexLogic operand, Method 2a is used (see below).

The relay can be set to calculate demand by any of three methods as described below:

CALCULATION METHOD 1: THERMAL EXPONENTIAL

This method emulates the action of an analog peak recording thermal demand meter. The relay measures the quantity (RMS current, real power, reactive power, or apparent power) on each phase every second, and assumes the circuit quantity remains at this value until updated by the next measurement. It calculates the 'thermal demand equivalent' based on the following equation:

$$d(t) = D(1 - e^{-kt})$$
 (EQ 5.6)

where: d = demand value after applying input quantity for time <math>t (in minutes)

D = input quantity (constant), and k = 2.3 / thermal 90% response time.

The 90% thermal response time characteristic of 15 minutes is illustrated below. A setpoint establishes the time to reach 90% of a steady-state value, just as the response time of an analog instrument. A steady state value applied for twice the response time will indicate 99% of the value.



Figure 5-10: THERMAL DEMAND CHARACTERISTIC

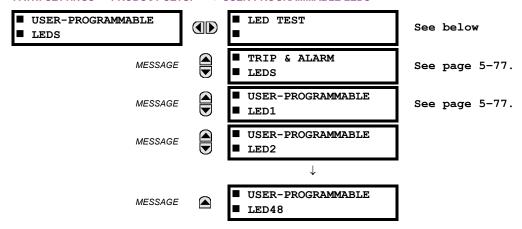
CALCULATION METHOD 2: BLOCK INTERVAL

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, starting daily at 00:00:00 (i.e. 12:00 am). The 1440 minutes per day is divided into the number of blocks as set by the programmed time interval. Each new value of demand becomes available at the end of each time interval.

CALCULATION METHOD 2a: BLOCK INTERVAL (with Start Demand Interval Logic Trigger)

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the interval between successive Start Demand Interval logic input pulses. Each new value of demand becomes available at the end of each pulse. Assign a FlexLogic operand to the **DEMAND TRIGGER** setting to program the input for the new demand interval pulses.

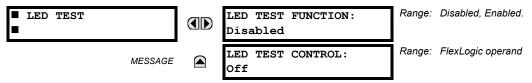
If no trigger is assigned in the **DEMAND TRIGGER** setting and the **CRNT DEMAND METHOD** is "Block Interval", use calculating method #2. If a trigger is assigned, the maximum allowed time between 2 trigger signals is 60 minutes. If no trigger signal appears within 60 minutes, demand calculations are performed and available and the algorithm resets and starts the new cycle of calculations. The minimum required time for trigger contact closure is 20 μs.


CALCULATION METHOD 3: ROLLING DEMAND

This method calculates a linear average of the quantity (RMS current, real power, reactive power, or apparent power) over the programmed demand time interval, in the same way as Block Interval. The value is updated every minute and indicates the demand over the time interval just preceding the time of update.

5.2.11 USER-PROGRAMMABLE LEDS

a) MAIN MENU


PATH: SETTINGS PRODUCT SETUP USER-PROGRAMMABLE LEDS

The 48 amber LEDs on relay panels 2 and 3 can be customized to illuminate when a selected FlexLogic operand is in the logic 1 state. The trip and alarm LEDs on panel 1 can also be customized in a similar manner. To ensure correct functionality of all LEDs, an LED test feature is also provided.

b) LED TEST

PATH: SETTINGS PRODUCT SETUP USER-PROGRAMMABLE LEDS LED TEST

When enabled, the LED test can be initiated from any digital input or user-programmable condition such as user-programmable pushbutton. The control operand is configured under the **LED TEST CONTROL** setting. The test covers all LEDs, including the LEDs of the optional user-programmable pushbuttons.

The test consists of three stages.

- 1. All 62 LEDs on the relay are illuminated. This is a quick test to verify if any of the LEDs is "burned". This stage lasts as long as the control input is on, up to a maximum of 1 minute. After 1 minute, the test will end.
- 2. All the LEDs are turned off, and then one LED at a time turns on for 1 second, then back off. The test routine starts at the top left panel, moving from the top to bottom of each LED column. This test checks for hardware failures that lead to more than one LED being turned on from a single logic point. This stage can be interrupted at any time.
- 3. All the LEDs are turned on. One LED at a time turns off for 1 second, then back on. The test routine starts at the top left panel moving from top to bottom of each column of the LEDs. This test checks for hardware failures that lead to more than one LED being turned off from a single logic point. This stage can be interrupted at any time.

When testing is in progress, the LEDs are controlled by the test sequence, rather than the protection, control, and monitoring features. However, the LED control mechanism accepts all the changes to LED states generated by the relay and stores the actual LED states (on or off) in memory. When the test completes, the LEDs reflect the actual state resulting from relay response during testing. The reset pushbutton will not clear any targets when the LED Test is in progress.

A dedicated FlexLogic operand, LED TEST IN PROGRESS, is set for the duration of the test. When the test sequence is initiated, the LED TEST INITIATED event is stored in the event recorder.

The entire test procedure is user-controlled. In particular, stage 1 can last as long as necessary, and stages 2 and 3 can be interrupted. The test responds to the position and rising edges of the control input defined by the **LED TEST CONTROL** setting. The control pulses must last at least 250 ms to take effect. The following diagram explains how the test is executed.

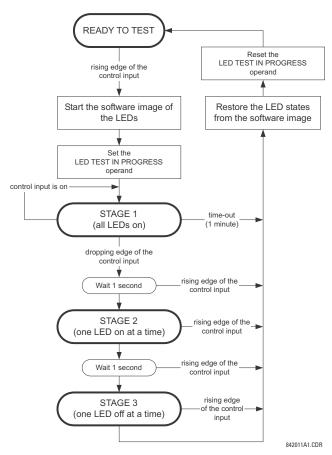


Figure 5-11: LED TEST SEQUENCE

APPLICATION EXAMPLE 1:

Assume one needs to check if any of the LEDs is "burned" through user-programmable pushbutton 1. The following settings should be applied. Configure user-programmable pushbutton 1 by making the following entries in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset" PUSHBTN 1 DROP-OUT TIME: "0.10 s"

Configure the LED test to recognize user-programmable pushbutton 1 by making the following entries in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE LEDS ⇒ LED TEST menu:

LED TEST FUNCTION: "Enabled"

LED TEST CONTROL: "PUSHBUTTON 1 ON"

The test will be initiated when the user-programmable pushbutton 1 is pressed. The pushbutton should remain pressed for as long as the LEDs are being visually inspected. When finished, the pushbutton should be released. The relay will then automatically start stage 2. At this point forward, test may be aborted by pressing the pushbutton.

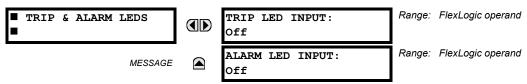
APPLICATION EXAMPLE 2:

Assume one needs to check if any LEDs are "burned" as well as exercise one LED at a time to check for other failures. This is to be performed via user-programmable pushbutton 1.

After applying the settings in application example 1, hold down the pushbutton as long as necessary to test all LEDs. Next, release the pushbutton to automatically start stage 2. Once stage 2 has started, the pushbutton can be released. When stage 2 is completed, stage 3 will automatically start. The test may be aborted at any time by pressing the pushbutton.

c) TRIP AND ALARM LEDS

PATH: SETTINGS


PRODUCT SETUP

USER-PROGRAMMABLE LEDS

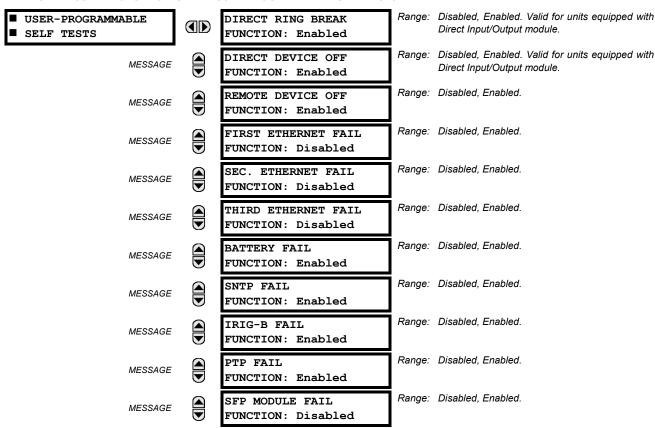
TRIP & ALARM LEDS

LEDS

TRIP & ALARM LEDS

The trip and alarm LEDs are in the first LED column (enhanced faceplate) and on LED panel 1 (standard faceplate). Each indicator can be programmed to become illuminated when the selected FlexLogic operand is in the logic 1 state.

d) USER-PROGRAMMABLE LED 1(48)

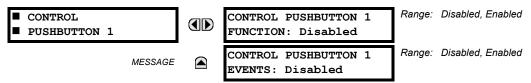

5.2.12 USER-PROGRAMMABLE SELF-TESTS

For user-programmable self-tests for CyberSentry, use the **Setup > Security > Supervisory** menu instead.

PATH: SETTINGS

PRODUCT SETUP

USER-PROGRAMMABLE SELF TESTS


All major self-test alarms are reported automatically with their corresponding FlexLogic operands, events, and targets. Most of the minor alarms can be disabled if desired.

When in the Disabled mode, minor alarms do not assert a FlexLogic operand, write to the event recorder, or display target messages. Moreover, they do not trigger the **ANY MINOR ALARM** or **ANY SELF-TEST** messages. When in Enabled mode, minor alarms continue to function along with other major and minor alarms. See the *Relay Self-tests* section in chapter 7 for information on major and minor self-test alarms.

5.2 PRODUCT SETUP

5.2.13 CONTROL PUSHBUTTONS

PATH: SETTINGS PRODUCT SETUP CONTROL PUSHBUTTONS CONTROL PUSHBUTTON 1(7)

There are three standard control pushbuttons, labeled USER 1, USER 2, and USER 3, on the standard and enhanced front panels. These are user-programmable and can be used for various applications such as performing an LED test, switching setting groups, and invoking and scrolling though user-programmable displays.

Firmware revisions 3.2x and older use these three pushbuttons for manual breaker control. This functionality has been retained – if the breaker control feature is configured to use the three pushbuttons, they cannot be used as user-programmable control pushbuttons.

The location of the control pushbuttons are shown in the following figures.

Figure 5–12: CONTROL PUSHBUTTONS (ENHANCED FACEPLATE)

An additional four control pushbuttons are included on the standard faceplate when the F60 is ordered with the 12 user-programmable pushbutton option.

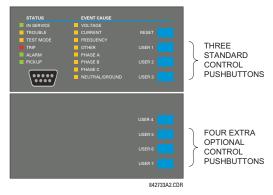


Figure 5-13: CONTROL PUSHBUTTONS (STANDARD FACEPLATE)

Control pushbuttons are not typically used for critical operations and are not protected by the control password. However, by supervising their output operands, the user can dynamically enable or disable control pushbuttons for security reasons.

Each control pushbutton asserts its own FlexLogic operand. These operands should be configured appropriately to perform the desired function. The operand remains asserted as long as the pushbutton is pressed and resets when the pushbutton is released. A dropout delay of 100 ms is incorporated to ensure fast pushbutton manipulation will be recognized by various features that may use control pushbuttons as inputs.

An event is logged in the event record (as per user setting) when a control pushbutton is pressed. No event is logged when the pushbutton is released. The faceplate keys (including control keys) cannot be operated simultaneously – a given key must be released before the next one can be pressed.

The control pushbuttons become user-programmable only if the breaker control feature is not configured for manual control via the USER 1 through 3 pushbuttons as shown below. If configured for manual control, breaker control typically uses the larger, optional user-programmable pushbuttons, making the control pushbuttons available for other user applications.

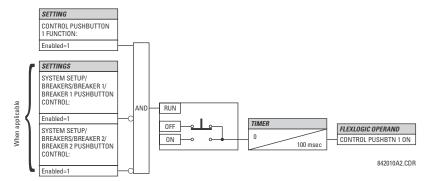
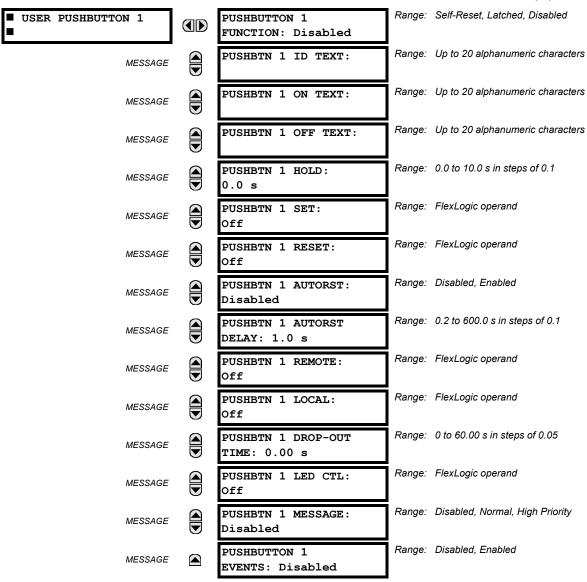



Figure 5-14: CONTROL PUSHBUTTON LOGIC

5.2.14 USER-PROGRAMMABLE PUSHBUTTONS

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1(16)

The optional user-programmable pushbuttons (specified in the order code) provide an easy and error-free method of entering digital state (on, off) information. The number of available pushbuttons is dependent on the faceplate module ordered with the relay.

- Type P faceplate: standard horizontal faceplate with 12 user-programmable pushbuttons.
- Type Q faceplate: enhanced horizontal faceplate with 16 user-programmable pushbuttons.

The digital state can be entered locally (by directly pressing the front panel pushbutton) or remotely (via FlexLogic operands) into FlexLogic equations, protection elements, and control elements. Typical applications include breaker control, autorecloser blocking, and setting groups changes. The user-programmable pushbuttons are under the control level of password protection.

The user-configurable pushbuttons for the enhanced faceplate are shown below.

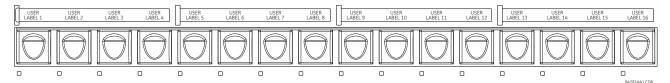


Figure 5-15: USER-PROGRAMMABLE PUSHBUTTONS (ENHANCED FACEPLATE)

The user-configurable pushbuttons for the standard faceplate are shown below.

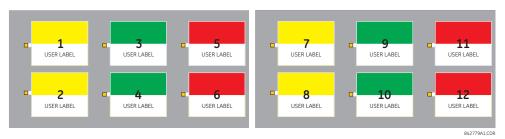


Figure 5-16: USER-PROGRAMMABLE PUSHBUTTONS (STANDARD FACEPLATE)

Both the standard and enhanced faceplate pushbuttons can be custom labeled with a factory-provided template, available online at http://www.gedigitalenergy.com/multilin. The EnerVista UR Setup software can also be used to create labels for the enhanced faceplate.

Each pushbutton asserts its own "On" and "Off" FlexLogic operands (for example, PUSHBUTTON 1 ON and PUSHBUTTON 1 OFF). These operands are available for each pushbutton and are used to program specific actions. If any pushbutton is active, the ANY PB ON operand will be asserted.

Each pushbutton has an associated LED indicator. By default, this indicator displays the present status of the corresponding pushbutton (on or off). However, each LED indicator can be assigned to any FlexLogic operand through the **PUSHBTN 1 LED CTL** setting.

The pushbuttons can be automatically controlled by activating the operands assigned to the **PUSHBTN 1 SET** (for latched and self-reset mode) and **PUSHBTN 1 RESET** (for latched mode only) settings. The pushbutton reset status is declared when the PUSHBUTTON 1 OFF operand is asserted. The activation and deactivation of user-programmable pushbuttons is dependent on whether latched or self-reset mode is programmed.

• Latched mode: In latched mode, a pushbutton can be set (activated) by asserting the operand assigned to the PUSH-BTN 1 SET setting or by directly pressing the associated front panel pushbutton. The pushbutton maintains the set state until deactivated by the reset command or after a user-specified time delay. The state of each pushbutton is stored in non-volatile memory and maintained through a loss of control power.

The pushbutton is reset (deactivated) in latched mode by asserting the operand assigned to the **PUSHBTN 1 RESET** setting or by directly pressing the associated active front panel pushbutton.

It can also be programmed to reset automatically through the **PUSHBTN 1 AUTORST** and **PUSHBTN 1 AUTORST DELAY** settings. These settings enable the autoreset timer and specify the associated time delay. The autoreset timer can be used in select-before-operate (SBO) breaker control applications, where the command type (close/open) or breaker location (feeder number) must be selected prior to command execution. The selection must reset automatically if control is not executed within a specified time period.

• Self-reset mode: In self-reset mode, a pushbutton will remain active for the time it is pressed (the pulse duration) plus the dropout time specified in the PUSHBTN 1 DROP-OUT TIME setting. If the pushbutton is activated via FlexLogic, the pulse duration is specified by the PUSHBTN 1 DROP-OUT TIME only. The time the operand remains assigned to the PUSHBTN 1 SET setting has no effect on the pulse duration.

The pushbutton is reset (deactivated) in self-reset mode when the dropout delay specified in the **PUSHBTN 1 DROP-OUT TIME** setting expires.

The pulse duration of the remote set, remote reset, or local pushbutton must be at least 50 ms to operate the pushbutton. This allows the user-programmable pushbuttons to properly operate during power cycling events and various system disturbances that may cause transient assertion of the operating signals.

The local and remote operation of each user-programmable pushbutton can be inhibited through the **PUSHBTN 1 LOCAL** and **PUSHBTN 1 REMOTE** settings, respectively. If local locking is applied, the pushbutton will ignore set and reset commands executed through the front panel pushbuttons. If remote locking is applied, the pushbutton will ignore set and reset commands executed through FlexLogic operands.

The locking functions are not applied to the autorestart feature. In this case, the inhibit function can be used in SBO control operations to prevent the pushbutton function from being activated and ensuring "one-at-a-time" select operation.

The locking functions can also be used to prevent the accidental pressing of the front panel pushbuttons. The separate inhibit of the local and remote operation simplifies the implementation of local/remote control supervision.

Pushbutton states can be logged by the event recorder and displayed as target messages. In latched mode, user-defined messages can also be associated with each pushbutton and displayed when the pushbutton is on or changing to off.

PUSHBUTTON 1 FUNCTION: This setting selects the characteristic of the pushbutton. If set to "Disabled", the pushbutton is not active and the corresponding FlexLogic operands (both "On" and "Off") are de-asserted. If set to "Self-Reset", the control logic is activated by the pulse (longer than 100 ms) issued when the pushbutton is being physically pressed or virtually pressed via a FlexLogic operand assigned to the PUSHBTN 1 SET setting.

When in "Self-Reset" mode and activated locally, the pushbutton control logic asserts the "On" corresponding Flex-Logic operand as long as the pushbutton is being physically pressed, and after being released the deactivation of the operand is delayed by the drop out timer. The "Off" operand is asserted when the pushbutton element is deactivated. If the pushbutton is activated remotely, the control logic of the pushbutton asserts the corresponding "On" FlexLogic operand only for the time period specified by the **PUSHBTN 1 DROP-OUT TIME** setting.

If set to "Latched", the control logic alternates the state of the corresponding FlexLogic operand between "On" and "Off" on each button press or by virtually activating the pushbutton (assigning set and reset operands). When in the "Latched" mode, the states of the FlexLogic operands are stored in a non-volatile memory. Should the power supply be lost, the correct state of the pushbutton is retained upon subsequent power up of the relay.

- PUSHBTN 1 ID TEXT: This setting specifies the top 20-character line of the user-programmable message and is
 intended to provide ID information of the pushbutton. See the *User-definable Displays* section for instructions on how
 to enter alphanumeric characters from the keypad.
- PUSHBTN 1 ON TEXT: This setting specifies the bottom 20-character line of the user-programmable message and is
 displayed when the pushbutton is in the "on" position. See the *User-definable Displays* section for instructions on
 entering alphanumeric characters from the keypad.
- PUSHBTN 1 HOLD: This setting specifies the time required for a pushbutton to be pressed before it is deemed active.
 This timer is reset upon release of the pushbutton. Note that any pushbutton operation will require the pushbutton to be pressed a minimum of 50 ms. This minimum time is required prior to activating the pushbutton hold timer.
- PUSHBTN 1 SET: This setting assigns the FlexLogic operand serving to operate the pushbutton element and to assert PUSHBUTTON 1 ON operand. The duration of the incoming set signal must be at least 100 ms.
- PUSHBTN 1 RESET: This setting assigns the FlexLogic operand serving to reset pushbutton element and to assert PUSHBUTTON 1 OFF operand. This setting is applicable only if pushbutton is in latched mode. The duration of the incoming reset signal must be at least 50 ms.
- **PUSHBTN 1 AUTORST**: This setting enables the user-programmable pushbutton autoreset feature. This setting is applicable only if the pushbutton is in the "Latched" mode.
- PUSHBTN 1 AUTORST DELAY: This setting specifies the time delay for automatic reset of the pushbutton when in the latched mode.
- **PUSHBTN 1 REMOTE**: This setting assigns the FlexLogic operand serving to inhibit pushbutton operation from the operand assigned to the **PUSHBTN 1 SET** or **PUSHBTN 1 RESET** settings.
- **PUSHBTN 1 LOCAL**: This setting assigns the FlexLogic operand serving to inhibit pushbutton operation from the front panel pushbuttons. This locking functionality is not applicable to pushbutton autoreset.

• **PUSHBTN 1 DROP-OUT TIME**: This setting applies only to "Self-Reset" mode and specifies the duration of the pushbutton active status after the pushbutton has been released. When activated remotely, this setting specifies the entire activation time of the pushbutton status; the length of time the operand remains on has no effect on the pulse duration. This setting is required to set the duration of the pushbutton operating pulse.

- PUSHBTN 1 LED CTL: This setting assigns the FlexLogic operand serving to drive pushbutton LED. If this setting is "Off", then LED operation is directly linked to PUSHBUTTON 1 ON operand.
- PUSHBTN 1 MESSAGE: If pushbutton message is set to "High Priority", the message programmed in the PUSHBTN 1
 ID and PUSHBTN 1 ON TEXT settings will be displayed undisturbed as long as PUSHBUTTON 1 ON operand is asserted.
 The high priority option is not applicable to the PUSHBTN 1 OFF TEXT setting.

This message can be temporary removed if any front panel keypad button is pressed. However, ten seconds of keypad inactivity will restore the message if the PUSHBUTTON 1 ON operand is still active.

If the PUSHBTN 1 MESSAGE is set to "Normal", the message programmed in the PUSHBTN 1 ID and PUSHBTN 1 ON TEXT settings will be displayed as long as PUSHBUTTON 1 ON operand is asserted, but not longer than time period specified by FLASH MESSAGE TIME setting. After the flash time is expired, the default message or other active target message is displayed. The instantaneous reset of the flash message will be executed if any relay front panel button is pressed or any new target or message becomes active.

The **PUSHBTN 1 OFF TEXT** setting is linked to PUSHBUTTON 1 OFF operand and will be displayed in conjunction with **PUSHBTN 1 ID** only if pushbutton element is in the "Latched" mode. The **PUSHBTN 1 OFF TEXT** message will be displayed as "Normal" if the **PUSHBTN 1 MESSAGE** setting is "High Priority" or "Normal".

PUSHBUTTON 1 EVENTS: If this setting is enabled, each pushbutton state change will be logged as an event into
event recorder.

The user-programmable pushbutton logic is shown below.

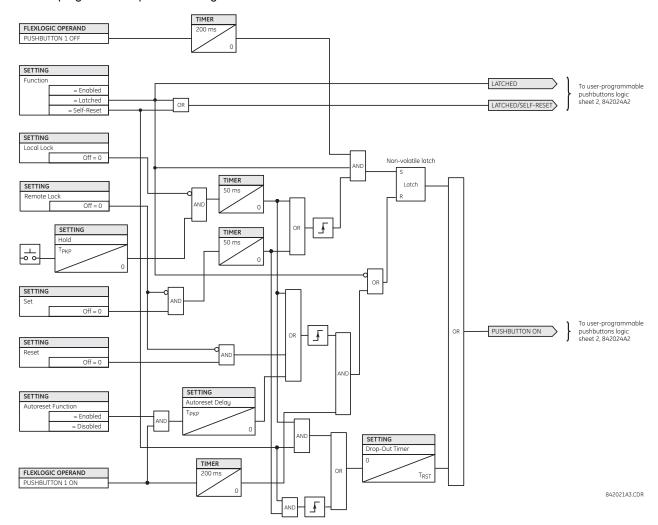
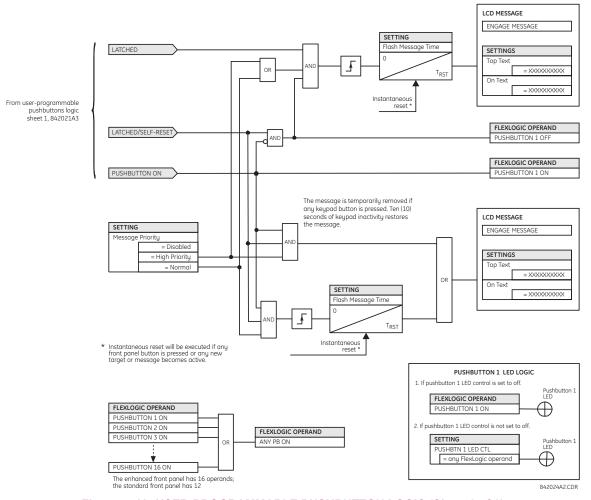
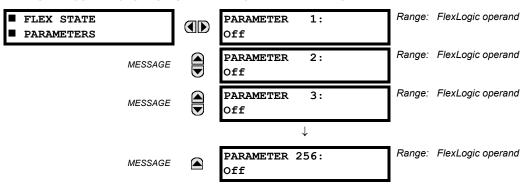


Figure 5–17: USER-PROGRAMMABLE PUSHBUTTON LOGIC (Sheet 1 of 2)




Figure 5–18: USER-PROGRAMMABLE PUSHBUTTON LOGIC (Sheet 2 of 2)

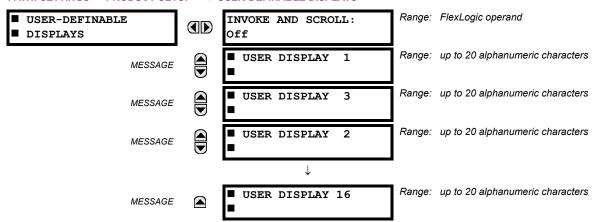
User-programmable pushbuttons require a type HP or HQ faceplate. If an HP or HQ type faceplate was ordered separately, the relay order code must be changed to indicate the correct faceplate option. This can be done via EnerVista UR Setup with the **Maintenance > Enable Pushbutton** command.

5.2.15 FLEX STATE PARAMETERS

PATH: SETTINGS PRODUCT SETUP FLEX STATE PARAMETERS

This feature provides a mechanism where any of 256 selected FlexLogic operand states can be used for efficient monitoring. The feature allows user-customized access to the FlexLogic operand states in the relay. The state bits are packed so that 16 states may be read out in a single Modbus register. The state bits can be configured so that all of the states which are of interest to the user are available in a minimum number of Modbus registers.

The state bits may be read out in the "Flex States" register array beginning at Modbus address 0900h. Sixteen states are packed into each register, with the lowest-numbered state in the lowest-order bit. There are sixteen registers to accommodate the 256 state bits.


5.2.16 USER-DEFINABLE DISPLAYS

a) MAIN MENU

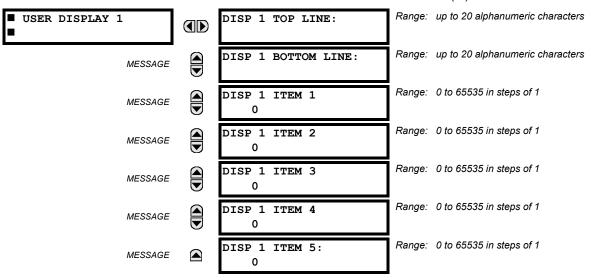
PATH: SETTINGS

PRODUCT SETUP

USER-DEFINABLE DISPLAYS

This menu provides a mechanism for manually creating up to 16 user-defined information displays in a convenient viewing sequence in the **USER DISPLAYS** menu (between the **TARGETS** and **ACTUAL VALUES** top-level menus). The sub-menus facilitate text entry and Modbus register data pointer options for defining the user display content.

Once programmed, the user-definable displays can be viewed in two ways.


- **KEYPAD**: Use the MENU key to select the **USER DISPLAYS** menu item to access the first user-definable display (note that only the programmed screens are displayed). The screens can be scrolled using the UP and DOWN keys. The display disappears after the default message time-out period specified by the **PRODUCT SETUP** ⇒ **USPLAY PROPERTIES** ⇒ **UDEFAULT MESSAGE TIMEOUT** setting.
- USER-PROGRAMMABLE CONTROL INPUT: The user-definable displays also respond to the INVOKE AND SCROLL setting. Any FlexLogic operand (in particular, the user-programmable pushbutton operands), can be used to navigate the programmed displays.

On the rising edge of the configured operand (such as when the pushbutton is pressed), the displays are invoked by showing the last user-definable display shown during the previous activity. From this moment onward, the operand acts exactly as the down key and allows scrolling through the configured displays. The last display wraps up to the first one. The INVOKE AND SCROLL input and the DOWN key operate concurrently.

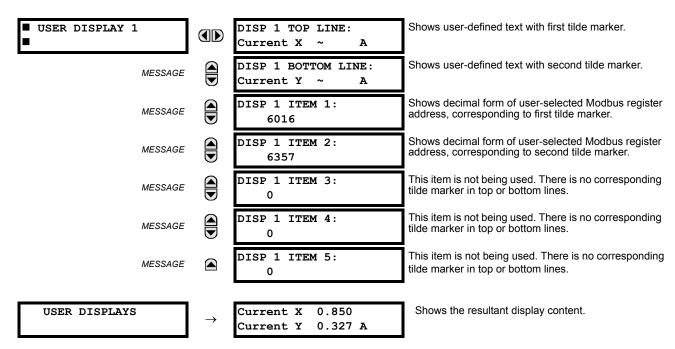
When the default timer expires (set by the **DEFAULT MESSAGE TIMEOUT** setting), the relay will start to cycle through the user displays. The next activity of the **INVOKE AND SCROLL** input stops the cycling at the currently displayed user display, not at the first user-defined display. The **INVOKE AND SCROLL** pulses must last for at least 250 ms to take effect.

b) USER DISPLAY 1(16)

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ USER-DEFINABLE DISPLAYS ⇒ USER DISPLAY 1(16)

Any existing system display can be automatically copied into an available user display by selecting the existing display and pressing the ENTER key. The display will then prompt **ADD TO USER DISPLAY LIST?**. After selecting "Yes", a message indicates that the selected display has been added to the user display list. When this type of entry occurs, the sub-menus are automatically configured with the proper content – this content may subsequently be edited.

This menu is used to enter user-defined text and user-selected Modbus-registered data fields into the particular user display. Each user display consists of two 20-character lines (top and bottom). The tilde (\sim) character is used to mark the start of a data field – the length of the data field needs to be accounted for. Up to five separate data fields can be entered in a user display – the *n*th tilde (\sim) refers to the *n*th item.


A user display may be entered from the faceplate keypad or the EnerVista UR Setup interface (preferred for convenience). The following procedure shows how to enter text characters in the top and bottom lines from the faceplate keypad:

- 1. Select the line to be edited.
- 2. Press the decimal key to enter text edit mode.
- 3. Use either VALUE key to scroll through the characters. A space is selected like a character.
- 4. Press the decimal key to advance the cursor to the next position.
- 5. Repeat step 3 and continue entering characters until the desired text is displayed.
- 6. The HELP key may be pressed at any time for context sensitive help information.
- 7. Press the ENTER key to store the new settings.

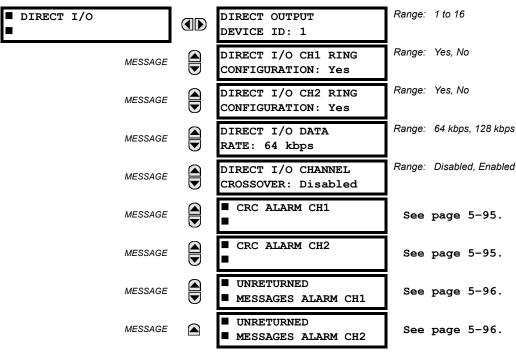
To enter a numerical value for any of the five items (the *decimal form* of the selected Modbus address) from the faceplate keypad, use the number keypad. Use the value of "0" for any items not being used. Use the HELP key at any selected system display (setting, actual value, or command) which has a Modbus address, to view the *hexadecimal form* of the Modbus address, then manually convert it to decimal form before entering it (EnerVista UR Setup usage conveniently facilitates this conversion).

Use the MENU key to go to the user displays menu to view the user-defined content. The current user displays will show in sequence, changing every four seconds. While viewing a user display, press the ENTER key and then select the 'Yes' option to remove the display from the user display list. Use the MENU key again to exit the user displays menu.

An example user display setup and result is shown below:

If the parameters for the top line and the bottom line items have the same units, then the unit is displayed on the bottom line only. The units are only displayed on both lines if the units specified both the top and bottom line items are different.

5.2.17 DIRECT INPUTS/OUTPUTS


a) MAIN MENU

PATH: SETTINGS

⇒ PRODUCT SETUP

⇒

□ DIRECT I/O

5.2 PRODUCT SETUP 5 SETTINGS

Direct inputs and outputs are intended for exchange of status information (inputs and outputs) between UR-series relays connected directly via type 7 digital communications cards. The mechanism is very similar to IEC 61850 GSSE, except that communications takes place over a non-switchable isolated network and is optimized for speed. On type 7 cards that support two channels, direct output messages are sent from both channels simultaneously. This effectively sends direct output messages both ways around a ring configuration. On type 7 cards that support one channel, direct output messages are sent only in one direction. Messages will be resent (forwarded) when it is determined that the message did not originate at the receiver.

Direct output message timing is similar to GSSE message timing. Integrity messages (with no state changes) are sent at least every 1000 ms. Messages with state changes are sent within the main pass scanning the inputs and asserting the outputs unless the communication channel bandwidth has been exceeded. Two self-tests are performed and signaled by the following FlexLogic operands:

- DIRECT RING BREAK (direct input/output ring break). This FlexLogic operand indicates that direct output messages sent from a UR-series relay are not being received back by the relay.
- DIRECT DEVICE 1 OFF to DIRECT DEVICE 16 OFF (direct device offline). These FlexLogic operands indicate that direct output messages from at least one direct device are not being received.

Direct input and output settings are similar to remote input and output settings. The equivalent of the remote device name strings for direct inputs and outputs is the **DIRECT OUTPUT DEVICE ID**. The **DIRECT OUTPUT DEVICE ID** setting identifies the relay in all direct output messages. All UR-series IEDs in a ring should have unique numbers assigned. The IED ID is used to identify the sender of the direct input and output message.

If the direct input and output scheme is configured to operate in a ring (**DIRECT I/O CH1 RING CONFIGURATION** or **DIRECT I/O CH2 RING CONFIGURATION** is "Yes"), all direct output messages should be received back. If not, the direct input/output ring break self-test is triggered. The self-test error is signaled by the DIRECT RING BREAK FlexLogic operand.

Select the **DIRECT I/O DATA RATE** to match the data capabilities of the communications channel. All IEDs communicating over direct inputs and outputs must be set to the same data rate. UR-series IEDs equipped with dual-channel communications cards apply the same data rate to both channels. Delivery time for direct input and output messages is approximately 0.2 of a power system cycle at 128 kbps and 0.4 of a power system cycle at 64 kbps, per each 'bridge'.

Table 5-10: DIRECT INPUT AND OUTPUT DATA RATES

MODULE	CHANNEL	SUPPORTED DATA RATES		
74	Channel 1	64 kbps		
	Channel 2	64 kbps		
7L	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		
7M	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		
7P	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		
7T	Channel 1	64 kbps, 128 kbps		
7W	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		
7V	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		
2A	Channel 1	64 kbps		
2B	Channel 1	64 kbps		
	Channel 2	64 kbps		
2G	Channel 1	128 kbps		
2H	Channel 1	128 kbps		
21	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		
2J	Channel 1	64 kbps, 128 kbps		
	Channel 2	64 kbps, 128 kbps		

Table 5-10: DIRECT INPUT AND OUTPUT DATA RATES

MODULE	CHANNEL	SUPPORTED DATA RATES
76	Channel 1	64 kbps
77	Channel 1	64 kbps
	Channel 2	64 kbps
75	Channel 1	64 kbps
	Channel 2	64 kbps
7E	Channel 1	64 kbps
	Channel 2	64 kbps
7F	Channel 1	64 kbps
	Channel 2	64 kbps
7G	Channel 1	64 kbps
	Channel 2	64 kbps
7Q	Channel 1	64 kbps
	Channel 2	64 kbps
7R	Channel 1	64 kbps
7S	Channel 1	64 kbps
	Channel 2	64 kbps

The G.703 modules are fixed at 64 kbps. The DIRECT I/O DATA RATE setting is not applicable to these modules.

The **DIRECT I/O CHANNEL CROSSOVER** setting applies to F60s with dual-channel communication cards and allows crossing over messages from channel 1 to channel 2. This places all UR-series IEDs into one direct input and output network regardless of the physical media of the two communication channels.

The following application examples illustrate the basic concepts for direct input and output configuration. See the *Inputs* and *Outputs* section in this chapter for information on configuring FlexLogic operands (flags, bits) to be exchanged.

EXAMPLE 1: EXTENDING THE INPUT/OUTPUT CAPABILITIES OF A UR-SERIES RELAY

Consider an application that requires additional quantities of digital inputs or output contacts or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional input and output and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown in the figure below.

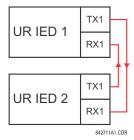


Figure 5-19: INPUT AND OUTPUT EXTENSION VIA DIRECT INPUTS AND OUTPUTS

In the above application, the following settings should be applied. For UR-series IED 1:

DIRECT OUTPUT DEVICE ID: "1"

DIRECT I/O CH1 RING CONFIGURATION: "Yes"

DIRECT I/O DATA RATE: "128 kbps"

For UR-series IED 2:

DIRECT OUTPUT DEVICE ID: "2"

DIRECT I/O CH1 RING CONFIGURATION: "Yes"

DIRECT I/O DATA RATE: "128 kbps"

5.2 PRODUCT SETUP 5 SETTINGS

The message delivery time is about 0.2 of power cycle in both ways (at 128 kbps); that is, from device 1 to device 2, and from device 2 to device 1. Different communications cards can be selected by the user for this back-to-back connection (for example: fiber, G.703, or RS422).

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme could be accomplished by sending a blocking signal from downstream devices, say 2, 3, and 4, to the upstream device that monitors a single incomer of the busbar, as shown below.

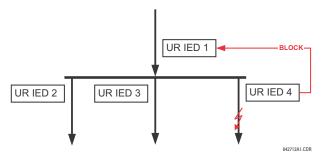


Figure 5-20: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME

For increased reliability, a dual-ring configuration (shown below) is recommended for this application.

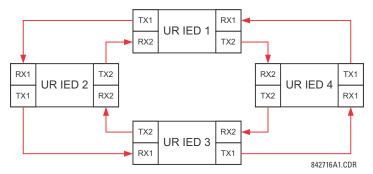


Figure 5-21: INTERLOCKING BUS PROTECTION SCHEME VIA DIRECT INPUTS/OUTPUTS

In the above application, the following settings should be applied. For UR-series IED 1:

DIRECT OUTPUT DEVICE ID: "1"
DIRECT I/O CH1 RING CONFIGURATION: "Yes"
DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 2:

DIRECT OUTPUT DEVICE ID: "2"

DIRECT I/O CH1 RING CONFIGURATION: "Yes" DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 3:

DIRECT OUTPUT DEVICE ID: "3"

DIRECT I/O CH1 RING CONFIGURATION: "Yes" DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 4:

DIRECT OUTPUT DEVICE ID: "4"

DIRECT I/O CH1 RING CONFIGURATION: "Yes"

DIRECT I/O CH2 RING CONFIGURATION: "Yes"

Message delivery time is approximately 0.2 of power system cycle (at 128 kbps) times number of 'bridges' between the origin and destination. Dual-ring configuration effectively reduces the maximum 'communications distance' by a factor of two.

In this configuration the following delivery times are expected (at 128 kbps) if both rings are healthy:

```
IED 1 to IED 2: 0.2 of power system cycle;
IED 1 to IED 3: 0.4 of power system cycle;
IED 1 to IED 4: 0.2 of power system cycle;
IED 2 to IED 3: 0.2 of power system cycle;
IED 2 to IED 4: 0.4 of power system cycle;
IED 3 to IED 4: 0.2 of power system cycle.
```

If one ring is broken (say TX2-RX2) the delivery times are as follows:

```
IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.4 of power system cycle; IED 1 to IED 4: 0.6 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle; IED 2 to IED 4: 0.4 of power system cycle; IED 3 to IED 4: 0.2 of power system cycle.
```

A coordinating timer for this bus protection scheme could be selected to cover the worst case scenario (0.4 of a power system cycle). Upon detecting a broken ring, the coordination time should be adaptively increased to 0.6 of a power system cycle. The complete application requires addressing a number of issues such as failure of both the communications rings, failure or out-of-service conditions of one of the relays, etc. Self-monitoring flags of the direct inputs and outputs feature would be primarily used to address these concerns.

EXAMPLE 3: PILOT-AIDED SCHEMES

Consider the three-terminal line protection application shown below:

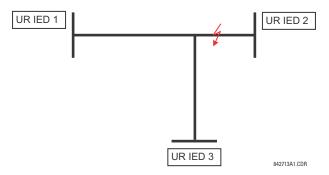


Figure 5-22: THREE-TERMINAL LINE APPLICATION

A permissive pilot-aided scheme could be implemented in a two-ring configuration as shown below (IEDs 1 and 2 constitute a first ring, while IEDs 2 and 3 constitute a second ring):

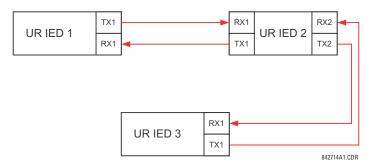


Figure 5-23: SINGLE-CHANNEL OPEN LOOP CONFIGURATION

In the above application, the following settings should be applied. For UR-series IED 1:

DIRECT OUTPUT DEVICE ID: "1"
DIRECT I/O CH1 RING CONFIGURATION: "Yes"
DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 2:

5.2 PRODUCT SETUP 5 SETTINGS

DIRECT OUTPUT DEVICE ID: "2"

DIRECT I/O CH1 RING CONFIGURATION: "Yes" DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 3:

DIRECT OUTPUT DEVICE ID: "3"

DIRECT I/O CH1 RING CONFIGURATION: "Yes"
DIRECT I/O CH2 RING CONFIGURATION: "Yes"

In this configuration the following delivery times are expected (at 128 kbps):

IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.5 of power system cycle; IED 2 to IED 3: 0.2 of power system cycle.

In the above scheme, IEDs 1 and 3 do not communicate directly. IED 2 must be configured to forward the messages as explained in the *Inputs and Outputs* section. A blocking pilot-aided scheme should be implemented with more security and, ideally, faster message delivery time. This is accomplished using a dual-ring configuration as shown here.

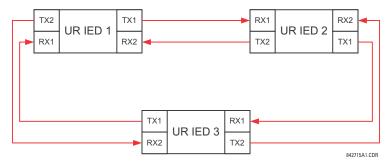


Figure 5-24: DUAL-CHANNEL CLOSED LOOP (DUAL-RING) CONFIGURATION

In the above application, the following settings should be applied. For UR-series IED 1:

DIRECT OUTPUT DEVICE ID: "1"

DIRECT I/O CH1 RING CONFIGURATION: "Yes"
DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 2:

DIRECT OUTPUT DEVICE ID: "2"

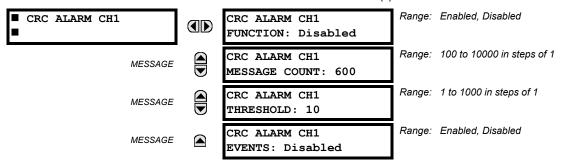
DIRECT I/O CH1 RING CONFIGURATION: "Yes" DIRECT I/O CH2 RING CONFIGURATION: "Yes"

For UR-series IED 3:

DIRECT OUTPUT DEVICE ID: "3"

DIRECT I/O CH1 RING CONFIGURATION: "Yes" DIRECT I/O CH2 RING CONFIGURATION: "Yes"

In this configuration the following delivery times are expected (at 128 kbps) if both the rings are healthy:


IED 1 to IED 2: 0.2 of power system cycle; IED 1 to IED 3: 0.2 of power system cycle;

IED 2 to IED 3: 0.2 of power system cycle.

The two communications configurations could be applied to both permissive and blocking schemes. Speed, reliability and cost should be taken into account when selecting the required architecture.

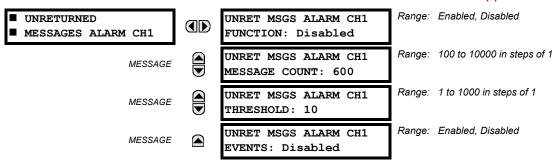
b) CRC ALARM CH1(2)

PATH: SETTINGS PRODUCT SETUP UDB DIRECT I/O UDB CRC ALARM CH1(2)

The F60 checks integrity of the incoming direct input and output messages using a 32-bit CRC. The CRC alarm function is available for monitoring the communication medium noise by tracking the rate of messages failing the CRC check. The monitoring function counts all incoming messages, including messages that failed the CRC check. A separate counter adds up messages that failed the CRC check. When the failed CRC counter reaches the user-defined level specified by the CRC ALARM CH1 THRESHOLD setting within the user-defined message count CRC ALARM 1 CH1 COUNT, the DIR IO CH1 CRC ALARM FlexLogic operand is set.

When the total message counter reaches the user-defined maximum specified by the CRC ALARM CH1 MESSAGE COUNT setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions - if required - should be programmed accordingly.


The CRC alarm function is available on a per-channel basis. The total number of direct input and output messages that failed the CRC check is available as the ACTUAL VALUES ⇒ STATUS ⇒ ⊕ DIRECT INPUTS ⇒ ⊕ CRC FAIL COUNT CH1 actual value.

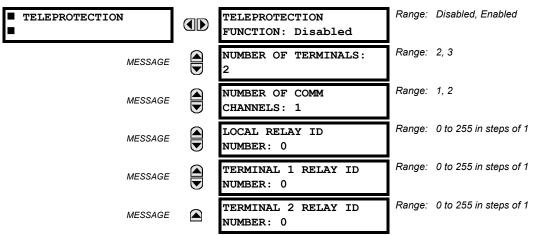
- Message count and length of the monitoring window: To monitor communications integrity, the relay sends 1 message per second (at 64 kbps) or 2 messages per second (128 kbps) even if there is no change in the direct outputs. For example, setting the CRC ALARM CH1 MESSAGE COUNT to "10000", corresponds a time window of about 160 minutes at 64 kbps and 80 minutes at 128 kbps. If the messages are sent faster as a result of direct outputs activity, the monitoring time interval will shorten. This should be taken into account when determining the CRC ALARM CH1 MESSAGE COUNT setting. For example, if the requirement is a maximum monitoring time interval of 10 minutes at 64 kbps, then the CRC ALARM CH1 MESSAGE COUNT should be set to 10 × 60 × 1 = 600.
- Correlation of failed CRC and bit error rate (BER): The CRC check may fail if one or more bits in a packet are corrupted. Therefore, an exact correlation between the CRC fail rate and the BER is not possible. Under certain assumptions an approximation can be made as follows. A direct input and output packet containing 20 bytes results in 160 bits of data being sent and therefore, a transmission of 63 packets is equivalent to 10,000 bits. A BER of 10⁻⁴ implies 1 bit error for every 10000 bits sent or received. Assuming the best case of only 1 bit error in a failed packet, having 1 failed packet for every 63 received is about equal to a BER of 10⁻⁴.

5.2 PRODUCT SETUP 5 SETTINGS

c) UNRETURNED MESSAGES ALARM CH1(2)

PATH: SETTINGS PRODUCT SETUP UNRECT I/O

The F60 checks integrity of the direct input and output communication ring by counting unreturned messages. In the ring configuration, all messages originating at a given device should return within a pre-defined period of time. The unreturned messages alarm function is available for monitoring the integrity of the communication ring by tracking the rate of unreturned messages. This function counts all the outgoing messages and a separate counter adds the messages have failed to return. When the unreturned messages counter reaches the user-definable level specified by the **UNRET MSGS ALARM CH1 COUNT**, the DIR IO CH1 UNRET ALM FlexLogic operand is set.


When the total message counter reaches the user-defined maximum specified by the **UNRET MSGS ALARM CH1 MESSAGE COUNT** setting, both the counters reset and the monitoring process is restarted.

The operand shall be configured to drive an output contact, user-programmable LED, or selected communication-based output. Latching and acknowledging conditions, if required, should be programmed accordingly.

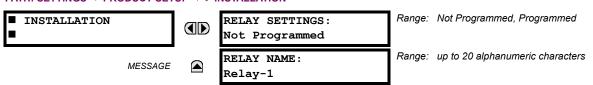
The unreturned messages alarm function is available on a per-channel basis and is active only in the ring configuration. The total number of unreturned input and output messages is available as the ACTUAL VALUES \Rightarrow STATUS \Rightarrow UNRETURNED MSG COUNT CH1 actual value.

5.2.18 TELEPROTECTION

PATH: SETTINGS → PRODUCT SETUP → ↓ TELEPROTECTION

Digital teleprotection functionality is designed to transfer protection commands between two or three relays in a secure, fast, dependable, and deterministic fashion. Possible applications are permissive or blocking pilot schemes and direct transfer trip (DTT). Teleprotection can be applied over any analog or digital channels and any communications media, such as direct fiber, copper wires, optical networks, or microwave radio links. A mixture of communication media is possible.

Once teleprotection is enabled and the teleprotection input/outputs are configured, data packets are transmitted continuously every 1/4 cycle (3/8 cycle if using C37.94 modules) from peer-to-peer. Security of communication channel data is achieved by using CRC-32 on the data packet.



Teleprotection inputs/outputs and direct inputs/outputs are mutually exclusive – as such, they cannot be used simultaneously. Once teleprotection inputs and outputs are enabled, direct inputs and outputs are blocked, and *vice versa*.

- NUMBER OF TERMINALS: Specifies whether the teleprotection system operates between two peers or three peers.
- NUMBER OF CHANNELS: Specifies how many channels are used. If the NUMBER OF TERMINALS is "3" (three-terminal system), set the NUMBER OF CHANNELS to "2". For a two-terminal system, the NUMBER OF CHANNELS can set to "1" or "2" (redundant channels).
- LOCAL RELAY ID NUMBER, TERMINAL 1 RELAY ID NUMBER, and TERMINAL 2 RELAY ID NUMBER: In installations that use multiplexers or modems, it is desirable to ensure that the data used by the relays protecting a given line is from the correct relays. The teleprotection function performs this check by reading the message ID sent by transmitting relays and comparing it to the programmed ID in the receiving relay. This check is also used to block inputs if inadvertently set to loopback mode or data is being received from a wrong relay by checking the ID on a received channel. If an incorrect ID is found on a channel during normal operation, the TELEPROT CH1 ID FAIL or TELEPROT CH2 ID FAIL FlexLogic operand is set, driving the event with the same name and blocking the teleprotection inputs. For commissioning purposes, the result of channel identification is also shown in the STATUS → CHANNEL TESTS → VALIDITY OF CHANNEL CONFIGURATION actual value. The default value of "0" for the LOCAL RELAY ID NUMBER indicates that relay ID is not to be checked. On two- terminals two-channel systems, the same LOCAL RELAY ID NUMBER is transmitted over both channels; as such, only the TERMINAL 1 ID NUMBER has to be programmed on the receiving end.

5.2.19 INSTALLATION

PATH: SETTINGS ⇒ PRODUCT SETUP ⇒ ↓ INSTALLATION

To safeguard against the installation of a relay without any entered settings, the unit will not allow signaling of any output relay until **RELAY SETTINGS** is set to "Programmed". This setting is defaulted to "Not Programmed" when at the factory. The **UNIT NOT PROGRAMMED** self-test error message is displayed until the relay is put into the "Programmed" state.

The **RELAY NAME** setting allows the user to uniquely identify a relay. This name will appear on generated reports.

When F60 is ordered with a process card module as a part of HardFiber system, then an additional **Remote Resources** menu tree is available in EnerVista UR Setup software to allow configuration of the HardFiber system.

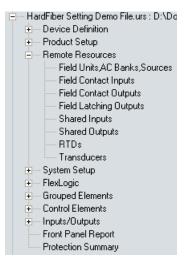
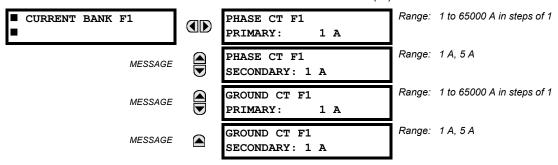


Figure 5-25: REMOTE RESOURCES CONFIGURATION MENU

The remote resources settings configure a F60 with a process bus module to work with HardFiber *Bricks*. Remote resources configuration is only available through the EnerVista UR Setup software, and is not available through the F60 front panel. A Brick provides eight AC measurements, along with contact inputs, DC analog inputs, and contact outputs, to be the remote interface to field equipment such as circuit breakers and transformers. The F60 with a process bus module has access to all of the capabilities of up to eight Bricks. Remote resources settings configure the point-to-point connection between specific fiber optic ports on the F60 process card and specific Brick. The relay is then configured to measure specific currents, voltages and contact inputs from those Bricks, and to control specific outputs.

The configuration process for remote resources is straightforward and consists of the following steps.


- Configure the field units. This establishes the point-to-point connection between a specific port on the relay process bus module, and a specific digital core on a specific Brick. This is a necessary first step in configuring a process bus relay.
- Configure the AC banks. This sets the primary and secondary quantities and connections for currents and voltages. AC bank configuration also provides a provision for redundant measurements for currents and voltages, a powerful reliability improvement possible with process bus.
- Configure signal sources. This functionality of the F60 has not changed other than the requirement to use currents and voltages established by AC bank configuration under the remote resources menu.
- Configure field contact inputs, field contact outputs, RTDs, and transducers as required for the application's functionality. These inputs and outputs are the physical interface to circuit breakers, transformers, and other equipment. They replace the traditional contact inputs and outputs located at the relay to virtually eliminate copper wiring.
- Configure shared inputs and outputs as required for the application's functionality. Shared inputs and outputs are distinct binary channels that provide high-speed protection quality signaling between relays through a Brick.

For additional information on how to configure a relay with a process bus module, see GE publication number GEK-113658: HardFiber Process Bus System Instruction Manual.

5.4.1 AC INPUTS

a) CURRENT BANKS

PATH: SETTINGS ⇒ \$\Partial \text{ SYSTEM SETUP} \$\Rightarrow \text{AC INPUTS} \$\Rightarrow \text{CURRENT BANK F1(F5)}\$

Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing CT characteristics.

Two banks of phase and ground CTs can be set, where the current banks are denoted in the following format (*X* represents the module slot position letter):

$$Xa$$
, where $X = \{F\}$ and $a = \{1, 5\}$.

See the Introduction to AC Sources section at the beginning of this chapter for additional details.

These settings are critical for all features that have settings dependent on current measurements. When the relay is ordered, the CT module must be specified to include a standard or sensitive ground input. As the phase CTs are connected in wye (star), the calculated phasor sum of the three phase currents (IA + IB + IC = neutral current = 3lo) is used as the input for the neutral overcurrent elements. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive ground input may be used. In this case, the sensitive ground CT primary rating must be entered. Refer to chapter 3 for more details on CT connections.

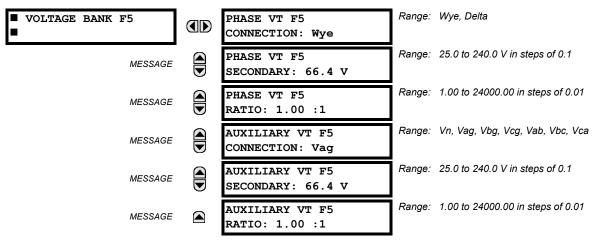
Enter the rated CT primary current values. For both 1000:5 and 1000:1 CTs, the entry would be 1000. For correct operation, the CT secondary rating must match the setting (which must also correspond to the specific CT connections used).

The following example illustrates how multiple CT inputs (current banks) are summed as one source current. Given the following current banks:

- F1: CT bank with 500:1 ratio.
- F5: CT bank with 1000:1 ratio.

The following rule applies:

$$SRC 1 = F1 + F5$$
 (EQ 5.7)


1 pu is the highest primary current. In this case, 1000 is entered and the secondary current from the 500:1 and 800:1 ratio CTs will be adjusted to that created by a 1000:1 CT before summation. If a protection element is set up to act on SRC 1 currents, then a pickup level of 1 pu will operate on 1000 A primary.

The same rule applies for current sums from CTs with different secondary taps (5 A and 1 A).

5.4 SYSTEM SETUP 5 SETTINGS

b) VOLTAGE BANKS

PATH: SETTINGS ⇒ \$\Partial SYSTEM SETUP ⇒ AC INPUTS ⇒ \$\Partial VOLTAGE BANK F5

NOTICE

Because energy parameters are accumulated, these values should be recorded and then reset immediately prior to changing VT characteristics.

One bank of phase/auxiliary VTs can be set, where voltage banks are denoted in the following format (X represents the module slot position letter):

Xa, where $X = \{F\}$ and $a = \{5\}$.

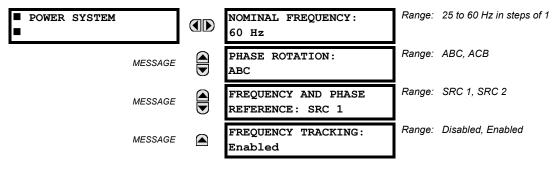
See the Introduction to AC Sources section at the beginning of this chapter for additional details.

With VTs installed, the relay can perform voltage measurements as well as power calculations. Enter the **PHASE VT F5 CONNECTION** made to the system as "Wye" or "Delta". An open-delta source VT connection would be entered as "Delta".

The nominal **PHASE VT F5 SECONDARY** voltage setting is the voltage across the relay input terminals when nominal voltage is applied to the VT primary.

For example, on a system with a 13.8 kV nominal primary voltage and with a 14400:120 volt VT in a delta connection, the secondary voltage would be 115; that is, $(13800 / 14400) \times 120$. For a wye connection, the voltage value entered must be the phase to neutral voltage which would be $115 / \sqrt{3} = 66.4$.

On a 14.4 kV system with a delta connection and a VT primary to secondary turns ratio of 14400:120, the voltage value entered would be 120; that is, 14400 / 120.



5-100

If the PHASE VT F5 CONNECTION is set to "Delta", the relay will not calculate voltage harmonics.

5.4.2 POWER SYSTEM

PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SETUP ⇒ \$\Pi\$ POWER SYSTEM

The power system **NOMINAL FREQUENCY** value is used as a default to set the digital sampling rate if the system frequency cannot be measured from available signals. This may happen if the signals are not present or are heavily distorted. Before reverting to the nominal frequency, the frequency tracking algorithm holds the last valid frequency measurement for a safe period of time while waiting for the signals to reappear or for the distortions to decay.

The phase sequence of the power system is required to properly calculate sequence components and power parameters. The **PHASE ROTATION** setting matches the power system phase sequence. Note that this setting informs the relay of the actual system phase sequence, either ABC or ACB. CT and VT inputs on the relay, labeled as A, B, and C, must be connected to system phases A, B, and C for correct operation.

The **FREQUENCY AND PHASE REFERENCE** setting determines which signal source is used (and hence which AC signal) for phase angle reference. The AC signal used is prioritized based on the AC inputs that are configured for the signal source: phase voltages takes precedence, followed by auxiliary voltage, then phase currents, and finally ground current.

For three phase selection, phase A is used for angle referencing ($V_{\text{ANGLE REF}} = V_A$), while Clarke transformation of the phase signals is used for frequency metering and tracking ($V_{\text{FREQUENCY}} = (2V_A - V_B - V_C)/3$) for better performance during fault, open pole, and VT and CT fail conditions.

The phase reference and frequency tracking AC signals are selected based upon the Source configuration, regardless of whether or not a particular signal is actually applied to the relay.

Phase angle of the reference signal always displays zero degrees and all other phase angles are relative to this signal. If the pre-selected reference signal is not measurable at a given time, the phase angles are not referenced.

The phase angle referencing is done via a phase locked loop, which can synchronize independent UR-series relays if they have the same AC signal reference. This results in very precise correlation of phase angle indications between different UR-series relays.

FREQUENCY TRACKING is set to "Disabled" only in unusual circumstances; consult the factory for special variable-frequency applications.

The frequency tracking feature functions only when the F60 is in the "Programmed" mode. If the F60 is "Not Programmed", then metering values are available but can exhibit significant errors.

5.4.3 SIGNAL SOURCES

PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SETUP ⇒ \$\Pi\$ SIGNAL SOURCES ⇒ SOURCE 1(2)

Identical menus are available for each source. The "SRC 1" text can be replaced by with a user-defined name appropriate for the associated source.

The first letter in the source identifier represents the module slot position. The number directly following this letter represents either the first bank of four channels (1, 2, 3, 4) called "1" or the second bank of four channels (5, 6, 7, 8) called "5" in a particular CT/VT module. See the *Introduction to AC Sources* section at the beginning of this chapter for details on this concept.

It is possible to select the sum of all CT combinations. The first channel displayed is the CT to which all others will be referred. For example, the selection "F1+F5" indicates the sum of each phase from channels "F1" and "F5", scaled to whichever CT has the higher ratio. Selecting "None" hides the associated actual values.

5.4 SYSTEM SETUP 5 SETTINGS

The approach used to configure the AC sources consists of several steps; first step is to specify the information about each CT and VT input. For CT inputs, this is the nominal primary and secondary current. For VTs, this is the connection type, ratio and nominal secondary voltage. Once the inputs have been specified, the configuration for each source is entered, including specifying which CTs are summed together.

When the F60 is equipped with a type 8Z CT/VT module for high impedance fault detection, the CT bank of this module should not be assigned to a source which will be used by any conventional protection element. The type 8Z module CT bank is used solely by the high impedance fault detection algorithm.

User selection of AC parameters for comparator elements:

CT/VT modules automatically calculate all current and voltage parameters from the available inputs. Users must select the specific input parameters to be measured by every element in the relevant settings menu. The internal design of the element specifies which type of parameter to use and provides a setting for source selection. In elements where the parameter may be either fundamental or RMS magnitude, such as phase time overcurrent, two settings are provided. One setting specifies the source, the second setting selects between fundamental phasor and RMS.

AC input actual values:

The calculated parameters associated with the configured voltage and current inputs are displayed in the current and voltage sections of actual values. Only the phasor quantities associated with the actual AC physical input channels will be displayed here. All parameters contained within a configured source are displayed in the sources section of the actual values.

DISTURBANCE DETECTORS (INTERNAL):

The disturbance detector (ANSI 50DD) element is a sensitive current disturbance detector that detects any disturbance on the protected system. The 50DD function is used directly in some elements in the relay, for example VT Fuse Failure detector or Fault Report. It can also be used to supervise current-based elements to prevent maloperation as a result of the wrong settings or external CT wiring problem. A disturbance detector is provided for each source.

The 50DD function responds to the changes in magnitude of the sequence currents. The disturbance detector scheme logic is as follows:

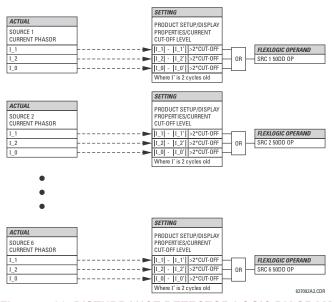


Figure 5-26: DISTURBANCE DETECTOR LOGIC DIAGRAM

The disturbance detector responds to the change in currents of twice the current cut-off level. The default cut-off threshold is 0.02 pu; thus by default the disturbance detector responds to a change of 0.04 pu. The metering sensitivity setting (PROD-UCT SETUP ⇒ UISPLAY PROPERTIES ⇒ UIRRENT CUT-OFF LEVEL) controls the sensitivity of the disturbance detector accordingly.

EXAMPLE USE OF SOURCES:

An example of the use of sources is shown in the diagram below. A relay could have the following hardware configuration:

This configuration could be used on a two-winding transformer, with one winding connected into a breaker-and-a-half system. The following figure shows the arrangement of sources used to provide the functions required in this application, and the CT/VT inputs that are used to provide the data.

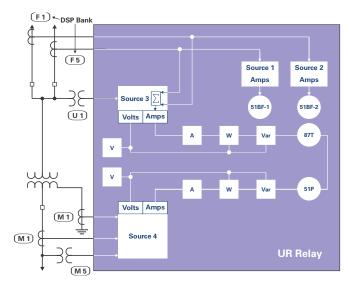


Figure 5-27: EXAMPLE USE OF SOURCES

	Y LV	D HV	AUX
	SRC 1	SRC 2	SRC 3
Phase CT	M1	F1+F5	None
Ground CT	M1	None	None
Phase VT	M5	None	None
Aux VT	None	None	U1

5.4.4 BREAKERS

PATH: SETTINGS $\Rightarrow \mathbb{Q}$ SYSTEM SETUP $\Rightarrow \mathbb{Q}$ BREAKERS \Rightarrow BREAKER 1(2)

PAIN. SETTINGS -> STSTEM SET	I OF 7 V	BREAKERS → BREAKER I(2)		
■ BREAKER 1 ■		BREAKER 1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE		BREAKER1 PUSH BUTTON CONTROL: Disabled	Range:	Disabled, Enabled
MESSAGE		BREAKER 1 NAME: Bkr 1	Range:	up to 6 alphanumeric characters
MESSAGE		BREAKER 1 MODE: 3-Pole	Range:	3-Pole, 1-Pole
MESSAGE		BREAKER 1 OPEN: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 BLK OPEN: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 CLOSE: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 BLK CLOSE: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Φ A/3P CLSD:	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Φ A/3P OPND:	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Φ B CLOSED: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Φ B OPENED: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Φ C CLOSED:	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Φ C OPENED:	Range:	FlexLogic operand
MESSAGE		BREAKER 1 Toperate: 0.070 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE		BREAKER 1 EXT ALARM: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 ALARM DELAY: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE		MANUAL CLOSE RECAL1 TIME: 0.000 s	Range:	0.000 to 65.535 s in steps of 0.001
MESSAGE		BREAKER 1 OUT OF SV: Off	Range:	FlexLogic operand
MESSAGE		BREAKER 1 EVENTS: Disabled	Range:	Disabled, Enabled

A description of the operation of the breaker control and status monitoring features is provided in chapter 4. Only information concerning programming of the associated settings is covered here. These features are provided for two or more breakers; a user may use only those portions of the design relevant to a single breaker, which must be breaker 1.

The number of breaker control elements is dependent on the number of CT/VT modules specified with the F60. The following settings are available for each breaker control element.

- BREAKER 1 FUNCTION: This setting enables and disables the operation of the breaker control feature.
- BREAKER1 PUSH BUTTON CONTROL: Set to "Enable" to allow faceplate push button operations.
- **BREAKER 1 NAME:** Assign a user-defined name (up to six characters) to the breaker. This name will be used in flash messages related to breaker 1.
- **BREAKER 1 MODE:** This setting selects "3-Pole" mode, where all breaker poles are operated simultaneously, or "1-Pole" mode where all breaker poles are operated either independently or simultaneously.
- **BREAKER 1 OPEN:** This setting selects an operand that creates a programmable signal to operate an output relay to open breaker 1.
- BREAKER 1 BLK OPEN: This setting selects an operand that prevents opening of the breaker. This setting can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- BREAKER 1 CLOSE: This setting selects an operand that creates a programmable signal to operate an output relay
 to close breaker 1.
- **BREAKER 1 BLK CLOSE**: This setting selects an operand that prevents closing of the breaker. This setting can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- BREAKER 1 ΦA/3P CLOSED: This setting selects an operand, usually a contact input connected to a breaker auxiliary position tracking mechanism. This input should be a normally-open 52/a status input to create a logic 1 when the breaker is closed. If the BREAKER 1 MODE setting is selected as "3-Pole", this setting selects a single input as the operand used to track the breaker open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and the BREAKER 1 ΦB and BREAKER 1 ΦC settings select operands to track phases B and C, respectively.
- BREAKER 1 ΦA/3P OPND: This setting selects an operand, usually a contact input, that should be a normally-closed 52/b status input to create a logic 1 when the breaker is open. If a separate 52/b contact input is not available, then the inverted BREAKER 1 CLOSED status signal can be used.
- BREAKER 1 ΦB CLOSED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase B closed position as above for phase A.
- **BREAKER 1** Φ**B OPENED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase B opened position as above for phase A.
- BREAKER 1 ΦC CLOSED: If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase C closed position as above for phase A.
- **BREAKER 1** Φ**C OPENED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the breaker phase C opened position as above for phase A.
- BREAKER 1 Toperate: This setting specifies the required interval to overcome transient disagreement between the 52/a and 52/b auxiliary contacts during breaker operation. If transient disagreement still exists after this time has expired, the BREAKER 1 BAD STATUS FlexLogic operand is asserted from alarm or blocking purposes.
- BREAKER 1 EXT ALARM: This setting selects an operand, usually an external contact input, connected to a breaker alarm reporting contact.
- BREAKER 1 ALARM DELAY: This setting specifies the delay interval during which a disagreement of status among
 the three-pole position tracking operands will not declare a pole disagreement. This allows for non-simultaneous operation of the poles.
- MANUAL CLOSE RECAL1 TIME: This setting specifies the interval required to maintain setting changes in effect after an operator has initiated a manual close command to operate a circuit breaker.
- BREAKER 1 OUT OF SV: Selects an operand indicating that breaker 1 is out-of-service.

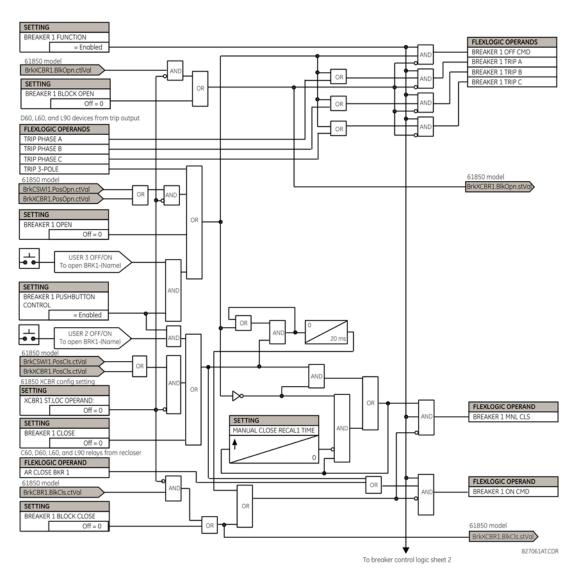


Figure 5-28: DUAL BREAKER CONTROL SCHEME LOGIC (Sheet 1 of 2)

IEC 61850 functionality is permitted when the F60 is in "Programmed" mode and not in the local control mode.

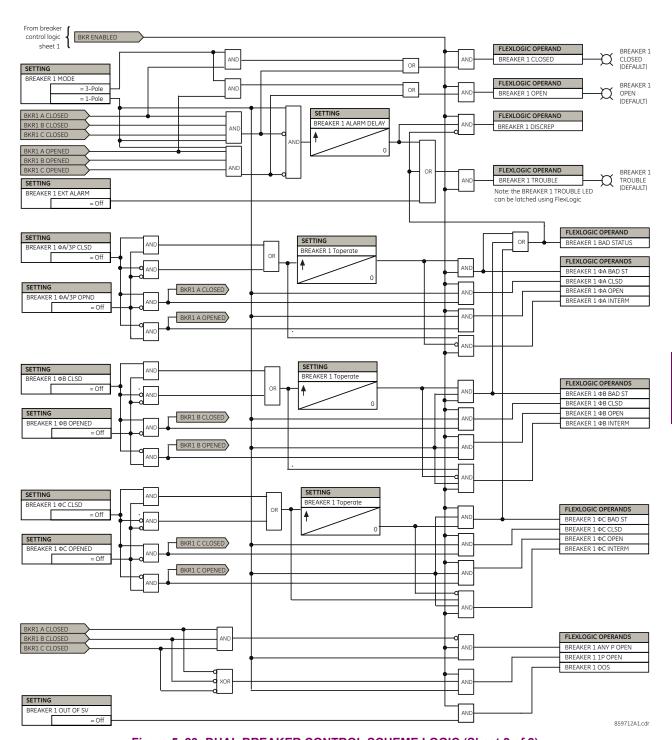
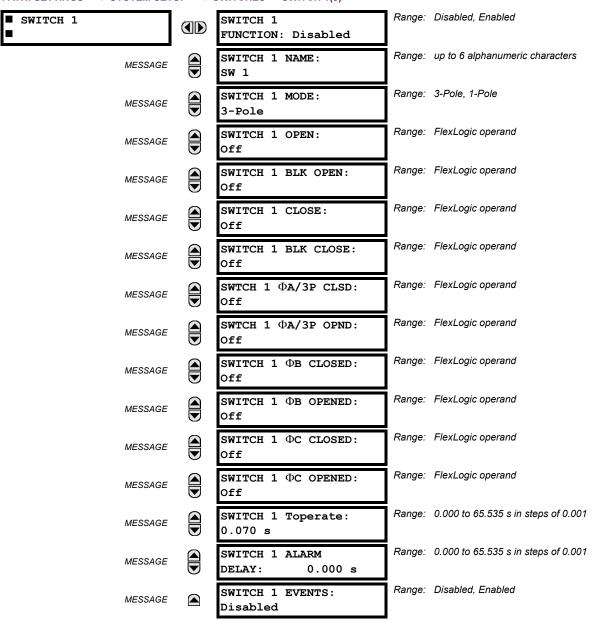



Figure 5–29: DUAL BREAKER CONTROL SCHEME LOGIC (Sheet 2 of 2)

The breaker element has direct hard-coded connections to IEC 61850 model as shown in the logic diagram. This allows remote open/close operation of each breaker, using either CSWI or XCBR IEC 61850 logical nodes. IEC 61850 select-before-operate functionality, local/remote switch functionality along with a blocking of open/close commands are provided. Note that IEC 61850 commands are event-driven and dwell time for these is one protection pass only. If you want to maintain the close/open command for a certain time, do so either on the contact outputs using the "Seal-in" setting or in Flex-Logic.

PATH: SETTINGS ⇒ \$\Partial\$ SYSTEM SETUP ⇒ \$\Partial\$ SWITCHES ⇒ SWITCH 1(8)

The disconnect switch element contains the auxiliary logic for status and serves as the interface for opening and closing of disconnect switches from SCADA or through the front panel interface. The disconnect switch element can be used to create an interlocking functionality. For greater security in determination of the switch pole position, both the 89/a and 89/b auxiliary contacts are used with reporting of the discrepancy between them. The number of available disconnect switches depends on the number of the CT/VT modules ordered with the F60.

- SWITCH 1 FUNCTION: This setting enables and disables the operation of the disconnect switch element.
- **SWITCH 1 NAME:** Assign a user-defined name (up to six characters) to the disconnect switch. This name will be used in flash messages related to disconnect switch 1.
- **SWITCH 1 MODE:** This setting selects "3-Pole" mode, where disconnect switch poles have a single common auxiliary switch, or "1-Pole" mode where each disconnect switch pole has its own auxiliary switch.

• **SWITCH 1 OPEN:** This setting selects an operand that creates a programmable signal to operate a contact output to open disconnect switch 1.

- SWITCH 1 BLK OPEN: This setting selects an operand that prevents opening of the disconnect switch. This setting
 can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- SWITCH 1 CLOSE: This setting selects an operand that creates a programmable signal to operate a contact output to close disconnect switch 1.
- **SWITCH 1 BLK CLOSE**: This setting selects an operand that prevents closing of the disconnect switch. This setting can be used for select-before-operate functionality or to block operation from a panel switch or from SCADA.
- SWTCH 1 ΦA/3P CLSD: This setting selects an operand, usually a contact input connected to a disconnect switch auxiliary position tracking mechanism. This input should be a normally-open 89/a status input to create a logic 1 when the disconnect switch is closed. If the SWITCH 1 MODE setting is selected as "3-Pole", this setting selects a single input as the operand used to track the disconnect switch open or closed position. If the mode is selected as "1-Pole", the input mentioned above is used to track phase A and the SWITCH 1 ΦB and SWITCH 1 ΦC settings select operands to track phases B and C, respectively.
- SWTCH 1 ΦA/3P OPND: This setting selects an operand, usually a contact input, that should be a normally-closed 89/b status input to create a logic 1 when the disconnect switch is open. If a separate 89/b contact input is not available, then an inverted 89/a status signal can be used.
- **SWITCH 1** Φ**B CLOSED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase B closed position as above for phase A.
- **SWITCH 1** Φ**B OPENED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase B opened position as above for phase A.
- **SWITCH 1** Φ**C CLOSED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase C closed position as above for phase A.
- **SWITCH 1** Φ**C OPENED:** If the mode is selected as three-pole, this setting has no function. If the mode is selected as single-pole, this input is used to track the disconnect switch phase C opened position as above for phase A.
- SWITCH 1 Toperate: This setting specifies the required interval to overcome transient disagreement between the 89/a
 and 89/b auxiliary contacts during disconnect switch operation. If transient disagreement still exists after this time has
 expired, the SWITCH 1 BAD STATUS FlexLogic operand is asserted from alarm or blocking purposes.
- SWITCH 1 ALARM DELAY: This setting specifies the delay interval during which a disagreement of status among the
 three-pole position tracking operands will not declare a pole disagreement. This allows for non-simultaneous operation
 of the poles.

IEC 61850 functionality is permitted when the F60 is in "Programmed" mode and not in the local control mode.

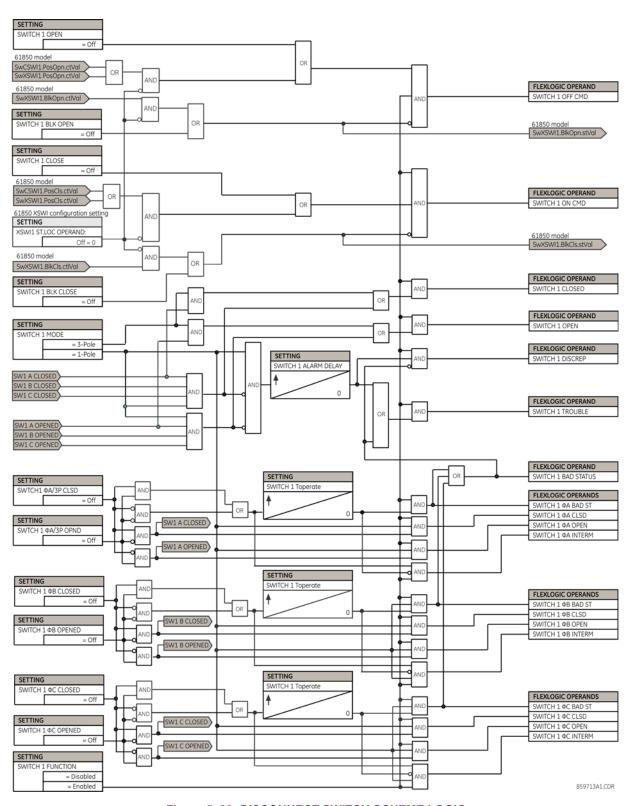


Figure 5-30: DISCONNECT SWITCH SCHEME LOGIC

The switch element has direct hard-coded connections to IEC 61850 model as shown in the logic diagram. This allows remote open/close operation of each switch, using either CSWI or XSWI IEC 61850 logical nodes. IEC 61850 select-before-operate functionality, local/remote switch functionality along with a blocking open/close commands are provided. Note that IEC 61850 commands are event-driven and dwell time for these is one protection pass only. If you want to maintain close/open command for a certain time, do so either on the contact outputs using the "Seal-in" setting or in FlexLogic.

5.4.6 FLEXCURVES

a) **SETTINGS**

PATH: SETTINGS ⇔ U SYSTEM SETUP ⇒ U FLEXCURVES ⇒ FLEXCURVE A(D)

FLEXCURVE A TIME AT 0.00 xPKP: 0 ms

Range: 0 to 65535 ms in steps of 1

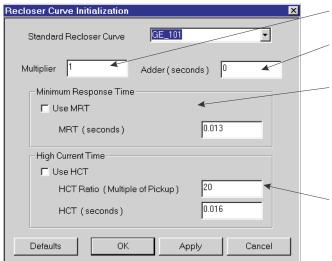
FlexCurves A through D have settings for entering times to reset and operate at the following pickup levels: 0.00 to 0.98 and 1.03 to 20.00. This data is converted into two continuous curves by linear interpolation between data points. To enter a custom FlexCurve, enter the reset and operate times (using the VALUE keys) for each selected pickup point (using the MESSAGE UP/DOWN keys) for the desired protection curve (A, B, C, or D).

Table 5-11: FLEXCURVE TABLE

RESET	TIME MS	RESET	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS	OPERATE	TIME MS
0.00		0.68		1.03		2.9		4.9		10.5	
0.05		0.70		1.05		3.0		5.0		11.0	
0.10		0.72		1.1		3.1		5.1		11.5	
0.15		0.74		1.2		3.2		5.2		12.0	
0.20		0.76		1.3		3.3		5.3		12.5	
0.25		0.78		1.4		3.4		5.4		13.0	
0.30		0.80		1.5		3.5		5.5		13.5	
0.35		0.82		1.6		3.6		5.6		14.0	
0.40		0.84		1.7		3.7		5.7		14.5	
0.45		0.86		1.8		3.8		5.8		15.0	
0.48		0.88		1.9		3.9		5.9		15.5	
0.50		0.90		2.0		4.0		6.0		16.0	
0.52		0.91		2.1		4.1		6.5		16.5	
0.54		0.92		2.2		4.2		7.0		17.0	
0.56		0.93		2.3		4.3		7.5		17.5	
0.58		0.94		2.4		4.4		8.0		18.0	
0.60		0.95		2.5		4.5		8.5		18.5	
0.62		0.96		2.6		4.6		9.0		19.0	
0.64		0.97		2.7		4.7		9.5		19.5	
0.66		0.98		2.8		4.8		10.0		20.0	-

5.4 SYSTEM SETUP 5 SETTINGS

The relay using a given FlexCurve applies linear approximation for times between the user-entered points. Special care must be applied when setting the two points that are close to the multiple of pickup of 1; that is, 0.98 pu and 1.03 pu. It is recommended to set the two times to a similar value; otherwise, the linear approximation may result in undesired behavior for the operating quantity that is close to 1.00 pu.


b) FLEXCURVE CONFIGURATION WITH ENERVISTA UR SETUP

The EnerVista UR Setup software allows for easy configuration and management of FlexCurves and their associated data points. Prospective FlexCurves can be configured from a selection of standard curves to provide the best approximate fit, then specific data points can be edited afterwards. Alternately, curve data can be imported from a specified file (.csv format) by selecting the **Import Data From** EnerVista UR Setup setting.

Curves and data can be exported, viewed, and cleared by clicking the appropriate buttons. FlexCurves are customized by editing the operating time (ms) values at pre-defined per-unit current multiples. Note that the pickup multiples start at zero (implying the "reset time"), operating time below pickup, and operating time above pickup.

c) RECLOSER CURVE EDITING

Recloser curve selection is special in that recloser curves can be shaped into a composite curve with a minimum response time and a fixed time above a specified pickup multiples. There are 41 recloser curve types supported. These definite operating times are useful to coordinate operating times, typically at higher currents and where upstream and downstream protective devices have different operating characteristics. The recloser curve configuration window shown below appears when the Initialize From EnerVista UR Setup setting is set to "Recloser Curve" and the Initialize FlexCurve button is clicked.

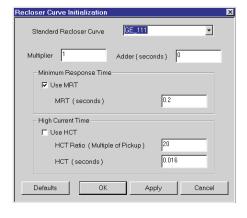
Multiplier: Scales (multiplies) the curve operating times

Addr: Adds the time specified in this field (in ms) to each *curve* operating time value.

Minimum Response Time (MRT): If enabled, the MRT setting defines the shortest operating time even if the curve suggests a shorter time at higher current multiples. A composite operating characteristic is effectively defined. For current multiples lower than the intersection point, the curve dictates the operating time; otherwise, the MRT does. An information message appears when attempting to apply an MRT shorter than the minimum curve time.

High Current Time: Allows the user to set a pickup multiple from which point onwards the operating time is fixed. This is normally only required at higher current levels. The **HCT Ratio** defines the high current pickup multiple; the **HCT** defines the operating time.

842721A1.CDR


Figure 5-31: RECLOSER CURVE INITIALIZATION

The multiplier and adder settings only affect the curve portion of the characteristic and not the MRT and HCT settings. The HCT settings override the MRT settings for multiples of pickup greater than the HCT ratio.

d) **EXAMPLE**

A composite curve can be created from the GE_111 standard with MRT = 200 ms and HCT initially disabled and then enabled at eight (8) times pickup with an operating time of 30 ms. At approximately four (4) times pickup, the curve operating time is equal to the MRT and from then onwards the operating time remains at 200 ms (see below).

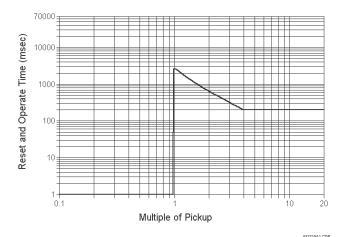
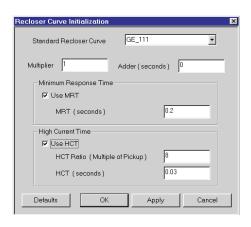



Figure 5-32: COMPOSITE RECLOSER CURVE WITH HCT DISABLED

With the HCT feature enabled, the operating time reduces to 30 ms for pickup multiples exceeding 8 times pickup.

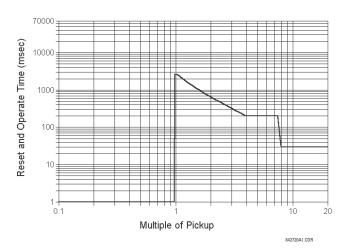


Figure 5-33: COMPOSITE RECLOSER CURVE WITH HCT ENABLED

Configuring a composite curve with an increase in operating time at increased pickup multiples is not allowed. If this is attempted, the EnerVista UR Setup software generates an error message and discards the proposed changes.

e) STANDARD RECLOSER CURVES

The standard recloser curves available for the F60 are displayed in the following graphs.

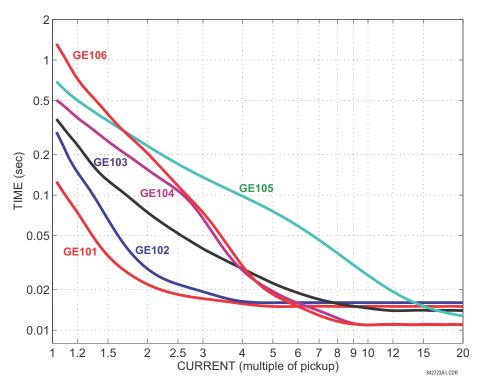


Figure 5-34: RECLOSER CURVES GE101 TO GE106

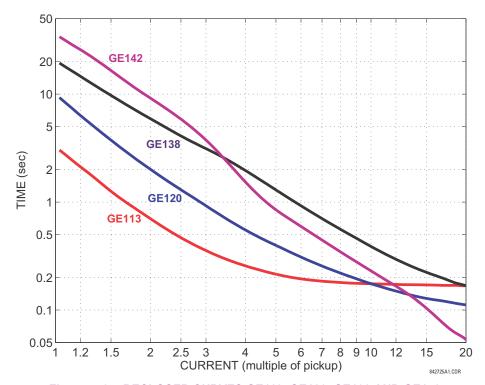


Figure 5-35: RECLOSER CURVES GE113, GE120, GE138 AND GE142

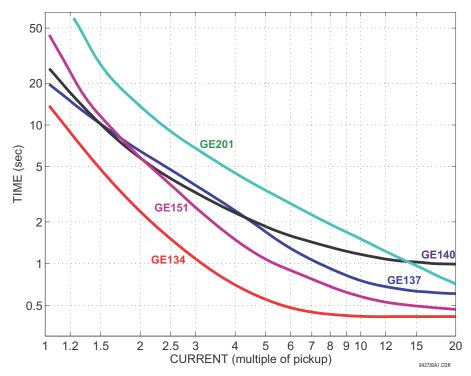


Figure 5-36: RECLOSER CURVES GE134, GE137, GE140, GE151 AND GE201

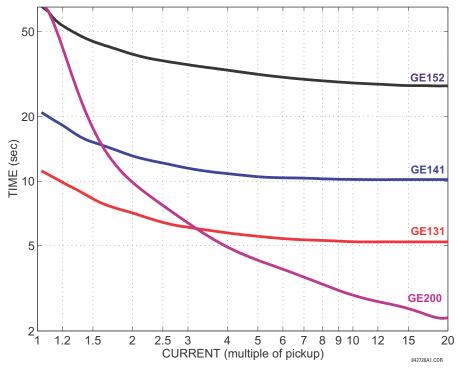


Figure 5-37: RECLOSER CURVES GE131, GE141, GE152, AND GE200

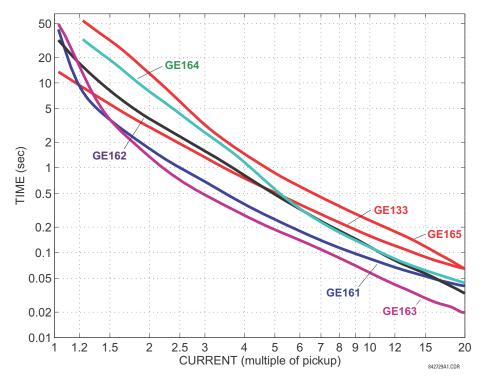


Figure 5-38: RECLOSER CURVES GE133, GE161, GE162, GE163, GE164 AND GE165

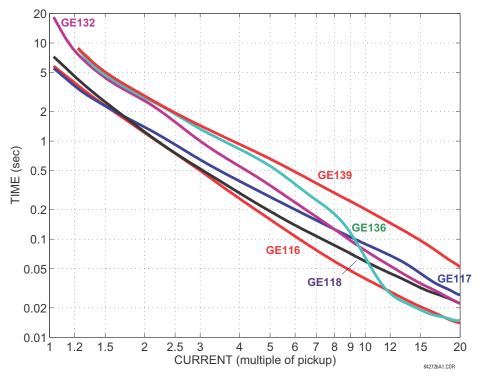


Figure 5-39: RECLOSER CURVES GE116, GE117, GE118, GE132, GE136, AND GE139

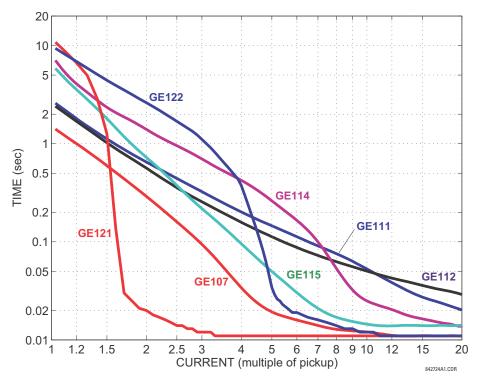


Figure 5-40: RECLOSER CURVES GE107, GE111, GE112, GE114, GE115, GE121, AND GE122

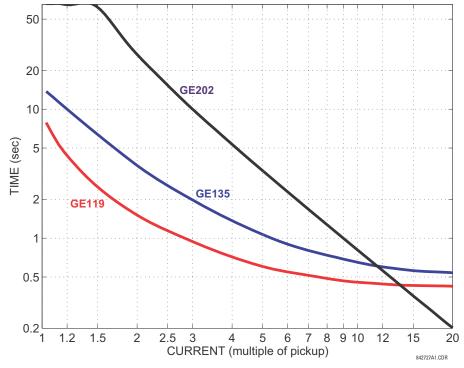


Figure 5-41: RECLOSER CURVES GE119, GE135, AND GE202

a) MAIN MENU

PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SETUP ⇒ \$\Pi\$ PHASOR MEASUREMENT UNIT

The F60 Feeder Protection System is provided with an optional phasor measurement unit feature. This feature is specified as a software option at the time of ordering. The number of phasor measurement units available can also depend on this option. Using the order code for your device, see the order codes in chapter 2 for details.

UR Synchrophasor Implementation

PHASORS are used within protection relays. If these phasors are referenced to a common time base they are referred to as a **SYNCHROPHASOR**. A vastly improved method for tracking power system dynamic phenomena for improved power system monitoring, protection, operation, and control can be realized if Synchrophasors from different locations within the power system are networked to a central location.

The F60 offers PMU features over two communication standards, IEC 61850-9-5 and IEEE C37.118. The figure shows complete Synchrophasor implementation.

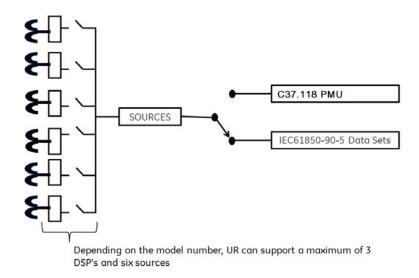


Figure 5-42: COMPLETE SYNCHROPHASOR IMPLEMENTATION

UR Implementation of IEC 61850-90-5

Synchrophasor data as measured and calculated by phasor measurement units (PMUs) is used to assess the condition of the electrical power network. The IEEE C37.118 standards define synchrophasors and related message formats to transmit synchrophasor data. Synchrophasor streaming via IEEE C37.118 has proven to work but the desire to have a communication mechanism that is compliant with the concept of IEC 61850 has led to the development of IEC 61850-90-5. The IEC 61850-90-5 standard defines the packet structure for multicast routing of streamed Sampled Value (SV) known as R-SV.

Firmware versions 7.0 and above have a 90-5 based R-SV implementation equivalent in structure and configuration to that of the existing IEEE C37.118 implementation of firmware version 6.0, that is, synchrophasor data at rates up to 60 Hz for metering and 120 Hz for protection class synchrophasors. The following two figures depict the general data flow for the generation of synchrophasor data for IEC 61850-90-5. In the first figure, when IEC 61850-90-5 is selected all real and virtual sources are available for the IEC 61850-90-5 PMUs.

The number of PMUs and aggregators vary by product, as outlined in the table.

Table 5-12: IMPLEMENTATION BY MODEL NUMBER

MODEL	NUMBER OF PMUS	NUMBER OF AGGREGATORS	NUMBER OF ANALOG INPUTS
N60	6	4	16
C60	2	2	16
D60, F60, G60, L30, L90, T60	1	1	16

The figure shows an example of an N60 using four Logical Device PMUs (Logical Device 2 through 5) and four aggregators. The control blocks for the aggregators are located in LD1. A 64 char LDName setting is provided..

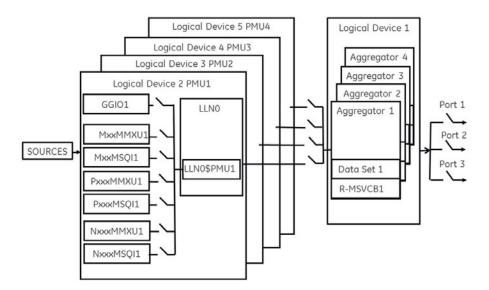


Figure 5-43: N60 EXAMPLE FOR FOUR LOGICAL DEVICE PMUS

Precise time input to the relay from the international time standard, via either IRIG-B or PTP, is vital for correct synchrophasor measurement and reporting. For IRIG-B, a DC level shift IRIG-B receiver must be used for the phasor measurement unit to output proper synchrophasor values.

5.4 SYSTEM SETUP 5 SETTINGS

Depending on the applied filter, the Synchrophasors that are produced by PMUs are classified as either P (protection) or M (Measurement) class Synchrophasors. Synchrophasors available within the UR that have no filtering applied are classified as NONE, which within the standard is classified as PRES OR UNKNOWN under the Calculation Method - ClcMth. Each Logical Device PMU supports one MxxMMXU, MxxMSQI, PxxxMMXU, PxxxMSQI, NxxMMXU, and one NxxMSQI logical node.

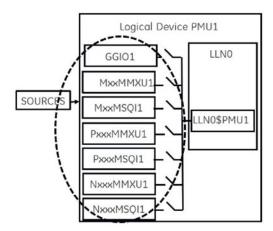


Figure 5-44: LOGICAL NODES SUPPORTED IN EACH LOGICAL DEVICE

The following is a summary of LNs that are in each Logical Device (LD2 through LD7):

- PxxxMMXU1 ClcMth = P-Class (Note Vaux is mapped to Vneut of MMXU)
- PxxxMSQI1 ClcMth = P-CLASS
- MxxMMXU1 ClcMth = M-Class (Note Vaux is mapped to Vneut of MMXU)
- MxxMSQI1 ClcMth = M-CLASS
- NxxMMXU1 ClcMth = M-Class (Note Vaux is mapped to Vneut of MMXU)
- NxxMSQI1 ClcMth = M-CLASS
- GGIO1 which contains 16 digital status indication points and 16 analog points. The Analog GGIO values are selectable from any FlexAnalog value in the UR.

The Synchro Logical Nodes in an LD report at the same rate as set in the PMUn Basic Configuration setting. This is reflected in the instantiation of the Data Object – SmpRate in the msvcb## of LLN0 in the LD1. SmpRate is a Read Only Integer Status (INS).

When the first PMU from any LD is mapped into an aggregator, the aggregator inherits the Sample Rate (SmpRate) and IEEE C37.118 Class (P or M) of that PMU. The value of the SmpRate DO in the Report Control Block is set based on the value of the Sample Rate in the PMU. The Class of the Dataset are mapped into the MSVID of the Dataset (see text below for the overall name of the MSVID). If other PMUs are mapped into the same aggregator with different Sample Rates or from different classes, then a Self-Test error (DatSetErr) is set and dataset transmission is blocked.

A setting value – MSVID – is created with a maximum input range of 56 characters (=64 less 6 for the IDCode less 2 for the Class).

The value of MSVID in the dataset is a concatenation of the aggregator IDCode and the MSVID setting value in the format: MSVID-AggregatorIDCode-CLASS where CLASS is P, M, or N (for None) – depending on the Class of the first PMU included in the Aggregator.

Synchrophasor Rectangular Format and Integer data types are NOT supported in IEC 61850-90-5 (only supported with IEEE C37.118) and not to set — GGIO1 which contains 16 digital status indication points — aggregated as a 16 bit bitstring and 16 analog points. The Analog GGIO values are selectable from any FlexAnalog value in the UR. For version 7.0 and later the description fields for the phasors, analog and digital channels are populated with the 16 character name field provided within the Basic Configuration menu. Additionally, the names of the 16 binary points are implemented as numbered descriptions — d1, d2, d3, and so on. The number of descriptions are equal to the number of bits configured in the 16 bit digital status word.

All bitstrings less than or equal to 32 bits in length map into a 32 bit bitstring in an IEC 61850-90-5 dataset.

The Value of the Nominal Frequency of the chassis is instantiated as a DO in LPHD of LD1. The value is named HzNom and is an Integer Status (INS).

The UR also supports the option to apply no filtering to the synchrophasors. If no filtering is applied (PMU Class = None), according to the standard, the ClcMth attribute is PRES. The semantic of the ClcMth used is not carried in the individual DO and so it is recommended that one of letters of the prefix on the instantiated LNs be set to "P" or "M" accordingly in order to differentiate. For version 7.0 and later, only FCDA data is supported. The *Implementation by Model Number* table earlier describes the maximum size of each PMU data set for version 7.2 and later using FCDA data (non-structured data).

EXAMPLE: PROTECTION SYNCHROPHASORS DATA SET WITH REPORTING RATE 60 FRAMES/SECOND

This example gives the protection synchrophasors data set with a reporting rate of 60 frames per second (P60MMXU1). See the figure earlier, Logical Nodes Supported in Each Logical Device. This data or list of items, as shown in the following figure, is not available to the UR setup program but is available to be mapped by the user into a selected aggregator or aggregators dataset. The logical device name (LDName) of each PMU LD is a 64 character user setting. The IEEE C37.118 STN and IDCode is to be mapped as a concatenated value in the (d)escription field of LPL CDC of the NamPlt DO in LLN0. The mapping is implemented as STN-IDCode (text string).

From each PMU, the user selects the phasor information of interest that is mapped into the selected aggregator datset(s). For version 7.0 and later only FCDA data is supported.

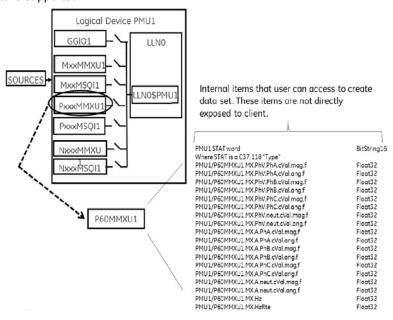


Figure 5-45: DATA SET CREATED FROM USER SELECTED INTERNAL ITEMS

EXAMPLE: THE CREATION OF DIFFERENT DATA SETS

The aggregators allow the aggregation of phasors from multiple PMUs (with the same reporting rate) into a single custom data set to optimize bandwidth when streaming.

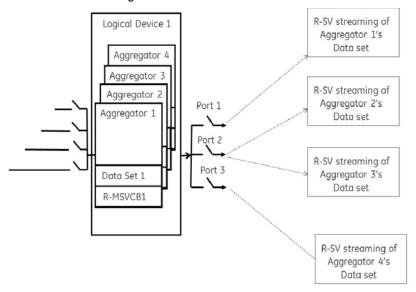


Figure 5-46: EXAMPLE OF AGGREGATOR DATA SETS

CONFIGURATION EXAMPLE: CFG-2 BASED CONFIGURATION (USING IEC 61850-90-5)

The F60 is expected to send the CFG-2 file (IEEE C37.118 config. file) upon request from the upstream synchrophasor devices (for example, P30) without stopping R-SV multicasting, as shown in the figure below. The primary domain controller (PDC) does not need to use a stop/start data stream command if the UR protocol is set to IEC 61850-90-5 prior to requesting the configuration via CFG-2 (IEEE C37.118 config. file). The CFG-2 request from the P30 can be on TCP/IP or UDP/IP, however, R-SV data streaming is only UDP multicasts (not TCP).

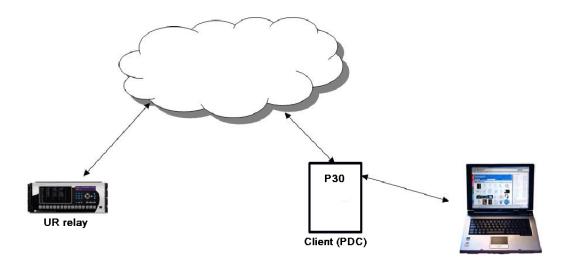
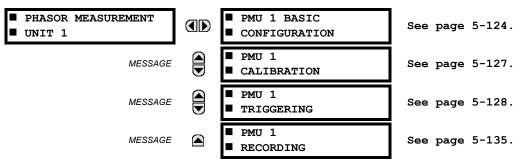


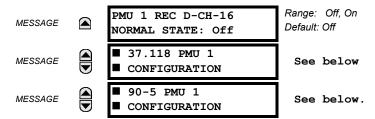
Figure 5-47: CFG-2 BASED CONFIGURATION SOLUTION


MODIFICATION OF SYNC WORD IN CFG-2 FOR TR 90-5 DATA SETS

In the CFG-2 file, all relevant information about the data being streamed is included. However, this file does not include the fact that it describes a 90-5 dataset or the number of Application Service Data Units (datasets). In order to communicate this information via the CFG-2 file for a given aggregator, when the aggregator is set to 90-5, the version number of the CFG-2 file (found in bits 0-3 of the frame SYNC word, which should presently be set to 2) is set as follows:

VALUE (DECIMAL)	# OF ASDUS
11	1
12	2
13	3
14	4

The PMU settings are organized in logical groups as follows.

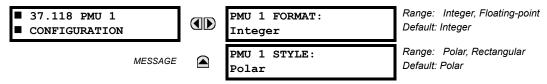

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT 1

b) BASIC CONFIGURATION

PATH: SETTINGS ⇒ \$\Pi\$ SYSTEM SE	ΓUP ⇒PH	ASOR MEASUREMENT ⇒ ∜BASIC (CONFIGURATION ⇒PMU1
■ PMU 1 BASIC ■ CONFIGURATION		PMU 1 FUNCTION: Disabled	Range: Enabled, Disabled Default: Disabled
MESSAGE		PMU 1 IDCODE: 1	Range: 1 to 65534 in steps of 1 Default: 1
MESSAGE		PMU 1 STN: GE-UR-PMU	Range: 32-character ASCII string truncated to 16 characters if mapped into C37.118 Default: GE-UR-PMU
MESSAGE		PMU 1 SIGNAL SOURCE: SRC 1	Range: Available signal sources Default: SRC 1
MESSAGE		PMU 1 CLASS: M-CLASS	Range: None, CLASS M, CLASS P Default: M-CLASS
MESSAGE		PMU 1 RATE: 10/sec	Range:1/sec, 2/sec, 4/sec, 5/sec, 10/sec, 12/sec, 15/sec, 20/sec, 25/sec, 30/sec, 50/sec, 60/sec, 100/sec, 120/sec
MESSAGE		PMU 1 PHS-1: Off	Range: Available synchrophasor values Default: Off
MESSAGE		PMU 1 PHS-1 NAME: GE-UR-PMU-PHS-1	Range: 16 -character ASCII string Default: GE-UR-PMU-PHS-1
			
MESSAGE		PMU 1 PHS-14: Off	Range: Available synchrophasor values Default: Off
MESSAGE		PMU 1 PHS-14: NAME: GE-UR-PMU-PHS-14	Range: 16 -character ASCII string Default: GE-UR-PMU-PHS-14
MESSAGE		PMU 1 A-CH-1: Off	Range: Available FlexAnalog values Default: Off
MESSAGE		PMU 1 A-CH-1: NAME: AnalogChannel1	Range: 16 -character ASCII string Default: AnalogChannel1
		\downarrow	
MESSAGE		PMU 1 A-CH-16 (16): Off	Range: Available FlexAnalog values Default: Off
MESSAGE		PMU 1 A-CH-16 (16): NAME: AnalogChannel16	Range: 16 -character ASCII string Default: AnalogChannel8
MESSAGE		PMU 1 D-CH-1: Off	Range: Available FlexLogic operands Default: Off
MESSAGE		PMU 1 D-CH-1 NAME: DigChannel1	Range: 16 character ASCII string Default: DigChannel1
MESSAGE		PMU 1 D-CH-1 NORMAL STATE: Off	Range: Off, On Default: Off
			
MESSAGE		PMU 1 D-CH-16: Off	Range: FlexLogic operand Default: Off
MESSAGE		PMU 1 REC D-CH-16 NAME: DigChannel16	Range: 16-character ASCII string Default: DigChannel16

This section contains basic phasor measurement unit (PMU) data, such as functions, source settings, and names.

- PMU 1 FUNCTION: This setting enables the LOGICAL Device PMU 1 functionality. Use this setting to permanently
 enable or disable the feature.
- PMU 1 IDCODE: This setting assigns a numerical ID to the PMU. It corresponds to the IDCODE field of the data, configuration, header, and command frames of the IEEE C37.118 protocol. The PMU uses this value when sending data, configuration, and header frames; and it responds to this value when receiving the command frame. This is used when only data from one PMU is present.
- PMU 1 STN: This setting assigns an alphanumeric ID to the PMU station. It corresponds to the STN field of the configuration frame of the IEEE C37.118 protocol. This value is a 16-character ASCII string as per the IEEE C37.118 standard.
- **PMU 1 SIGNAL SOURCE**: This setting specifies one of the available F60 signal sources for processing in the PMU. Note that any combination of voltages and currents can be configured as a source. The current channels can be configured as sums of physically connected currents. This facilitates PMU applications in breaker-and-a-half, ring-bus, and similar arrangements. The PMU feature calculates voltage phasors for actual voltage (A, B, C, and auxiliary) and current (A, B, C, and ground) channels of the source, as well as symmetrical components (0, 1, and 2) of both voltages and currents. When configuring communication and recording features of the PMU, the user can select, from the above superset, the content to be sent out or recorded. When one source is selected by one PMU, it cannot be selected by another PMU.
- PMU 1 CLASS (Range P, M, None): This setting selects the synchrophasor class. Note that a reporting rate of 100 or 120 can only be selected for class P synchrophasors and if the system frequency is 50 or 60 Hz, respectively.
- **PMU 1 RATE**: This setting specifies the reporting rate for the network (Ethernet) port. This value applies to all PMU streams of the device that are assigned to transmit over this aggregator. For a system frequency of 60 Hz (50 Hz), the F60 generates a reporting mismatch message if the selected rate is not set as 10 Hz, 12 Hz, 15 Hz, 20 Hz, 30 Hz, 60 Hz, or 120 Hz (or 10 Hz, 25 Hz, 50 Hz or 100 Hz when the system frequency is 50 Hz) when entered via the keypad or software; and the F60 stops the transmission of reports. Note that 4 Hz is not allowed for an M-class 50 Hz system).
- PMU1 PHS-14: These settings specify synchrophasors to be transmitted from the superset of all synchronized measurements. The table outlines available synchrophasor values.


SELECTION	MEANING	
Va	First voltage channel, either Va or Vab	
Vb	Second voltage channel, either Vb or Vbc	
Vc	Third voltage channel, either Vc or Vca	
Vx	Fourth voltage channel	
la	Phase A current, physical channel or summation as per the source settings	
lb	Phase B current, physical channel or summation as per the source settings	
Ic	Phase C current, physical channel or summation as per the source settings	
lg	Fourth current channel, physical or summation as per the source settings	
V1	Positive-sequence voltage, referenced to Va	
V2	Negative-sequence voltage, referenced to Va	
V0	Zero-sequence voltage	
I1	Positive-sequence current, referenced to la	
12	Negative-sequence current, referenced to la	
10	Zero-sequence current	

These settings allow for optimizing the frame size and maximizing transmission channel usage, depending on a given application. Select "Off" to suppress transmission of a given value.

- PMU1 PHS-1 NM to PMU1 PHS-14 NM: These settings allow for custom naming of the synchrophasor channels. Sixteen-character ASCII strings are allowed as in the CHNAM field of the configuration frame. These names are typically based on station, bus, or breaker names.
- **PMU1 A-CH-1** to **PMU1 A-CH-16**: These settings specify any analog data measured by the relay to be included as a user-selectable analog channel of the data frame. Up to 16 analog channels can be configured to send any FlexAnalog value from the relay. Examples include frequency, rate of frequency change, active and reactive power, per phase or three-phase power, power factor, temperature via RTD inputs, and THD. The configured analog values are sampled concurrently with the synchrophasor instant and sent as 32-bit floating-point values scaled to Engineering units.
- PMU1 A-CH-1 NM to PMU1 A-CH-16 NM: These settings allow for custom naming of the analog channels. Sixteencharacter ASCII strings are allowed as in the CHNAM field of the configuration frame.
- **PMU1 D-CH-1** to **PMU1 D-CH-16**: These settings specify any digital flag measured by the relay to be included as a user-selectable digital channel of the data frame. Up to 16 digital channels can be configured to send any FlexLogic operand from the relay. The configured digital flags are sampled concurrently with the synchrophasor instant. These values are mapped into a two-byte integer number, with byte 1 LSB corresponding to the digital channel 1 and byte 2 MSB corresponding to digital channel 16.
- PMU1 D-CH-1 NM to PMU1 D-CH-16 NM: These settings allow for custom naming of the digital channels. Sixteencharacter ASCII strings are allowed as in the CHNAM field of the configuration frame.
- **PMU1 D-CH-1 NORMAL STATE** to **PMU1 D-CH-16 NORMAL STATE**: These settings allow for specifying a *normal* state for each digital channel. These states are transmitted in configuration frames to the data concentrator.

C37.118 PMU 1 CONFIGURATION

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP \Rightarrow PHASOR MEASUREMENT $\Rightarrow \emptyset$ BASIC CONFIGURATION \Rightarrow PMU 1 BASIC CONFIGURATION $\Rightarrow \emptyset$ 37.118 PMU 1 CONFIGURATION

PMU 1 FORMAT: This setting selects whether synchrophasors are reported as 16-bit integers or 32-bit IEEE floating point numbers. This setting complies with bit-1 of the FORMAT field of the IEEE C37.118 configuration frame. This setting applies to synchrophasors only; the user-selectable FlexAnalog channels are always transmitted as 16-bit integer values.

PMU 1 STYLE: This setting selects whether synchrophasors are reported in rectangular (real and imaginary) coordinates or in polar (magnitude and angle) coordinates. This setting complies with bit-0 of the FORMAT field of the IEEE C37.118 configuration frame.

With 90-5 PMU, the FORMAT and STYLE are Floating-point and Polar respectively, as specified in the IEC 61850 standard.

IEC 61850-90-5 PMU 1 CONFIGURATION

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP \Rightarrow PHASOR MEASUREMENT $\Rightarrow \emptyset$ BASIC CONFIGURATION \Rightarrow PMU1 \Rightarrow PMU 1 BASIC CONFIGURATION $\Rightarrow \emptyset$ 90 – 5 PMU 1 CONFIGURATION

PMU1 LDINST: A user-defined visible string (maximum 64 char ASCII test) to assign Logical Device (LD) Inst for a PMU LD.

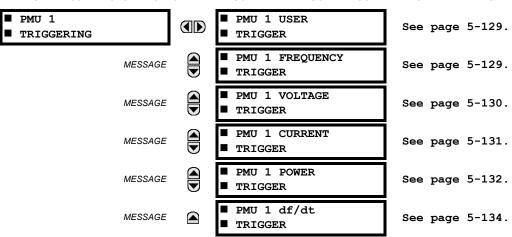
As per IEC 61850-6 standard specification, the PMU LD Name is the concatenated combination (to total 64 characters) of IED Name (specified in IEC 61850 Server Settings) appended with PMU X LDINST string.

c) CALIBRATION

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT 1 $\Rightarrow \emptyset$ PMU 1 CALIBRATION

TION			
■ PMU 1 ■ CALIBRATION	PMU 1 VA CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 VA CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 VB CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 VB CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 VC CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 VC CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 VX CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 VX CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 IA CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 IA CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 IB CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 IB CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 IC CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 IC CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 IG CALIBRATION ANGLE: 0.00°	Range:	-5.00 to 5.00° in steps of 0.05
MESSAGE	PMU 1 IG CALIBRATION MAG: 100.0%	Range:	95.0 to 105.0 in steps of 0.1%
MESSAGE	PMU 1 SEQ VOLT SHIFT ANGLE: 0°	Range:	–180 to 180° in steps of 30
MESSAGE	PMU 1 SEQ CURR SHIFT ANGLE: 0°	Range:	–180 to 180° in steps of 30

This menu contains user angle and magnitude calibration data for the phasor measurement unit (PMU). This data is combined with the factory adjustments to shift the phasors for better accuracy.


PMU 1 VA... IG CALIBRATION ANGLE: These settings recognize applications with protection class voltage and current sources, and allow the user to calibrate each channel (four voltages and four currents) individually to offset errors introduced by VTs, CTs, and cabling. The setting values are effectively added to the measured angles. Therefore, enter a positive correction of the secondary signal lags the true signal; and negative value if the secondary signal leads the true signal.

• PMU 1 VA... IG CALIBRATION MAGNITUDE: These settings recognize applications with protection class voltage and current sources, and allow the user to calibrate each channel (four voltages and four currents) individually to offset errors introduced by VTs, CTs. The setting values are effectively a multiplier of the measured magnitudes. Therefore, enter a multiplier greater than 100% of the secondary signal increases the true signal; and a multiplier less than 100% value of the secondary signal reduces the true signal.

- PMU 1 SEQ VOLT SHIFT ANGLE: This setting allows correcting positive- and negative-sequence voltages for vector
 groups of power transformers located between the PMU voltage point, and the reference node. This angle is effectively
 added to the positive-sequence voltage angle, and subtracted from the negative-sequence voltage angle. Note that:
 - 1. When this setting is not "0°", the phase and sequence voltages do not agree. Unlike sequence voltages, the phase voltages cannot be corrected in a general case, and therefore are reported as measured.
 - 2. When receiving synchrophasor data at multiple locations, with possibly different reference nodes, it can be more beneficial to allow the central locations to perform the compensation of sequence voltages.
 - This setting applies to PMU data only. The F60 calculates symmetrical voltages independently for protection and control purposes without applying this correction.
 - 4. When connected to line-to-line voltages, the PMU calculates symmetrical voltages with the reference to the AG voltage, and not to the physically connected AB voltage (see the *Metering Conventions* section in Chapter 6).
- PMU 1 SEQ CURR SHIFT ANGLE: This setting allows correcting positive and negative-sequence currents for vector
 groups of power transformers located between the PMU current point and the reference node. The setting has the
 same meaning for currents as the PMU 1 SEQ VOLT SHIFT ANGLE setting has for voltages. Normally, the two correcting
 angles are set identically, except rare applications when the voltage and current measuring points are located at different windings of a power transformer.

d) PMU TRIGGERING OVERVIEW

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR... $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT $1 \Rightarrow \emptyset$ PMU 1 TRIGGERING

Each logical phasor measurement unit (PMU) contains five triggering mechanisms to facilitate triggering of the associated PMU recorder, or cross-triggering of other PMUs of the system. They are:

- Overfrequency and underfrequency
- Overvoltage and undervoltage
- Overcurrent
- Overpower
- High rate of change of frequency

The pre-configured triggers can be augmented with a user-specified condition built freely using programmable logic of the relay. The entire triggering logic is refreshed once every two power system cycles.

All five triggering functions and the user-definable condition are consolidated (ORed) and connected to the PMU recorder. Each trigger can be programmed to log its operation into the event recorder, and to signal its operation via targets. The five triggers drive the STAT bits of the data frame to inform the destination of the synchrophasor data regarding the cause of trigger. The following convention is adopted to drive bits 11, 3, 2, 1, and 0 of the STAT word.

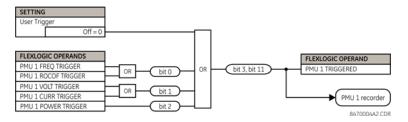
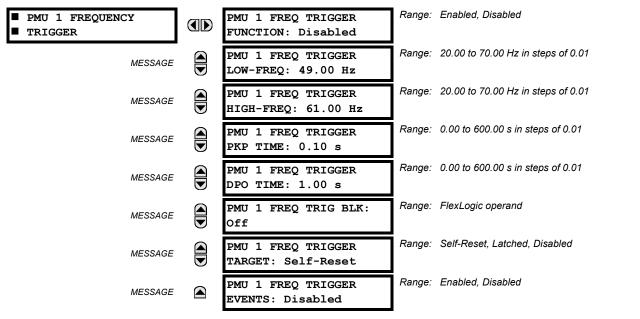


Figure 5-48: STAT BITS LOGIC

The trigger reset (drop-off) timer is available for all five triggering functions (FREQ, ROCOF, VOLT, CURR, POWER) in individual trigger settings under the TRIGGER DPO TIME setting. This asserts individual trigger operand and overall PMU x TRIGGERED operand with stat bits 3 and 11 for a fixed interval defined by this setting. If it is required that PMU x TRIGGERED operand with stat bits 3 and 11 stay longer than the individual reset timer, then use the PMU x USER TRIGGER setting assigned with appropriate elements and FlexLogic. In short, in case of USER TRIGGER, the drop-off time needs to be implemented using FlexLogic.

e) USER TRIGGERING


PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT... $\Rightarrow \emptyset$ PMU 1 TRIGGERING $\Rightarrow \emptyset$ PMU 1 USER TRIGGER

The user trigger allows customized triggering logic to be constructed from FlexLogic. The entire triggering logic is refreshed once every two power system cycles.

f) FREQUENCY TRIGGERING

PATH: SETTINGS ⇒ ♣ SYSTEM SETUP ⇒ ♣ PHASOR MEASUREMENT... ⇒ ♣ PMU 1 TRIGGERING ⇒ ♣ PMU 1 FREQUENCY TRIGGER

The trigger responds to the frequency signal of the phasor measurement unit (PMU) source. The frequency is calculated from among phase voltages, auxiliary voltage, phase currents and ground current, in this hierarchy, depending on the source configuration as per F60 standards. This element requires that the frequency be above the minimum measurable value. If the frequency is below this value, such as when the circuit is de-energized, the trigger drops out.

- PMU 1 FREQ TRIGGER LOW-FREQ: This setting specifies the low threshold for the abnormal frequency trigger. The
 comparator applies a 0.02 Hz hysteresis.
- PMU 1 FREQ TRIGGER HIGH-FREQ: This setting specifies the high threshold for the abnormal frequency trigger. The
 comparator applies a 0.02 Hz hysteresis.
- PMU 1 FREQ TRIGGER PKP TIME: This setting can be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 FREQ TRIGGER DPO TIME: This setting can be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

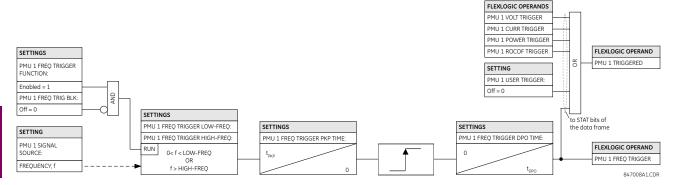
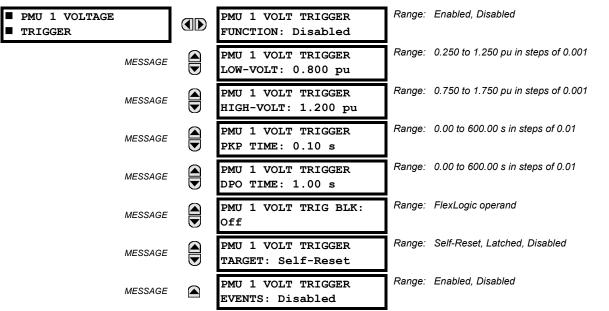



Figure 5-49: FREQUENCY TRIGGER SCHEME LOGIC

g) VOLTAGE TRIGGERING

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT... $\Rightarrow \emptyset$ PMU 1 TRIGGERING $\Rightarrow \emptyset$ PMU 1 VOLTAGE TRIGGER

This element responds to abnormal voltage. Separate thresholds are provided for low and high voltage. In terms of signaling its operation, the element does not differentiate between the undervoltage and overvoltage events. The trigger responds to the phase voltage signal of the phasor measurement unit (PMU) source. All voltage channels (A, B, and C or AB, BC, and CA) are processed independently and can trigger the recorder. A minimum voltage supervision of 0.1 pu is implemented to prevent pickup on a de-energized circuit, similarly to the undervoltage protection element.

- PMU 1 VOLT TRIGGER LOW-VOLT: This setting specifies the low threshold for the abnormal voltage trigger, in perunit of the PMU source. 1 pu is a nominal voltage value defined as the nominal secondary voltage times VT ratio. The comparator applies a 1% hysteresis.
- PMU 1 VOLT TRIGGER HIGH-VOLT: This setting specifies the high threshold for the abnormal voltage trigger, in perunit of the PMU source. 1 pu is a nominal voltage value defined as the nominal secondary voltage times VT ratio. The comparator applies a 1% hysteresis.
- PMU 1 VOLT TRIGGER PKP TIME: This setting can bused to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 VOLT TRIGGER DPO TIME: This setting can be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

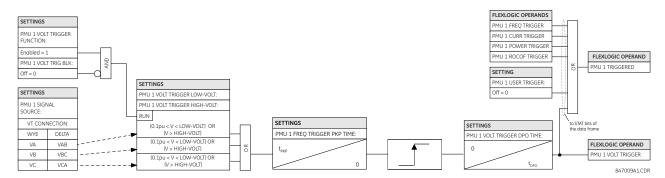
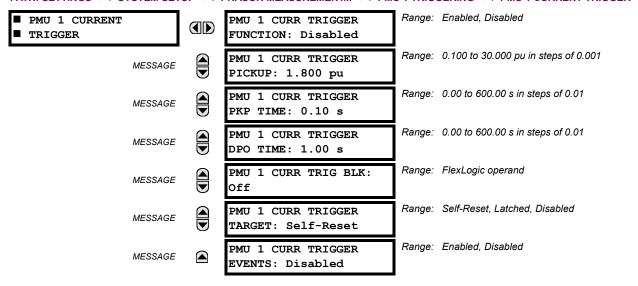



Figure 5-50: VOLTAGE TRIGGER SCHEME LOGIC

h) CURRENT TRIGGERING

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT... $\Rightarrow \emptyset$ PMU 1 TRIGGERING $\Rightarrow \emptyset$ PMU 1 CURRENT TRIGGER

This element responds to elevated current. The trigger responds to the phase current signal of the phasor measurement unit (PMU) source. All current channel (A, B, and C) are processed independently and could trigger the recorder.

• **PMU 1 CURR TRIGGER PICKUP**: This setting specifies the pickup threshold for the overcurrent trigger, in per unit of the PMU source. A value of 1 pu is a nominal primary current. The comparator applies a 3% hysteresis.

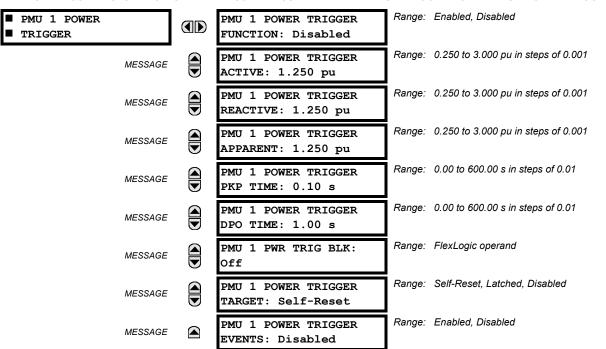

- PMU 1 CURR TRIGGER PKP TIME: This setting can be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 CURR TRIGGER DPO TIME: This setting can be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

Figure 5-51: CURRENT TRIGGER SCHEME LOGIC

i) POWER TRIGGERING

PATH: SETTINGS ⇔ ♥ SYSTEM SETUP ⇔ ♥ PHASOR MEASUREMENT... ⇔ ♥ PMU 1 TRIGGERING ⇔ ♥ PMU 1 POWER TRIGGER

This element responds to abnormal power. Separate thresholds are provided for active, reactive, and apparent powers. In terms of signaling its operation the element does not differentiate between the three types of power. The trigger responds to the single-phase and three-phase power signals of the phasor measurement unit (PMU) source.

• **PMU 1 POWER TRIGGER ACTIVE**: This setting specifies the pickup threshold for the active power of the source. For single-phase power, 1 pu is a product of 1 pu voltage and 1 pu current, or the product of nominal secondary voltage, the VT ratio and the nominal primary current. For the three-phase power, 1 pu is three times that for a single-phase

power in case of wye-connected VTs and $\sqrt{3}$ times in case of delta-connected VTs. The comparator applies a 3% hysteresis.

- **PMU 1 POWER TRIGGER REACTIVE**: This setting specifies the pickup threshold for the reactive power of the source. For single-phase power, 1 pu is a product of 1 pu voltage and 1 pu current, or the product of nominal secondary voltage, the VT ratio and the nominal primary current. For the three-phase power, 1 pu is three times that for a single-phase power in case of wye-connected VTs and √3 times in case of delta-connected VTs. The comparator applies a 3% hysteresis.
- **PMU 1 POWER TRIGGER APPARENT**: This setting specifies the pickup threshold for the apparent power of the source. For single-phase power, 1 pu is a product of 1 pu voltage and 1 pu current, or the product of nominal secondary voltage, the VT ratio and the nominal primary current. For the three-phase power, 1 pu is three times that for a single-phase power in case of wye-connected VTs and √3 times in case of delta-connected VTs. The comparator applies a 3% hysteresis.
- PMU 1 POWER TRIGGER PKP TIME: This setting can be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- **PMU 1 POWER TRIGGER DPO TIME**: This setting can be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

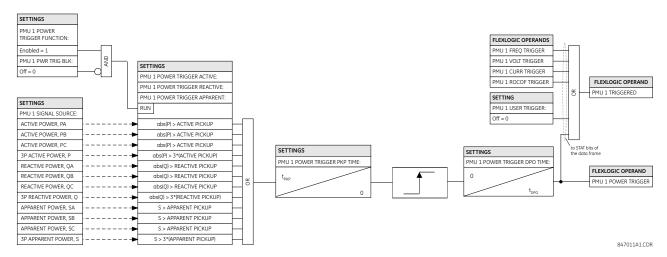
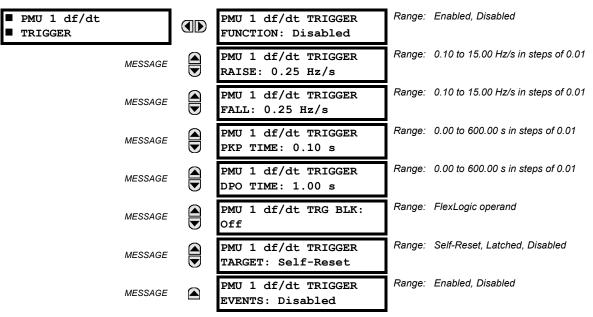



Figure 5-52: POWER TRIGGER SCHEME LOGIC

j) DF/DT TRIGGERING

PATH: SETTINGS ⇔∜ SYSTEM SETUP ⇒∜ PHASOR MEASUREMENT... ⇔∜ PMU 1 TRIGGERING ⇒∜ PMU 1 df/dt TRIGGER

This element responds to frequency rate of change. Separate thresholds are provided for rising and dropping frequency. The trigger responds to the rate of change of frequency (df/dt) of the phasor measurement unit (PMU) source.

- **PMU 1 df/dt TRIGGER RAISE**: This setting specifies the pickup threshold for the rate of change of frequency in the raising direction (positive df/dt). The comparator applies a 4% hysteresis.
- **PMU 1 df/dt TRIGGER FALL**: This setting specifies the pickup threshold for the rate of change of frequency in the falling direction (negative df/dt). The comparator applies a 4% hysteresis.
- PMU 1 df/dt TRIGGER PKP TIME: This setting can be used to filter out spurious conditions and avoid unnecessary triggering of the recorder.
- PMU 1 df/dt TRIGGER DPO TIME: This setting can be used to extend the trigger after the situation returned to normal. This setting is of particular importance when using the recorder in the forced mode (recording as long as the triggering condition is asserted).

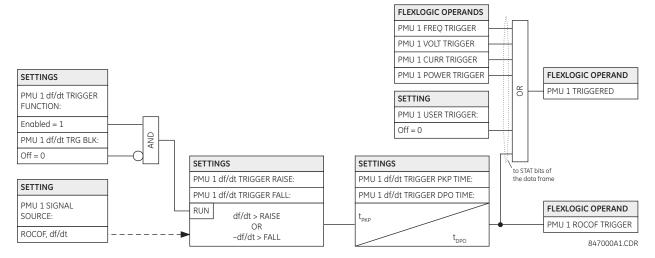
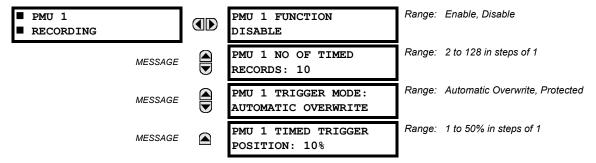
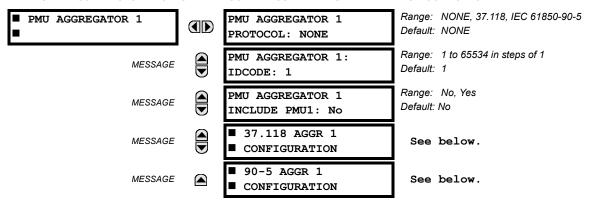



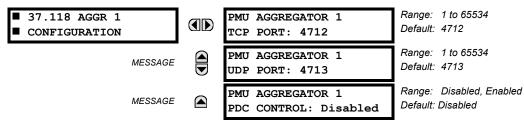
Figure 5-53: RATE OF CHANGE OF FREQUENCY TRIGGER SCHEME LOGIC

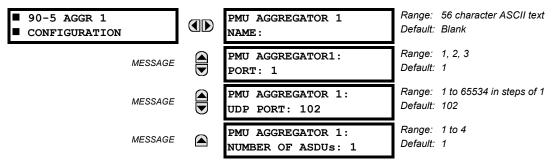
k) PMU RECORDING


PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP \Rightarrow PHASOR MEASUREMENT $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT1 \emptyset RECORDING PMU1

- **PMU 1 FUNCTION**: This setting enables or disables the recorder for PMU 1. The rate is fixed at the reporting rate set within the aggregator (that is, Aggregator 1).
- PMU 1 NO OF TIMED RECORDS: This setting specifies the number of timed records that are available for a given logical PMU 1. The length of each record is equal to the available memory divided by the content size and number of records. As the number of records is increased the available storage for each record is reduced. The relay supports a maximum of 128 records in either timed or forced mode.
- PMU 1 TRIGGER MODE: This setting specifies what happens when the recorder uses its entire available memory storage. Under the "Automatic Overwrite", the last record is erased to facilitate new recording, when triggered. Under the "Protected" selection, the recorder stops creating new records when the entire memory is used up by the old uncleared records.
- PMU 1 TIMED TRIGGER POSITION: This setting specifies the amount of pre-trigger data as a percent of the entire
 record. This setting applies only to the timed mode of recording.

I) AGGREGATOR


PATH: SETTINGS ⇒ ♣ SYSTEM SETUP ⇒PHASOR MEASUREMENT UNIT ⇒ ♣ PMU AGGREGATOR 1


NOTE

When the protocol selection is set via the software or keypad, all aggregators whose protocol is not set to None are set to the last protocol saved (that is, IEEE C37.118 or IEC 61850-90-5) to any aggregators, as both IEEE C37.118 and IEC 61850-90-5 simultaneous streaming is not possible.

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT $\Rightarrow \emptyset$ PMU AGGREGATOR 1 \emptyset 37.118 AGGR 1 CONFIGURATION

PATH: SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ PHASOR MEASUREMENT UNIT $\Rightarrow \emptyset$ PMU AGGREGATOR 1 \emptyset 90-5 AGGR 1 CONFIGURATION

- **PMU AGGREGATOR1 PROTOCOL**: This setting selects if the IEEE C37.118 or IEC 61850-90-5 standard is used. Because one protocol is supported at a time in a device, this setting applies to all PMU aggregators.
- PMU AGGREGATOR1 IDCODE: Numeric identifier of the Aggregator / PDC function. In an IEEE C37.118 output stream, this identifies the ID of the aggregator, which is only used if there is more than 1 PMU mapped into an aggregator.
- **PMU AGGREGATOR1 PMU1**: If set to "Yes" aggregator 1 includes the PMU1 data set in the reporting data stream. AGGREGATOR1 does not include PMU1 data set in the report if set to "No".

Only PMUs with same reporting rate can be assigned to the same PMU AGGREGATOR.

C37.118 AGGREGATOR 1 CONFIGURATION

- PMU AGGREGATOR1: TCP PORT: This setting selects the TCP port number to be used by this aggregator for network reporting. All ports, even those of unused aggregators, must be valid and unique to avoid port number collisions.
- PMU AGGREGATOR1 UDP PORT: This setting selects the UDP port number to be used by this aggregator for network reporting. All ports, even those of unused aggregators, must be valid and unique to avoid port number collisions.
- PMU AGGREGATOR1 PDC CONTROL: The synchrophasor standard allows for user-defined controls originating at the PDC, to be executed on the PMU. The control is accomplished via an extended command frame. The relay decodes the first word of the extended field, EXTFRAME, to drive 16 dedicated FlexLogic operands. Each aggregator supports 16 FlexLogic operands as shown in the table. The operands are asserted for 5 seconds following reception of the command frame. If the new command frame arrives within the 5 second period, the FlexLogic operands are updated, and the 5 second timer is restarted. This setting enables or disables the control. When enabled, all 16 operands for each aggregator are active; when disabled all 16 operands for each aggregator remain reset.

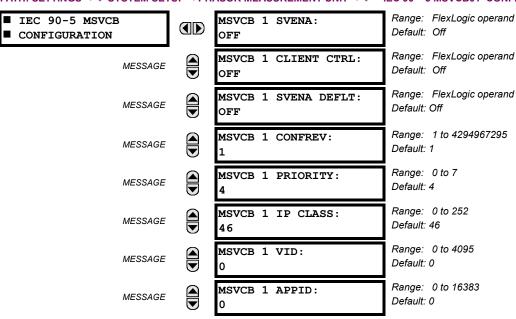
Table 5-13: FLEXLOGIC OPERANDS SUPPORTED BY AGGREGATOR

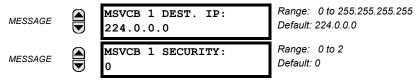
OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION		
ELEMENT: Synchrophasor, phasor data, concentrator	AGTR1 PDC CNTRL 1	Phasor data concentrator asserts control bit 1, as received via the network.		
as above	AGTR1 PDC CNTRL 2	Phasor data concentrator asserts control bit 2 as received via the network.		
as above	AGTR1 PDC CNTRL 3	Phasor data concentrator asserts control bit 3 as received via the network.		
↓				
as above	AGTR1 PDC CNTRL 16	Phasor data concentrator asserts control bit 16, as received via the network.		

Table 5-13: FLEXLOGIC OPERANDS SUPPORTED BY AGGREGATOR

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION		
as above	AGTR2 PDC CNTRL 1	Phasor data concentrator asserts control bit 1 as received via the network		
as above	AGTR2 PDC CNTRL 2	Phasor data concentrator asserts control bit 2 as received via the network		
as above	AGTR2 PDC CNTRL 3	Phasor data concentrator asserts control bit 3 as received via the network.		
↓				
as above	AGTR1 PDC CNTRL 16	Phasor data concentrator asserts control bit 16, as received via the network.		

IEC 61850-90-5 AGGREGATOR 1 CONFIGURATION


- PMU AGGREGATOR1: NAME: A user-defined visible string of characters (max. 56) to identify the source of the stream. This value, concatenated with the Aggregator IDCode and Aggregator Class of Service, is mapped into the IEC 61850 MSVID filed in the output stream.
- AGGREGATOR1: PHYSICAL PORT: This setting determines the physical ports through which the synchrophasor traffic is transmitted. The range is 1, 2, 3.
- PMU AGGREGATOR1: UDP: This setting selects the UDP port number that is used by this dataset for network reporting. Default setting values for IEEE C37.118 and IEC 6150-90-5 are provided.
- **PMU AGGREGATOR1: NUMBER OF ASDUs:** This setting sets the number of Application Service Data Units (ASDUs) from 1 through to 4.


Table 5-14: NUMBER OF ASDU

SETTINGS FOR ASDU	TRANSMISSION
1	ASDU at T0 (current values)
2	ASDU at T-1 (previous values) + ASDU at T0 (current values)
3	ASDU at T-2 (previous values) + ASDU at T-1 (previous values) + ASDU at T0 (current values)
4	ASDU at T-3 (previous values) + ASDU at T-2 (previous values) + ASDU at T-1 (previous values) + ASDU at T0 (current values)

m) CONTROL BLOCKS

PATH: SETTINGS ⇒ \$\Partial\$ SYSTEM SETUP \$\Rightarrow\$ PHASOR MEASUREMENT UNIT \$\Rightarrow\$ IEC 90 = 5 MSVCB01 CONFIGURATION

MSVCB 1 SVENA: The SV Stream Control is set by either toggling an assigned FlexLogic operand or a remote client
write, to start and stop the streaming of R-SV frames. If remote client control is disabled, a negative response is provided to the client in response to a write attempt. A FlexLogic operand (SvEna) is provided for each Aggregator that
reflects the state of the SvEna control where "1"= Enabled and "0"=Disabled. The logic for setting the SvEna control bit
is shown in the following figure.

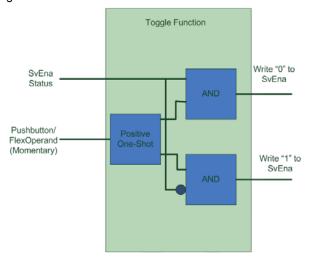


Figure 5-54: LOGIC FOR SETTING SVENA CONTROL BIT

- MSVCB 1 Client CONTRL: This setting determines if a client can write to the reserve bit. When the assigned Flex-Logic operand is a logic 1 state, remote clients can write to both the reserve bit and the SvEna bit. When the FlexLogic operand is a logic 0 state, the remote client writes to the reserve bit, the SvEna is rejected by the UR, and a negative response with the appropriate Service Error is returned to the client.
- MSVCB 1 SVENA Default: This setting sets the default state of the stream (On or Off) on power-up or restart.
- **MSVCB 1 CONFREV:** The relay increments the Configuration revision every time the configuration is changed. This setting allows the user to reset the configuration back to 1 or a value from 1 to 4294967295.
- MSVCB 1 PRIORITY: A value from 0 through 7: The default value is 4.
- MSVCB 1 IP Class: The value represents the IPv4 Differentiated Services (formerly called TypeOfService) value. The
 default value is set for Expedited Forwarding (101110B (46 or 2EH). This value provides priority routing, when supported in the routers.
- MSVCB 1 VID: A range of values limited from 0 to 4095.
- MSVCB 1 APPID: This setting allows the selection of a specific application ID for each sending device.
- MSVCB 1 DEST IP Address: This is the destination multicast address IP address that is entered in Standard IPV4 address format. The valid range for IPv4 is from 224.0.0.0 to 239.255.255.255, but the UR does not test the address entered.
- **MSVCB 1 Security:** This setting selects the level of security and authentication used, as outlined in the following table, and is in the form of an enumeration as per standard. The range is 0 to 2.

NOTE

Shaded settings in the table are not supported in firmware 7.0.

ENUMERATION	AUTHENTICATION	ENCRYPTION
0	no	no
1	yes	no
2	yes	yes

5.5.1 INTRODUCTION TO FLEXLOGIC

To provide maximum flexibility to the user, the arrangement of internal digital logic combines fixed and user-programmed parameters. Logic upon which individual features are designed is fixed, and all other logic, from digital input signals through elements or combinations of elements to digital outputs, is variable. The user has complete control of all variable logic through FlexLogic. In general, the system receives analog and digital inputs which it uses to produce analog and digital outputs. The major sub-systems of a generic UR-series relay involved in this process are shown below.

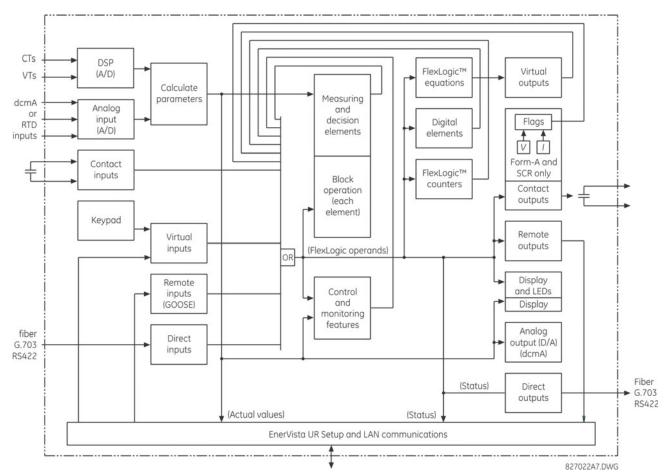


Figure 5-55: UR ARCHITECTURE OVERVIEW

The states of all digital signals used in the F60 are represented by flags (or FlexLogic operands, which are described later in this section). A digital "1" is represented by a 'set' flag. Any external contact change-of-state can be used to block an element from operating, as an input to a control feature in a FlexLogic equation, or to operate a contact output. The state of the contact input can be displayed locally or viewed remotely via the communications facilities provided. If a simple scheme where a contact input is used to block an element is desired, this selection is made when programming the element. This capability also applies to the other features that set flags: elements, virtual inputs, remote inputs, schemes, and human operators.

If more complex logic than presented above is required, it is implemented via FlexLogic. For example, if it is desired to have the closed state of contact input H7a and the operated state of the phase undervoltage element block the operation of the phase time overcurrent element, the two control input states are programmed in a FlexLogic equation. This equation ANDs the two control inputs to produce a virtual output which is then selected when programming the phase time overcurrent to be used as a blocking input. Virtual outputs can only be created by FlexLogic equations.

Traditionally, protective relay logic has been relatively limited. Any unusual applications involving interlocks, blocking, or supervisory functions had to be hard-wired using contact inputs and outputs. FlexLogic minimizes the requirement for auxiliary components and wiring while making more complex schemes possible.

5.5 FLEXLOGIC 5 SETTINGS

The logic that determines the interaction of inputs, elements, schemes and outputs is field programmable through the use of logic equations that are sequentially processed. The use of virtual inputs and outputs in addition to hardware is available internally and on the communication ports for other relays to use (distributed FlexLogic).

FlexLogic allows users to customize the relay through a series of equations that consist of *operators* and *operands*. The operands are the states of inputs, elements, schemes and outputs. The operators are logic gates, timers and latches (with set and reset inputs). A system of sequential operations allows any combination of specified operands to be assigned as inputs to specified operators to create an output. The final output of an equation is a numbered register called a *virtual output*. Virtual outputs can be used as an input operand in any equation, including the equation that generates the output, as a seal-in or other type of feedback.

A FlexLogic equation consists of parameters that are either operands or operators. Operands have a logic state of 1 or 0. Operators provide a defined function, such as an AND gate or a Timer. Each equation defines the combinations of parameters to be used to set a Virtual Output flag. Evaluation of an equation results in either a 1 (=ON, i.e. flag set) or 0 (=OFF, i.e. flag not set). Each equation is evaluated at least 4 times every power system cycle.

Some types of operands are present in the relay in multiple instances; e.g. contact and remote inputs. These types of operands are grouped together (for presentation purposes only) on the faceplate display. The characteristics of the different types of operands are listed in the table below.

Table 5-15: F60 FLEXLOGIC OPERAND TYPES

OPERAND TYPE	STATE	EXAMPLE FORMAT	CHARACTERISTICS [INPUT IS '1' (= ON) IF]
Contact Input	On	Cont Ip On	Voltage is presently applied to the input (external contact closed).
	Off	Cont lp Off	Voltage is presently not applied to the input (external contact open).
Contact Output	Current On	Cont Op 1 Ion	Current is flowing through the contact.
(type Form-À contact only)	Voltage On	Cont Op 1 VOn	Voltage exists across the contact.
• ,	Voltage Off	Cont Op 1 VOff	Voltage does not exists across the contact.
Direct Input	On	DIRECT INPUT 1 On	The direct input is presently in the ON state.
Element (Analog)	Pickup	PHASE TOC1 PKP	The tested parameter is presently above the pickup setting of an element which responds to rising values or below the pickup setting of an element which responds to falling values.
	Dropout	PHASE TOC1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	PHASE TOC1 OP	The tested parameter has been above/below the pickup setting of the element for the programmed delay time, or has been at logic 1 and is now at logic 0 but the reset timer has not finished timing.
	Block	PHASE TOC1 BLK	The output of the comparator is set to the block function.
Element (Digital)	Pickup	Dig Element 1 PKP	The input operand is at logic 1.
	Dropout	Dig Element 1 DPO	This operand is the logical inverse of the above PKP operand.
	Operate	Dig Element 1 OP	The input operand has been at logic 1 for the programmed pickup delay time, or has been at logic 1 for this period and is now at logic 0 but the reset timer has not finished timing.
Element	Higher than	Counter 1 HI	The number of pulses counted is above the set number.
(Digital Counter)	Equal to	Counter 1 EQL	The number of pulses counted is equal to the set number.
	Lower than	Counter 1 LO	The number of pulses counted is below the set number.
Fixed	On	On	Logic 1
	Off	Off	Logic 0
Remote Input	On	REMOTE INPUT 1 On	The remote input is presently in the ON state.
Virtual Input	On	Virt Ip 1 On	The virtual input is presently in the ON state.
Virtual Output	On	Virt Op 1 On	The virtual output is presently in the set state (i.e. evaluation of the equation which produces this virtual output results in a "1").

The operands available for this relay are listed alphabetically by types in the following table.

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 1 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
CONTROL PUSHBUTTONS	CONTROL PUSHBTN 1 ON CONTROL PUSHBTN 2 ON CONTROL PUSHBTN 3 ON CONTROL PUSHBTN 4 ON CONTROL PUSHBTN 5 ON CONTROL PUSHBTN 6 ON CONTROL PUSHBTN 7 ON	Control pushbutton 1 is being pressed Control pushbutton 2 is being pressed Control pushbutton 3 is being pressed Control pushbutton 4 is being pressed Control pushbutton 5 is being pressed Control pushbutton 6 is being pressed Control pushbutton 7 is being pressed
DIRECT DEVICES	DIRECT DEVICE 10n	Flag is set, logic=1
	DIRECT DEVICE 160n DIRECT DEVICE 10ff	Flag is set, logic=1 Flag is set, logic=1
	DIRECT DEVICE 160ff	Flag is set, logic=1
DIRECT INPUT/ OUTPUT	DIR IO CH1 CRC ALARM	The rate of direct input messages received on channel 1 and failing the CRC exceeded the user-specified level.
CHANNEL MONITORING	DIR IO CH2 CRC ALARM	The rate of direct input messages received on channel 2 and failing the CRC exceeded the user-specified level.
Morarorano	DIR IO CH1 UNRET ALM	The rate of returned direct input/output messages on channel 1 exceeded the user-specified level (ring configurations only).
	DIR IO CH2 UNRET ALM	The rate of returned direct input/output messages on channel 2 exceeded the user-specified level (ring configurations only).
ELEMENT: Autoreclose (per CT bank)	AR1 ENABLED AR1 RIP AR1 LO AR1 BLK FROM MAN CLS AR1 CLOSE AR1 SHOT CNT=0 AR1 SHOT CNT=1 AR1 SHOT CNT=2 AR1 SHOT CNT=2 AR1 SHOT CNT=3 AR1 SHOT CNT=4 AR1 DISABLED	Autoreclose 1 is enabled Autoreclose 1 is in progress Autoreclose 1 is locked out Autoreclose 1 is temporarily disabled Autoreclose 1 close command is issued Autoreclose 1 shot count is 0 Autoreclose 1 shot count is 1 Autoreclose 1 shot count is 2 Autoreclose 1 shot count is 3 Autoreclose 1 shot count is 4 Autoreclose 1 is disabled
ELEMENT: Auxiliary overvoltage	AUX OV1 PKP AUX OV1 DPO AUX OV1 OP	Auxiliary overvoltage element has picked up Auxiliary overvoltage element has dropped out Auxiliary overvoltage element has operated
	AUX OV2 to AUX OV3	Same set of operands as shown for AUX OV1
ELEMENT: Auxiliary undervoltage	AUX UV1 PKP AUX UV1 DPO AUX UV1 OP	Auxiliary undervoltage element has picked up Auxiliary undervoltage element has dropped out Auxiliary undervoltage element has operated
	AUX UV2 to AUX UV3	Same set of operands as shown for AUX UV1
ELEMENT Breaker flashover	BKR 1 FLSHOVR PKP A BKR 1 FLSHOVR PKP B BKR 1 FLSHOVR PKP C BKR 1 FLSHOVR PKP BKR 1 FLSHOVR OP A BKR 1 FLSHOVR OP B BKR 1 FLSHOVR OP C BKR 1 FLSHOVR OP BKR 1 FLSHOVR DPO A BKR 1 FLSHOVR DPO A BKR 1 FLSHOVR DPO C BKR 1 FLSHOVR DPO C BKR 1 FLSHOVR DPO C	Breaker 1 flashover element phase A has picked up Breaker 1 flashover element phase B has picked up Breaker 1 flashover element phase C has picked up Breaker 1 flashover element has picked up Breaker 1 flashover element phase A has operated Breaker 1 flashover element phase B has operated Breaker 1 flashover element phase C has operated Breaker 1 flashover element has operated Breaker 1 flashover element phase A has dropped out Breaker 1 flashover element phase B has dropped out Breaker 1 flashover element phase C has dropped out Breaker 1 flashover element phase C has dropped out Breaker 1 flashover element has dropped out
	BKR 2 FLSHOVR	Same set of operands as shown for BKR 1 FLSHOVR
ELEMENT: Breaker arcing	BKR ARC 1 OP BKR ARC 2 OP	Breaker arcing current 1 has operated Breaker arcing current 2 has operated
ELEMENT Breaker failure	BKR FAIL 1 RETRIPA BKR FAIL 1 RETRIPB BKR FAIL 1 RETRIPC BKR FAIL 1 RETRIP BKR FAIL 1 T1 OP BKR FAIL 1 T2 OP BKR FAIL 1 T3 OP BKR FAIL 1 TRIP OP	Breaker failure 1 re-trip phase A (only for 1-pole schemes) Breaker failure 1 re-trip phase B (only for 1-pole schemes) Breaker failure 1 re-trip phase C (only for 1-pole schemes) Breaker failure 1 re-trip 3-phase Breaker failure 1 timer 1 is operated Breaker failure 1 timer 2 is operated Breaker failure 1 timer 3 is operated Breaker failure 1 trip is operated Same set of operands as shown for BKR FAIL 1
	DIXITAL 2	Came set of operatios as shown for DNN I AIL 1

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 2 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT Breaker restrike	BRK RESTRIKE 1 OP BRK RESTRIKE 1 OP A BRK RESTRIKE 1 OP B BRK RESTRIKE 1 OP C	Breaker restrike detected in any phase of the breaker control 1 element. Breaker restrike detected in phase A of the breaker control 1 element. Breaker restrike detected in phase B of the breaker control 1 element. Breaker restrike detected in phase C of the breaker control 1 element.
ELEMENT: Breaker control	BREAKER 1 OFF CMD BREAKER 1 ON CMD BREAKER 1 ФА BAD ST	Breaker 1 open command initiated Breaker 1 close command initiated Breaker 1 phase A bad status is detected (discrepancy between the 52/a and 52/b contacts)
	BREAKER 1 ФA INTERM	Breaker 1 phase A intermediate status is detected (transition from one position to another)
	BREAKER 1 ΦA CLSD BREAKER 1 ΦA OPEN BREAKER 1 ΦB BAD ST	Breaker 1 phase A is closed Breaker 1 phase A is open Breaker 1 phase B bad status is detected (discrepancy between the 52/a and 52/b contacts)
	BREAKER 1 DB INTERM	Breaker 1 phase B intermediate status is detected (transition from one position to another)
	BREAKER 1 ΦB CLSD BREAKER 1 ΦB OPEN BREAKER 1 ΦC BAD ST	Breaker 1 phase B is closed Breaker 1 phase B is open Breaker 1 phase C bad status is detected (discrepancy between the 52/a and 52/b contacts)
	BREAKER 1 ΦC INTERM BREAKER 1 ΦC CLSD BREAKER 1 ΦC OPEN	Breaker 1 phase C intermediate status is detected (transition from one position to another) Breaker 1 phase C is closed Breaker 1 phase C is open
	BREAKER 1 BAD STATUS BREAKER 1 CLOSED BREAKER 1 OPEN BREAKER 1 DISCREP BREAKER 1 TROUBLE BREAKER 1 MNL CLS	Breaker 1 bad status is detected on any pole Breaker 1 is closed Breaker 1 is open Breaker 1 has discrepancy Breaker 1 trouble alarm Breaker 1 manual close
	BREAKER 1 TRIP A BREAKER 1 TRIP B BREAKER 1 TRIP C BREAKER 1 ANY P OPEN BREAKER 1 ONE P OPEN	Breaker 1 trip phase A command Breaker 1 trip phase B command Breaker 1 trip phase B command At least one pole of breaker 1 is open Only one pole of breaker 1 is open Breaker 1 is out of service
	BREAKER 1 OOS BREAKER 2	Same set of operands as shown for BREAKER 1
ELEMENT: Broken conductor	BROKEN CONDUCT 1 OP BROKEN CONDUCT 1 PKP	Asserted when the broken conductor 1 element operates Asserted when the broken conductor 1 element picks up
	BROKEN CONDUCT 2	Same set of operands as shown for BROKEN CONDUCTOR 1
ELEMENT Cold load pickup	COLD LOAD 1 OP COLD LOAD 2 OP	Cold load pickup element 1 has operated Cold load pickup element 2 has operated
ELEMENT: Digital counters	Counter 1 HI Counter 1 EQL Counter 1 LO	Digital counter 1 output is 'more than' comparison value Digital counter 1 output is 'equal to' comparison value Digital counter 1 output is 'less than' comparison value
	Counter 2 to Counter 8	Same set of operands as shown for Counter 1
ELEMENT: Digital elements	Dig Element 1 PKP Dig Element 1 OP Dig Element 1 DPO	Digital Element 1 is picked up Digital Element 1 is operated Digital Element 1 is dropped out
	Dig Element 2 to Dig Element 48	Same set of operands as shown for Dig Element 1
ELEMENT: Sensitive directional power	DIR POWER 1 STG1 PKP DIR POWER 1 STG2 PKP DIR POWER 1 STG1 DPO DIR POWER 1 STG1 DPO DIR POWER 1 STG1 OP DIR POWER 1 STG2 OP DIR POWER 1 PKP DIR POWER 1 DPO DIR POWER 1 DPO DIR POWER 1 OP	Stage 1 of the directional power element 1 has picked up Stage 2 of the directional power element 1 has picked up Stage 1 of the directional power element 1 has dropped out Stage 2 of the directional power element 1 has dropped out Stage 1 of the directional power element 1 has operated Stage 2 of the directional power element 1 has operated The directional power element has picked up The directional power element has dropped out The directional power element has operated
	DIR POWER 2	Same set of operands as DIR POWER 1
ELEMENT Frequency rate of change	FREQ RATE 1 PKP FREQ RATE 1 DPO FREQ RATE 1 OP	The frequency rate of change 1 element has picked up The frequency rate of change 1 element has dropped out The frequency rate of change 1 element has operated
	FREQ RATE 2 to FREQ RATE 4	Same set of operands as shown for FREQ RATE 1

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 3 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION
ELEMENT: FlexElements	FXE 1 PKP FXE 1 OP FXE 1 DPO	FlexElement 1 has picked up FlexElement 1 has operated FlexElement 1 has dropped out
	FxE 2 to FxE 8	Same set of operands as shown for FxE 1
ELEMENT: Ground instantaneous	GROUND IOC1 PKP GROUND IOC1 OP GROUND IOC1 DPO	Ground instantaneous overcurrent 1 has picked up Ground instantaneous overcurrent 1 has operated Ground instantaneous overcurrent 1 has dropped out
overcurrent	GROUND IOC2	Same set of operands as shown for GROUND IOC 1
ELEMENT: Ground time overcurrent	GROUND TOC1 PKP GROUND TOC1 OP GROUND TOC1 DPO	Ground time overcurrent 1 has picked up Ground time overcurrent 1 has operated Ground time overcurrent 1 has dropped out
	GROUND TOC2	Same set of operands as shown for GROUND TOC1
ELEMENT High impedance fault detection (Hi-Z)	HI-Z ARC DETECTED HI-Z ARC DETECTED-A HI-Z ARC DETECTED-B HI-Z ARC DETECTED-C HI-Z ARC DETECTED-C HI-Z ARC DETECTED DPO HI-Z ARC DETECTED DPO HI-Z DETECTED DPO HI-Z DETECTED DPO HI-Z DOWNED COND-A HI-Z DOWNED COND-A HI-Z DOWNED COND-C HI-Z DOWNED COND-C HI-Z DOWNED COND-C HI-Z ARC SUSPECTED HI-Z ARC SUSPECTED-A HI-Z ARC SUSPECTED-B HI-Z ARC SUSPECTED-C HI-Z ARC SUSPECTED-C HI-Z IOC A HI-Z IOC A HI-Z IOC B HI-Z IOC SOF LOAD-A HI-Z LOSS OF LOAD-A HI-Z LOSS OF LOAD-C	The high impedance fault detection element has operated The high impedance fault detection phase A element has operated The high impedance fault detection phase B element has operated The high impedance fault detection phase C element has operated The high impedance fault detection neutral element has operated No arcing has been detected The high impedance fault detection element is in the armed state The high impedance fault detection element is in the disarmed state The high impedance fault downed conductor element has operated The high impedance fault downed conductor phase A element has operated The high impedance fault downed conductor phase B element has operated The high impedance fault downed conductor phase C element has operated The high impedance fault downed conductor neutral element has operated The high impedance fault arcing suspected phase A element has operated The high impedance fault arcing suspected phase B element has operated The high impedance fault arcing suspected phase B element has operated The high impedance fault arcing suspected neutral element has operated The high impedance fault arcing suspected neutral element has operated The high impedance instantaneous overcurrent A element has operated The high impedance instantaneous overcurrent B element has operated The high impedance instantaneous overcurrent C element has operated The high impedance instantaneous overcurrent C element has operated The high impedance instantaneous overcurrent C element has operated The high impedance fault phase A loss of load element has operated The high impedance fault phase B loss of load element has operated The high impedance fault phase B loss of load element has operated The high impedance fault phase B loss of load element has operated
ELEMENT: Incipient cable fault detection	INCIPNT FLT 1 OP INCIPNT FLT 1 OP A INCIPNT FLT 1 OP B INCIPNT FLT 1 OP C INCIPNT FLT 1 PKP INCIPNT FLT 1 PKP A INCIPNT FLT 1 PKP B INCIPNT FLT 1 PKP C	Asserted when incipient cable fault detector 1 operates in any phase Asserted when incipient cable fault detector 1 operates in phase A Asserted when incipient cable fault detector 1 operates in phase B Asserted when incipient cable fault detector 1 operates in phase C Asserted when incipient cable fault detector 1 picks up in any phase Asserted when incipient cable fault detector 1 picks up in phase A Asserted when incipient cable fault detector 1 picks up in phase B Asserted when incipient cable fault detector 1 picks up in phase C
	INCIPNT FLT 2	Same set of operands as shown for INCIPNT FLT 1
ELEMENT Non-volatile latches	LATCH 1 ON LATCH 1 OFF	Non-volatile latch 1 is ON (Logic = 1) Non-volatile latch 1 is OFF (Logic = 0)
EL EMENIT	LATCH 2 to LATCH 16	Same set of operands as shown for LATCH 1
ELEMENT: Load encroachment	LOAD ENCHR PKP LOAD ENCHR OP LOAD ENCHR DPO	Load encroachment has picked up Load encroachment has operated Load encroachment has dropped out
ELEMENT: Negative-sequence directional overcurrent	NEG SEQ DIR OC1 FWD NEG SEQ DIR OC1 REV NEG SEQ DIR OC2 FWD NEG SEQ DIR OC2 REV	Negative-sequence directional overcurrent 1 forward has operated Negative-sequence directional overcurrent 1 reverse has operated Negative-sequence directional overcurrent 2 forward has operated Negative-sequence directional overcurrent 2 reverse has operated
ELEMENT: Negative-sequence instantaneous overcurrent	NEG SEQ IOC1 PKP NEG SEQ IOC1 OP NEG SEQ IOC1 DPO	Negative-sequence instantaneous overcurrent 1 has picked up Negative-sequence instantaneous overcurrent 1 has operated Negative-sequence instantaneous overcurrent 1 has dropped out
	NEG SEQ IOC2	Same set of operands as shown for NEG SEQ IOC1
ELEMENT: Negative-sequence overvoltage	NEG SEQ OV1 PKP NEG SEQ OV1 DPO NEG SEQ OV1 OP	Negative-sequence overvoltage element has picked up Negative-sequence overvoltage element has dropped out Negative-sequence overvoltage element has operated
	NEG SEQ OV2	Same set of operands as shown for NEG SEQ OV1

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 4 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
ELEMENT: Negative-sequence time overcurrent	NEG SEQ TOC1 PKP NEG SEQ TOC1 OP NEG SEQ TOC1 DPO	Negative-sequence time overcurrent 1 has picked up Negative-sequence time overcurrent 1 has operated Negative-sequence time overcurrent 1 has dropped out	
	NEG SEQ TOC2	Same set of operands as shown for NEG SEQ TOC1	
ELEMENT: Neutral instantaneous	NEUTRAL IOC1 PKP NEUTRAL IOC1 OP NEUTRAL IOC1 DPO	Neutral instantaneous overcurrent 1 has picked up Neutral instantaneous overcurrent 1 has operated Neutral instantaneous overcurrent 1 has dropped out	
overcurrent	NEUTRAL IOC2	Same set of operands as shown for NEUTRAL IOC1	
ELEMENT: Neutral overvoltage	NEUTRAL OV1 PKP NEUTRAL OV1 DPO NEUTRAL OV1 OP	Neutral overvoltage element 1 has picked up Neutral overvoltage element 1 has dropped out Neutral overvoltage element 1 has operated	
ELEMENT: Neutral time overcurrent	NEUTRAL TOC1 PKP NEUTRAL TOC1 OP NEUTRAL TOC1 DPO	Neutral time overcurrent 1 has picked up Neutral time overcurrent 1 has operated Neutral time overcurrent 1 has dropped out	
	NEUTRAL TOC2	Same set of operands as shown for NEUTRAL TOC1	
ELEMENT: Neutral directional	NTRL DIR OC1 FWD NTRL DIR OC1 REV	Neutral directional overcurrent 1 forward has operated Neutral directional overcurrent 1 reverse has operated	
overcurrent	NTRL DIR OC2	Same set of operands as shown for NTRL DIR OC1	
ELEMENT: Overfrequency	OVERFREQ 1 PKP OVERFREQ 1 OP OVERFREQ 1 DPO	Overfrequency 1 has picked up Overfrequency 1 has operated Overfrequency 1 has dropped out	
	OVERFREQ 2 to 4	Same set of operands as shown for OVERFREQ 1	
ELEMENT: Synchrophasor phasor data	PDC NETWORK CNTRL 1 PDC NETWORK CNTRL 2	Phasor data concentrator asserts control bit 1 as received via the network Phasor data concentrator asserts control bit 2 as received via the network	
concentrator	PDC NETWORK CNTRL 16	Phasor data concentrator asserts control bit 16 as received via the network	
ELEMENT: Phase directional overcurrent	PH DIR1 BLK A PH DIR1 BLK B PH DIR1 BLK C PH DIR1 BLK	Phase A directional 1 block Phase B directional 1 block Phase C directional 1 block Phase directional 1 block	
	PH DIR2	Same set of operands as shown for PH DIR1	
ELEMENT: Phase instantaneous overcurrent	PHASE IOC1 PKP PHASE IOC1 OP PHASE IOC1 DPO PHASE IOC1 PKP A PHASE IOC1 PKP B PHASE IOC1 PKP C PHASE IOC1 OP A PHASE IOC1 OP C PHASE IOC1 OP C PHASE IOC1 DPO A PHASE IOC1 DPO B PHASE IOC1 DPO B PHASE IOC1 DPO B	At least one phase of phase instantaneous overcurrent 1 has picked up At least one phase of phase instantaneous overcurrent 1 has operated All phases of phase instantaneous overcurrent 1 have dropped out Phase A of phase instantaneous overcurrent 1 has picked up Phase B of phase instantaneous overcurrent 1 has picked up Phase C of phase instantaneous overcurrent 1 has picked up Phase A of phase instantaneous overcurrent 1 has operated Phase B of phase instantaneous overcurrent 1 has operated Phase C of phase instantaneous overcurrent 1 has operated Phase A of phase instantaneous overcurrent 1 has dropped out Phase B of phase instantaneous overcurrent 1 has dropped out Phase C of phase instantaneous overcurrent 1 has dropped out	
	PHASE IOC2 and higher	Same set of operands as shown for PHASE IOC1	
ELEMENT: Phase overvoltage	PHASE OV1 PKP PHASE OV1 OP PHASE OV1 DPO PHASE OV1 PKP A PHASE OV1 PKP B PHASE OV1 PKP C PHASE OV1 OP A PHASE OV1 OP A PHASE OV1 OP C PHASE OV1 DPO A PHASE OV1 DPO B PHASE OV1 DPO B PHASE OV1 DPO C	At least one phase of overvoltage 1 has picked up At least one phase of overvoltage 1 has operated All phases of overvoltage 1 have dropped out Phase A of overvoltage 1 has picked up Phase B of overvoltage 1 has picked up Phase C of overvoltage 1 has picked up Phase A of overvoltage 1 has operated Phase B of overvoltage 1 has operated Phase C of overvoltage 1 has operated Phase C of overvoltage 1 has operated Phase B of overvoltage 1 has dropped out Phase B of overvoltage 1 has dropped out Phase C of overvoltage 1 has dropped out	
	PHASE OV2 to OV3	Same set of operands as shown for PHASE OV1	

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 5 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
ELEMENT: Phase time overcurrent	PHASE TOC1 PKP PHASE TOC1 OP PHASE TOC1 DPO PHASE TOC1 PKP A PHASE TOC1 PKP B PHASE TOC1 PKP C PHASE TOC1 OP A PHASE TOC1 OP C PHASE TOC1 OP C PHASE TOC1 DPO A PHASE TOC1 DPO B PHASE TOC1 DPO B PHASE TOC1 DPO C	At least one phase of phase time overcurrent 1 has picked up At least one phase of phase time overcurrent 1 has operated All phases of phase time overcurrent 1 have dropped out Phase A of phase time overcurrent 1 has picked up Phase B of phase time overcurrent 1 has picked up Phase C of phase time overcurrent 1 has picked up Phase A of phase time overcurrent 1 has operated Phase B of phase time overcurrent 1 has operated Phase C of phase time overcurrent 1 has operated Phase A of phase time overcurrent 1 has dropped out Phase B of phase time overcurrent 1 has dropped out Phase C of phase time overcurrent 1 has dropped out	
	PHASE TOC2 to TOC6	Same set of operands as shown for PHASE TOC1	
ELEMENT: Phase undervoltage	PHASE UV1 PKP PHASE UV1 OP PHASE UV1 DPO PHASE UV1 PKP A PHASE UV1 PKP B PHASE UV1 PKP C PHASE UV1 OP A PHASE UV1 OP C PHASE UV1 OP C PHASE UV1 DPO A PHASE UV1 DPO B PHASE UV1 DPO C	At least one phase of phase undervoltage 1 has picked up At least one phase of phase undervoltage 1 has operated All phases of phase undervoltage 1 have dropped out Phase A of phase undervoltage 1 has picked up Phase B of phase undervoltage 1 has picked up Phase C of phase undervoltage 1 has picked up Phase A of phase undervoltage 1 has operated Phase B of phase undervoltage 1 has operated Phase C of phase undervoltage 1 has operated Phase A of phase undervoltage 1 has dropped out Phase B of phase undervoltage 1 has dropped out Phase C of phase undervoltage 1 has dropped out Phase C of phase undervoltage 1 has dropped out	
	PHASE UV2	Same set of operands as shown for PHASE UV1	
ELEMENT: Synchrophasor phasor measurement unit (PMU)	PMU Agg 1 SvEng On PMU 1 CURR TRIGGER PMU 1 FREQ TRIGGER PMU 1 POWER TRIGGER PMU 1 ROCOF TRIGGER PMU 1 VOLT TRIGGER PMU 1 TRIGGERED	SvEng data item in associated control block is on Overcurrent trigger of phasor measurement unit 1 has operated Abnormal frequency trigger of phasor measurement unit 1 has operated Overpower trigger of phasor measurement unit 1 has operated Rate of change of frequency trigger of phasor measurement unit 1 has operated Abnormal voltage trigger of phasor measurement unit 1 has operated Phasor measurement unit 1 triggered; no events or targets are generated by this operand	
ELEMENT: Synchrophasor one- shot	PMU ONE-SHOT EXPIRED PMU ONE-SHOT OP PMU ONE-SHOT PENDING	Indicates the one-shot operation has been executed, and the present time is at least 30 seconds past the scheduled one-shot time Indicates the one-shot operation and remains asserted for 30 seconds afterwards Indicates the one-shot operation is pending; that is, the present time is before the scheduled one-shot time	
ELEMENT: Selector switch	SELECTOR 1 POS Y SELECTOR 1 BIT 0 SELECTOR 1 BIT 1 SELECTOR 1 BIT 2 SELECTOR 1 STP ALARM SELECTOR 1 BIT ALARM SELECTOR 1 ALARM SELECTOR 1 PWR ALARM	Selector switch 1 is in Position Y (mutually exclusive operands) First bit of the 3-bit word encoding position of selector 1 Second bit of the 3-bit word encoding position of selector 1 Third bit of the 3-bit word encoding position of selector 1 Position of selector 1 has been pre-selected with the stepping up control input but not acknowledged Position of selector 1 has been pre-selected with the 3-bit control input but not acknowledged Position of selector 1 has been pre-selected but not acknowledged Position of selector switch 1 is undetermined or restored from memory when the relay powers up and synchronizes to the three-bit input	
	SELECTOR 2	Same set of operands as shown above for SELECTOR 1	
ELEMENT: Setting group	SETTING GROUP ACT 1 SETTING GROUP ACT 2 SETTING GROUP ACT 3 SETTING GROUP ACT 4 SETTING GROUP ACT 5 SETTING GROUP ACT 6	Setting group 1 is active Setting group 2 is active Setting group 3 is active Setting group 4 is active Setting group 5 is active Setting group 6 is active	

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 6 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
ELEMENT: Sub-harmonic stator ground fault detector	SH STAT GND STG1 PKP SH STAT GND STG1 DPO SH STAT GND STG1 OP SH STAT GND STG2 PKP SH STAT GND STG2 DPO SH STAT GND STG2 OP SH STAT GND OC PKP SH STAT GND OC DPO SH STAT GND OC OP SH STAT GND TRB PKP SH STAT GND TRB DPO SH STAT GND TRB DPO SH STAT GND TRB OP	Stage 1 of the sub-harmonic stator ground protection has picked up Stage 1 of the sub-harmonic stator ground protection has dropped out Stage 1 of the sub-harmonic stator ground protection has operated Stage 2 of the sub-harmonic stator ground protection has picked up Stage 2 of the sub-harmonic stator ground protection has dropped out Stage 2 of the sub-harmonic stator ground protection has operated Ground over current element of the sub-harmonic stator ground protection has picked up Ground over current element of the sub-harmonic stator ground protection has dropped out Ground over current element of the sub-harmonic stator ground protection has operated Sub-harmonic stator ground module trouble has picked up Sub-harmonic stator ground module trouble has dropped out Sub-harmonic stator ground module trouble has operated	
ELEMENT: Disturbance detector	SRC1 50DD OP SRC2 50DD OP	Source 1 disturbance detector has operated Source 2 disturbance detector has operated	
ELEMENT: VTFF (Voltage transformer fuse failure)	SRC1 VT FF OP SRC1 VT FF DPO SRC1 VT FF VOL LOSS	Source 1 VT fuse failure detector has operated Source 1 VT fuse failure detector has dropped out Source 1 has lost voltage signals (V2 below 10% and V1 below 5% of nominal)	
	SRC1 VT NEU WIRE OPEN	Source 1 VT neutral wire open detected. When the VT is connected in Delta, this function should not be enabled because there is no neutral wire for Delta connected VT.	
	SRC2 VT FF to SRC VT FF	Same set of operands as shown for SRC1 VT FF	
ELEMENT: Disconnect switch	SWITCH 1 OFF CMD SWITCH 1 ON CMD SWITCH 1 CLOSED SWITCH 1 OPEN SWITCH 1 DISCREP SWITCH 1 TROUBLE SWITCH 1 DA CLSD SWITCH 1 DA OPEN SWITCH 1 DA OPEN SWITCH 1 DA INTERM SWITCH 1 DB CLSD SWITCH 1 DB CLSD SWITCH 1 DB DEN SWITCH 1 DB BAD ST SWITCH 1 DB BAD ST SWITCH 1 DB INTERM SWITCH 1 DC CLSD SWITCH 1 DC CLSD SWITCH 1 DC CLSD SWITCH 1 DC OPEN SWITCH 1 DC DEN SWITCH 1 DC INTERM SWITCH 1 DC INTERM SWITCH 1 DC INTERM SWITCH 1 DC INTERM SWITCH 1 DC INTERM SWITCH 1 DA STATUS SWITCH 1 BAD STATUS	Disconnect switch 1 open command initiated Disconnect switch 1 close command initiated Disconnect switch 1 is closed Disconnect switch 1 is open Disconnect switch 1 has discrepancy Disconnect switch 1 trouble alarm Disconnect switch 1 phase A is closed Disconnect switch 1 phase A is open Disconnect switch 1 phase A bad status is detected (discrepancy between the 52/a and 52/b contacts) Disconnect switch 1 phase A intermediate status is detected (transition from one position to another) Disconnect switch 1 phase B is closed Disconnect switch 1 phase B is open Disconnect switch 1 phase B bad status is detected (discrepancy between the 52/a and 52/b contacts) Disconnect switch 1 phase B intermediate status is detected (transition from one position to another) Disconnect switch 1 phase C is closed Disconnect switch 1 phase C is closed Disconnect switch 1 phase C is open Disconnect switch 1 phase C bad status is detected (discrepancy between the 52/a and 52/b contacts) Disconnect switch 1 phase C is open Disconnect switch 1 phase C is open Disconnect switch 1 phase C bad status is detected (transition from one position to another) Disconnect switch 1 phase C intermediate status is detected (transition from one position to another) Disconnect switch 1 bad status is detected on any pole	
ELEMENT: Synchrocheck	SYNC 1 DEAD S OP SYNC 1 DEAD S DPO SYNC 1 SYNC OP SYNC 1 SYNC DPO SYNC 1 CLS OP SYNC 1 CLS DPO SYNC 1 V1 ABOVE MIN SYNC 1 V1 BELOW MAX SYNC 1 V2 ABOVE MIN SYNC 1 V2 BELOW MAX	Synchrocheck 1 dead source has operated Synchrocheck 1 dead source has dropped out Synchrocheck 1 in synchronization has operated Synchrocheck 1 in synchronization has dropped out Synchrocheck 1 close has operated Synchrocheck 1 close has dropped out Synchrocheck 1 V1 is above the minimum live voltage Synchrocheck 1 V1 is below the maximum dead voltage Synchrocheck 1 V2 is above the minimum live voltage Synchrocheck 1 V2 is below the maximum dead voltage Synchrocheck 1 V2 is below the maximum dead voltage Synchrocheck 1 V2 is below the maximum dead voltage	

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 7 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
ELEMENT: Teleprotection channel tests	TELEPRO CH1 FAIL TELEPRO CH2 FAIL TELEPRO CH1 ID FAIL TELEPRO CH2 ID FAIL TELEPRO CH1 CRC FAIL TELEPRO CH2 CRC FAIL TELEPRO CH1 PKT LOST TELEPRO CH2 PKT LOST	Channel 1 failed Channel 2 failed The ID check for a peer relay on channel 1 has failed The ID check for a peer relay on channel 2 has failed CRC detected packet corruption on channel 1 CRC detected packet corruption on channel 2 CRC detected lost packet on channel 1 CRC detected lost packet on channel 1 CRC detected lost packet on channel 2	
ELEMENT: Teleprotection inputs/outputs	TELEPRO INPUT 1-1 On TELEPRO INPUT 1-16 On TELEPRO INPUT 2-1 On TELEPRO INPUT 2-16 On	Flag is set, Logic =1 Flag is set, Logic =1 Flag is set, Logic =1 Flag is set, Logic =1	
ELEMENT: Thermal overload protection	THERMAL PROT 1 PKP THERMAL PROT 1 OP	Thermal overload protection 1 picked up Thermal overload protection 1 operated	
ELEMENT Trip bus	TRIP BUS 1 PKP TRIP BUS 1 OP TRIP BUS 2	Asserted when the trip bus 1 element picks up. Asserted when the trip bus 1 element operates. Same set of operands as shown for TRIP BUS 1	
ELEMENT: Underfrequency	UNDERFREQ 1 PKP UNDERFREQ 1 OP UNDERFREQ 1 DPO UNDERFREQ 2 to 6	Underfrequency 1 has picked up Underfrequency 1 has operated Underfrequency 1 has dropped out Same set of operands as shown for UNDERFREQ 1 above	
ELEMENT: Wattmetric zero- sequence directional	WATTMETRIC 1 PKP WATTMETRIC 1 OP WATTMETRIC 2	Wattmetric directional element 1 has picked up Wattmetric directional element 1 has operated Same set of operands as per WATTMETRIC 1 above	
FIXED OPERANDS	Off On	Logic = 0. Does nothing and may be used as a delimiter in an equation list; used as 'Disable' by other features. Logic = 1. Can be used as a test setting.	
INPUTS/OUTPUTS: Contact inputs	Cont lp 1 On Cont lp 2 On Cont lp 1 Off Cont lp 2 Off	(will not appear unless ordered) (will not appear unless ordered) (will not appear unless ordered) (will not appear unless ordered)	
INPUTS/OUTPUTS: Contact outputs, current (from detector on form-A output only)	Cont Op 1 IOn Cont Op 2 IOn	(will not appear unless ordered) (will not appear unless ordered)	
INPUTS/OUTPUTS: Contact outputs, voltage (from detector on form-A output only)	Cont Op 1 VOn Cont Op 2 VOn Cont Op 1 VOff Cont Op 2 VOff	(will not appear unless ordered) (will not appear unless ordered) (will not appear unless ordered) (will not appear unless ordered)	
INPUTS/OUTPUTS Direct inputs	DIRECT INPUT 1 On DIRECT INPUT 32 On	Flag is set, logic=1 Flag is set, logic=1	
INPUTS/OUTPUTS: Remote double- point status inputs	RemDPS Ip 1 BAD RemDPS Ip 1 INTERM RemDPS Ip 1 OFF RemDPS Ip 1 ON REMDPS Ip 2	Asserted while the remote double-point status input is in the bad state. Asserted while the remote double-point status input is in the intermediate state. Asserted while the remote double-point status input is off. Asserted while the remote double-point status input is on. Same set of operands as per REMDPS 1 above	
INPUTS/OUTPUTS: Remote inputs	REMOTE INPUT 1 On REMOTE INPUT 2 On REMOTE INPUT 2 On REMOTE INPUT 32 On	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1	

Table 5–16: F60 FLEXLOGIC OPERANDS (Sheet 8 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
INPUTS/OUTPUTS: Virtual inputs	Virt lp 1 On Virt lp 2 On Virt lp 3 On	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1	
	Virt Ip 64 On		
INPUTS/OUTPUTS: Virtual outputs	Virt Op 1 On Virt Op 2 On Virt Op 3 On	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1	
	Virt Op 96 On	Flag is set, logic=1	
LED INDICATORS: Fixed front panel LEDs	LED IN SERVICE LED TROUBLE LED TREST MODE LED TRIP LED ALARM LED PICKUP LED VOLTAGE LED CURRENT LED FREQUENCY LED OTHER LED PHASE A LED PHASE B LED NEUTRAL/GROUND	Asserted when the front panel IN SERVICE LED is on. Asserted when the front panel TROUBLE LED is on. Asserted when the front panel TEST MODE LED is on. Asserted when the front panel TRIP LED is on. Asserted when the front panel ALARM LED is on. Asserted when the front panel PICKUP LED is on. Asserted when the front panel VOLTAGE LED is on. Asserted when the front panel CURRENT LED is on. Asserted when the front panel FREQUENCY LED is on. Asserted when the front panel OTHER LED is on. Asserted when the front panel PHASE A LED is on. Asserted when the front panel PHASE B LED is on. Asserted when the front panel PHASE C LED is on. Asserted when the front panel PHASE C LED is on. Asserted when the front panel PHASE C LED is on. Asserted when the front panel PHASE C LED is on.	
LED INDICATORS: LED test	LED TEST IN PROGRESS	An LED test has been initiated and has not finished.	
LED INDICATORS:	LED USER 1	Asserted when user-programmable LED 1 is on.	
User-programmable LEDs	LED USER 2 to 48	The operand above is available for user-programmable LEDs 2 through 48.	
PASSWORD SECURITY	ACCESS LOC SETG OFF ACCESS LOC SETG ON ACCESS LOC CMND OFF ACCESS REM SETG OFF ACCESS REM SETG ON ACCESS REM CMND OFF ACCESS REM CMND ON UNAUTHORIZED ACCESS	Asserted when local setting access is disabled. Asserted when local setting access is enabled. Asserted when local command access is disabled. Asserted when local command access is enabled. Asserted when remote setting access is disabled. Asserted when remote setting access is enabled. Asserted when remote command access is disabled. Asserted when remote command access is enabled. Asserted when a password entry fails while accessing a password protected level of the F60.	
REMOTE DEVICES	REMOTE DEVICE 1 On REMOTE DEVICE 2 On REMOTE DEVICE 2 On REMOTE DEVICE 16 On	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1	
	NEWOTE DEVICE TO OIL	Flag is set, logic=1	
	REMOTE DEVICE 1 Off REMOTE DEVICE 2 Off REMOTE DEVICE 3 Off	Flag is set, logic=1 Flag is set, logic=1 Flag is set, logic=1	
	REMOTE DEVICE 16 Off	Flag is set, logic=1	
RESETTING	RESET OP RESET OP (COMMS) RESET OP (OPERAND) RESET OP (PUSHBUTTON)	Reset command is operated (set by all three operands below). Communications source of the reset command. Operand (assigned in the INPUTS/OUTPUTS ⇒ ₹ RESETTING menu) source of the reset command. Reset key (pushbutton) source of the reset command.	

Table 5-16: F60 FLEXLOGIC OPERANDS (Sheet 9 of 9)

OPERAND TYPE	OPERAND SYNTAX	OPERAND DESCRIPTION	
SELF-DIAGNOSTICS (See Relay Self-tests descriptions in Chapter 7: Commands and Targets)	ANY MAJOR ERROR ANY MINOR ERROR ANY SELF-TESTS BATTERY FAIL CLOCK UNSYNCHRONIZED DIRECT DEVICE OFF DIRECT RING BREAK EQUIPMENT MISMATCH FLEXLOGIC ERR TOKEN LATCHING OUT ERROR MAINTENANCE ALERT FIRST ETHERNET FAIL PROCESS BUS FAILURE PTP FAILURE REMOTE DEVICE OFF RRTD COMM FAIL SECOND ETHERNET FAIL THIRD ETHERNET FAIL SNTP FAILURE SYSTEM EXCEPTION TEMP MONITOR UNIT NOT PROGRAMMED	Any of the major self-test errors generated (major error) Any of the minor self-test errors generated (minor error) Any self-test errors generated (generic, any error) The battery is not functioning. Return power supply module to manufacturer. Relay is not synchronized to the international time standard A direct device is configured but not connected The Direct I/O settings is for a connection that is not in a ring The configuration of modules does not match the stored order code A FlexLogic equation is incorrect A difference is detected between the desired and actual latch contact state A subset of the minor self-test errors generated, see Chapter 7 Link failure detected. See description in Chapter 7: Commands and targets "Bad PTP Signal" self-test as described in Chapter 7 One or more GOOSE devices are not responding See description in Chapter 7: Commands and targets See description in Chapter 7: Commands and targets See description in Chapter 7: Commands and targets See description in Chapter 7: Commands and targets See description in Chapter 7: Commands and targets See description in Chapter 7: Commands and targets Monitors ambient temperature and maximum operating temperature The product setup>installation>relay settings setting is not programmed	
TEMPERATURE MONITOR	TEMP MONITOR	Asserted while the ambient temperature is greater than the maximum operating temperature (80°C)	
USER- PROGRAMMABLE PUSHBUTTONS	PUSHBUTTON 1 ON PUSHBUTTON 1 OFF ANY PB ON	Pushbutton number 1 is in the "On" position Pushbutton number 1 is in the "Off" position Any of twelve pushbuttons is in the "On" position	
	PUSHBUTTON 2 to 12	Same set of operands as PUSHBUTTON 1	

Some operands can be re-named by the user. These are the names of the breakers in the breaker control feature, the ID (identification) of contact inputs, the ID of virtual inputs, and the ID of virtual outputs. If the user changes the default name or ID of any of these operands, the assigned name will appear in the relay list of operands. The default names are shown in the FlexLogic operands table above.

The characteristics of the logic gates are tabulated below, and the operators available in FlexLogic are listed in the Flex-Logic operators table.

Table 5-17: FLEXLOGIC GATE CHARACTERISTICS

GATES	NUMBER OF INPUTS	OUTPUT IS '1' (= ON) IF
NOT	1	input is '0'
OR	2 to 16	any input is '1'
AND	2 to 16	all inputs are '1'
NOR	2 to 16	all inputs are '0'
NAND	2 to 16	any input is '0'
XOR	2	only one input is '1'

Table 5-18: FLEXLOGIC OPERATORS

TYPE	SYNTAX	DESCRIPTION	NOTES	
Editor	INSERT	Insert a parameter in an equation list.		
	DELETE	Delete a parameter from an equation list.		
End	END	The first END encountered signifies the last entry in the list of processed FlexLogic parameters.		
One-shot	POSITIVE ONE SHOT	One shot that responds to a positive going edge.	A 'one shot' refers to a single input gate	
	NEGATIVE ONE SHOT	One shot that responds to a negative going edge.	that generates a pulse in response to an edge on the input. The output from a 'one shot' is True (positive) for only one pass through the FlexLogic equation. There is a maximum of 64 'one shots'.	
	DUAL ONE SHOT	One shot that responds to both the positive and negative going edges.		
Logic	NOT	Logical NOT	Operates on the previous parameter.	
gate	OR(2)	2 input OR gate	Operates on the 2 previous parameters.	
	OR(16)	16 input OR gate	Operates on the 16 previous parameters.	
	AND(2)	2 input AND gate	Operates on the 2 previous parameters.	
	AND(16)	16 input AND gate	Operates on the 16 previous parameters.	
	NOR(2)	2 input NOR gate	Operates on the 2 previous parameters.	
	NOR(16)	16 input NOR gate	Operates on the 16 previous parameters.	
	NAND(2)	2 input NAND gate	Operates on the 2 previous parameters.	
	NAND(16)	16 input NAND gate	Operates on the 16 previous parameters.	
	XOR(2)	2 input Exclusive OR gate	Operates on the 2 previous parameters.	
	LATCH (S,R)	Latch (set, reset): reset-dominant	The parameter preceding LATCH(S,R) is the reset input. The parameter preceding the reset input is the set input.	
Timer	TIMER 1	Timer set with FlexLogic timer 1 settings.	The timer is started by the preceding parameter. The output of the timer is TIMER #.	
	TIMER 32	Timer set with FlexLogic timer 32 settings.		
Assign virtual	= Virt Op 1	Assigns previous FlexLogic operand to virtual output 1.	The virtual output is set by the preceding parameter	
output	= Virt Op 96	Assigns previous FlexLogic operand to virtual output 96.		

5.5.2 FLEXLOGIC RULES

When forming a FlexLogic equation, the sequence in the linear array of parameters must follow these general rules:

- 1. Operands must precede the operator which uses the operands as inputs.
- Operators have only one output. The output of an operator must be used to create a virtual output if it is to be used as an input to two or more operators.
- 3. Assigning the output of an operator to a virtual output terminates the equation.
- 4. A timer operator (for example, "TIMER 1") or virtual output assignment (for example, " = Virt Op 1") may only be used once. If this rule is broken, a syntax error will be declared.

5.5.3 FLEXLOGIC EVALUATION

Each equation is evaluated in the order in which the parameters have been entered.

FlexLogic provides latches which by definition have a memory action, remaining in the set state after the set input has been asserted. However, they are volatile; that is, they reset on the re-application of control power.

When making changes to settings, all FlexLogic equations are re-compiled whenever any new setting value is entered, so all latches are automatically reset. If it is necessary to re-initialize FlexLogic during testing, for example, it is suggested to power the unit down and then back up.

5.5 FLEXLOGIC

5.5.4 FLEXLOGIC EXAMPLE

This section provides an example of implementing logic for a typical application. The sequence of the steps is quite important as it should minimize the work necessary to develop the relay settings. Note that the example presented in the figure below is intended to demonstrate the procedure, not to solve a specific application situation.

In the example below, it is assumed that logic has already been programmed to produce virtual outputs 1 and 2, and is only a part of the full set of equations used. When using FlexLogic, it is important to make a note of each virtual output used – a virtual output designation (1 to 96) can only be properly assigned once.

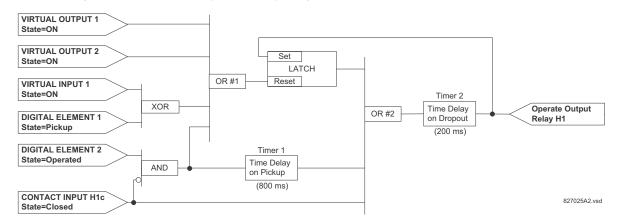


Figure 5-56: EXAMPLE LOGIC SCHEME

1. Inspect the example logic diagram to determine if the required logic can be implemented with the FlexLogic operators. If this is not possible, the logic must be altered until this condition is satisfied. Once this is done, count the inputs to each gate to verify that the number of inputs does not exceed the FlexLogic limits, which is unlikely but possible. If the number of inputs is too high, subdivide the inputs into multiple gates to produce an equivalent. For example, if 25 inputs to an AND gate are required, connect Inputs 1 through 16 to AND(16), 17 through 25 to AND(9), and the outputs from these two gates to AND(2).

Inspect each operator between the initial operands and final virtual outputs to determine if the output from the operator is used as an input to more than one following operator. If so, the operator output must be assigned as a virtual output.

For the example shown above, the output of the AND gate is used as an input to both OR#1 and Timer 1, and must therefore be made a virtual output and assigned the next available number (i.e. Virtual Output 3). The final output must also be assigned to a virtual output as virtual output 4, which will be programmed in the contact output section to operate relay H1 (that is, contact output H1).

Therefore, the required logic can be implemented with two FlexLogic equations with outputs of virtual output 3 and virtual output 4 as shown below.

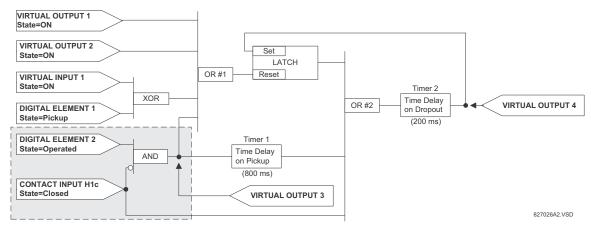


Figure 5-57: LOGIC EXAMPLE WITH VIRTUAL OUTPUTS

5.5 FLEXLOGIC 5 SETTINGS

2. Prepare a logic diagram for the equation to produce virtual output 3, as this output will be used as an operand in the virtual output 4 equation (create the equation for every output that will be used as an operand first, so that when these operands are required they will already have been evaluated and assigned to a specific virtual output). The logic for virtual output 3 is shown below with the final output assigned.

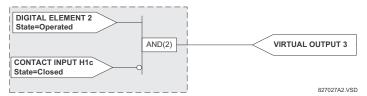


Figure 5-58: LOGIC FOR VIRTUAL OUTPUT 3

3. Prepare a logic diagram for virtual output 4, replacing the logic ahead of virtual output 3 with a symbol identified as virtual output 3, as shown below.

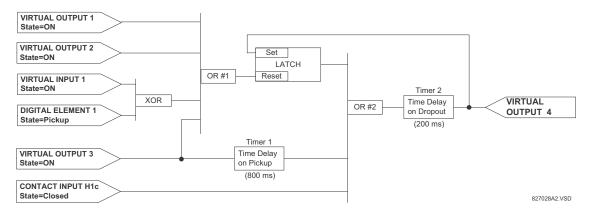


Figure 5-59: LOGIC FOR VIRTUAL OUTPUT 4

4. Program the FlexLogic equation for virtual output 3 by translating the logic into available FlexLogic parameters. The equation is formed one parameter at a time until the required logic is complete. It is generally easier to start at the output end of the equation and work back towards the input, as shown in the following steps. It is also recommended to list operator inputs from bottom to top. For demonstration, the final output will be arbitrarily identified as parameter 99, and each preceding parameter decremented by one in turn. Until accustomed to using FlexLogic, it is suggested that a worksheet with a series of cells marked with the arbitrary parameter numbers be prepared, as shown below.

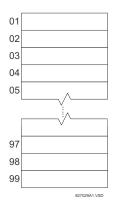


Figure 5-60: FLEXLOGIC WORKSHEET

- 5. Following the procedure outlined, start with parameter 99, as follows:
 - 99: The final output of the equation is virtual output 3, which is created by the operator "= Virt Op n". This parameter is therefore "= Virt Op 3."

98: The gate preceding the output is an AND, which in this case requires two inputs. The operator for this gate is a 2-input AND so the parameter is "AND(2)". Note that FlexLogic rules require that the number of inputs to most types of operators must be specified to identify the operands for the gate. As the 2-input AND will operate on the two operands preceding it, these inputs must be specified, starting with the lower.

- 97: This lower input to the AND gate must be passed through an inverter (the NOT operator) so the next parameter is "NOT". The NOT operator acts upon the operand immediately preceding it, so specify the inverter input next.
- 96: The input to the NOT gate is to be contact input H1c. The ON state of a contact input can be programmed to be set when the contact is either open or closed. Assume for this example the state is to be ON for a closed contact. The operand is therefore "Cont Ip H1c On".
- 95: The last step in the procedure is to specify the upper input to the AND gate, the operated state of digital element 2. This operand is "DIG ELEM 2 OP".

Writing the parameters in numerical order can now form the equation for virtual output 3:

```
[95] DIG ELEM 2 OP
[96] Cont Ip H1c On
[97] NOT
[98] AND(2)
[99] = Virt Op 3
```

It is now possible to check that this selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the logic for virtual output 3 diagram as a check.

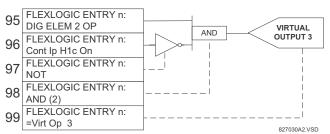


Figure 5-61: FLEXLOGIC EQUATION FOR VIRTUAL OUTPUT 3

- 6. Repeating the process described for virtual output 3, select the FlexLogic parameters for Virtual Output 4.
 - 99: The final output of the equation is virtual output 4 which is parameter "= Virt Op 4".
 - 98: The operator preceding the output is timer 2, which is operand "TIMER 2". Note that the settings required for the timer are established in the timer programming section.
 - 97: The operator preceding timer 2 is OR #2, a 3-input OR, which is parameter "OR(3)".
 - 96: The lowest input to OR #2 is operand "Cont Ip H1c On".
 - 95: The center input to OR #2 is operand "TIMER 1".
 - 94: The input to timer 1 is operand "Virt Op 3 On".
 - 93: The upper input to OR #2 is operand "LATCH (S,R)".
 - 92: There are two inputs to a latch, and the input immediately preceding the latch reset is OR #1, a 4-input OR, which is parameter "OR(4)".
 - 91: The lowest input to OR #1 is operand "Virt Op 3 On".
 - 90: The input just above the lowest input to OR #1 is operand "XOR(2)".
 - 89: The lower input to the XOR is operand "DIG ELEM 1 PKP".
 - 88: The upper input to the XOR is operand "Virt Ip 1 On".
 - 87: The input just below the upper input to OR #1 is operand "Virt Op 2 On".
 - 86: The upper input to OR #1 is operand "Virt Op 1 On".
 - 85: The last parameter is used to set the latch, and is operand "Virt Op 4 On".

5.5 FLEXLOGIC 5 SETTINGS

The equation for virtual output 4 is:

```
[85] Virt Op 4 On
[86] Virt Op 1 On
[87] Virt Op 2 On
[88] Virt Ip 1 On
[89] DIG ELEM 1 PKP
[90] XOR(2)
[91] Virt Op 3 On
[92] OR(4)
[93] LATCH (S,R)
[94] Virt Op 3 On
[95] TIMER 1
[96] Cont Ip H1c On
[97] OR(3)
[98] TIMER 2
[99] = Virt Op 4
```

It is now possible to check that the selection of parameters will produce the required logic by converting the set of parameters into a logic diagram. The result of this process is shown below, which is compared to the logic for virtual output 4 diagram as a check.

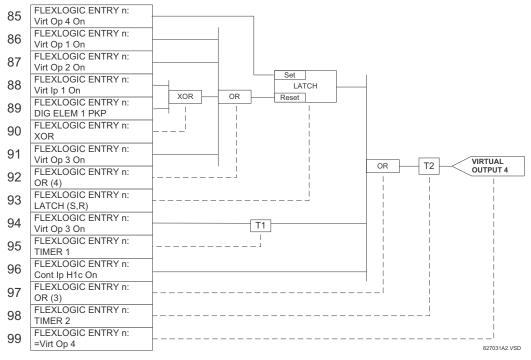


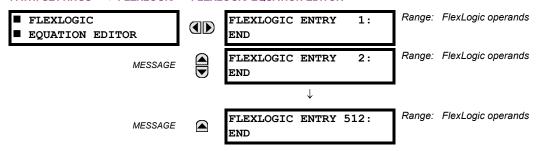
Figure 5-62: FLEXLOGIC EQUATION FOR VIRTUAL OUTPUT 4

7. Now write the complete FlexLogic expression required to implement the logic, making an effort to assemble the equation in an order where Virtual Outputs that will be used as inputs to operators are created before needed. In cases where a lot of processing is required to perform logic, this may be difficult to achieve, but in most cases will not cause problems as all logic is calculated at least four times per power frequency cycle. The possibility of a problem caused by sequential processing emphasizes the necessity to test the performance of FlexLogic before it is placed in service.

In the following equation, virtual output 3 is used as an input to both latch 1 and timer 1 as arranged in the order shown below:

```
DIG ELEM 2 OP
Cont Ip H1c On
NOT
AND(2)
```

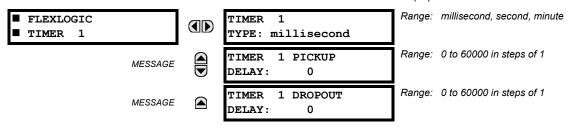
```
= Virt Op 3
Virt Op 4 On
Virt Op 1 On
Virt Op 2 On
Virt Ip 1 On
DIG ELEM 1 PKP
XOR (2)
Virt Op 3 On
OR (4)
LATCH (S,R)
Virt Op 3 On
TIMER 1
Cont Ip H1c On
OR (3)
TIMER 2
= Virt Op 4
END
```


In the expression above, the virtual output 4 input to the four-input OR is listed before it is created. This is typical of a form of feedback, in this case, used to create a seal-in effect with the latch, and is correct.

8. The logic should always be tested after it is loaded into the relay, in the same fashion as has been used in the past. Testing can be simplified by placing an "END" operator within the overall set of FlexLogic equations. The equations will then only be evaluated up to the first "END" operator.

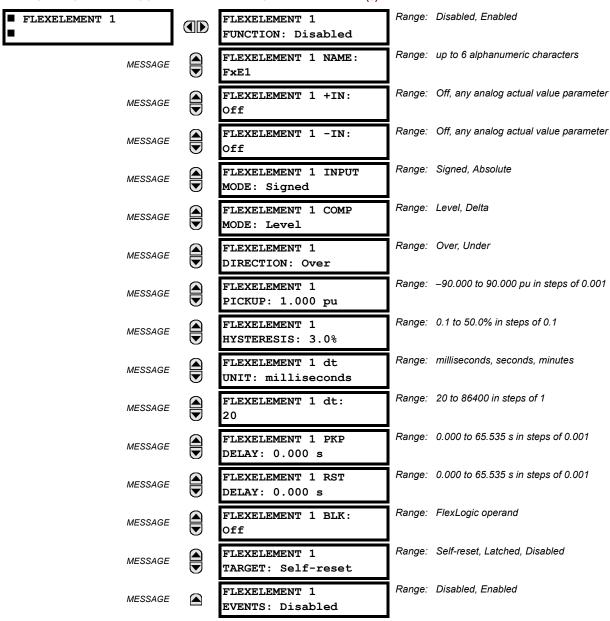
The "On" and "Off" operands can be placed in an equation to establish a known set of conditions for test purposes, and the "INSERT" and "DELETE" commands can be used to modify equations.

5.5.5 FLEXLOGIC EQUATION EDITOR


PATH: SETTINGS $\Rightarrow \emptyset$ FLEXLOGIC \Rightarrow FLEXLOGIC EQUATION EDITOR

There are 512 FlexLogic entries available, numbered from 1 to 512, with default END entry settings. If a "Disabled" Element is selected as a FlexLogic entry, the associated state flag will never be set to '1'. The '+/-' key may be used when editing FlexLogic equations from the keypad to quickly scan through the major parameter types.

5.5.6 FLEXLOGIC TIMERS


There are 32 identical FlexLogic timers available. These timers can be used as operators for FlexLogic equations.

- TIMER 1 TYPE: This setting is used to select the time measuring unit.
- TIMER 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set this function to "0".

• TIMER 1 DROPOUT DELAY: Sets the time delay to dropout. If a dropout delay is not required, set this function to "0".

5.5.7 FLEXELEMENTS

A FlexElement is a universal comparator that can be used to monitor any analog actual value calculated by the relay or a net difference of any two analog actual values of the same type. The effective operating signal could be treated as a signed number or its absolute value could be used as per user's choice.

The element can be programmed to respond either to a signal level or to a rate-of-change (delta) over a pre-defined period of time. The output operand is asserted when the operating signal is higher than a threshold or lower than a threshold as per user's choice.

5 SETTINGS 5.5 FLEXLOGIC

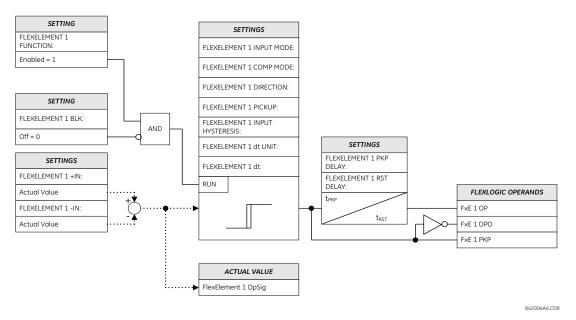


Figure 5-63: FLEXELEMENT SCHEME LOGIC

The **FLEXELEMENT 1 +IN** setting specifies the first (non-inverted) input to the FlexElement. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands.

This **FLEXELEMENT 1 –IN** setting specifies the second (inverted) input to the FlexElement. Zero is assumed as the input if this setting is set to "Off". For proper operation of the element at least one input must be selected. Otherwise, the element will not assert its output operands. This input should be used to invert the signal if needed for convenience, or to make the element respond to a differential signal such as for a top-bottom oil temperature differential alarm. The element will not operate if the two input signals are of different types, for example if one tries to use active power and phase angle to build the effective operating signal.

The element responds directly to the differential signal if the **FLEXELEMENT 1 INPUT MODE** setting is set to "Signed". The element responds to the absolute value of the differential signal if this setting is set to "Absolute". Sample applications for the "Absolute" setting include monitoring the angular difference between two phasors with a symmetrical limit angle in both directions; monitoring power regardless of its direction, or monitoring a trend regardless of whether the signal increases of decreases.

The element responds directly to its operating signal – as defined by the FLEXELEMENT 1 +IN, FLEXELEMENT 1 –IN and FLEX-ELEMENT 1 INPUT MODE settings – if the FLEXELEMENT 1 COMP MODE setting is set to "Level". The element responds to the rate of change of its operating signal if the FLEXELEMENT 1 COMP MODE setting is set to "Delta". In this case the FLEXELE-MENT 1 dt UNIT and FLEXELEMENT 1 dt settings specify how the rate of change is derived.

The **FLEXELEMENT 1 DIRECTION** setting enables the relay to respond to either high or low values of the operating signal. The following figure explains the application of the **FLEXELEMENT 1 DIRECTION**, **FLEXELEMENT 1 PICKUP** and **FLEXELEMENT 1 HYS-TERESIS** settings.

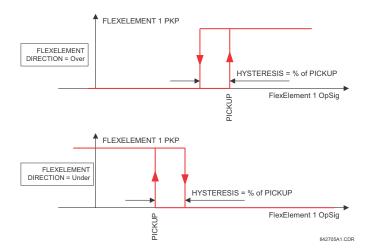


Figure 5-64: FLEXELEMENT DIRECTION, PICKUP, AND HYSTERESIS

In conjunction with the **FLEXELEMENT 1 INPUT MODE** setting the element could be programmed to provide two extra characteristics as shown in the figure below.

5 SETTINGS 5.5 FLEXLOGIC

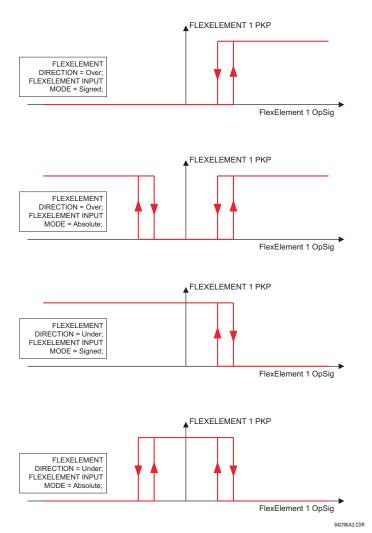


Figure 5-65: FLEXELEMENT INPUT MODE SETTING

The **FLEXELEMENT 1 PICKUP** setting specifies the operating threshold for the effective operating signal of the element. If set to "Over", the element picks up when the operating signal exceeds the **FLEXELEMENT 1 PICKUP** value. If set to "Under", the element picks up when the operating signal falls below the **FLEXELEMENT 1 PICKUP** value.

The FLEXELEMENT 1 HYSTERESIS setting controls the element dropout. It should be noticed that both the operating signal and the pickup threshold can be negative facilitating applications such as reverse power alarm protection. The FlexElement can be programmed to work with all analog actual values measured by the relay. The FLEXELEMENT 1 PICKUP setting is entered in per-unit values using the following definitions of the base units:

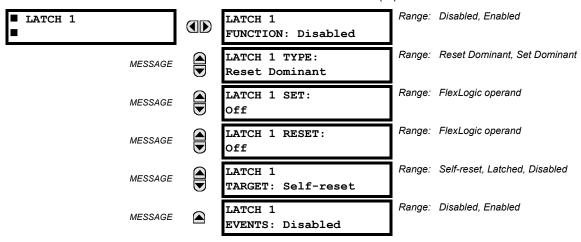
Table 5-19: FLEXELEMENT BASE UNITS

BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	BASE = 2000 kA 2 × cycle
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and –IN inputs.
DELTA TIME	BASE = 1 µs
FREQUENCY	f _{BASE} = 1 Hz
FREQUENCY RATE OF CHANGE	df/dt _{BASE} = 1 Hz/s
PHASE ANGLE	φ _{BASE} = 360 degrees (see the UR angle referencing convention)
POWER FACTOR	PF _{BASE} = 1.00

5.5 FLEXLOGIC 5 SETTINGS

Table 5-19: FLEXELEMENT BASE UNITS

RTDs	BASE = 100°C
SENSITIVE DIR POWER (Sns Dir Power)	P_{BASE} = maximum value of 3 × V_{BASE} × I_{BASE} for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s).
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs
SOURCE ENERGY (Positive and Negative Watthours, Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and -IN inputs
SOURCE THD & HARMONICS	BASE = 1%
SOURCE VOLTAGE	V_{BASE} = maximum nominal primary RMS value of the +IN and -IN inputs
SYNCHROCHECK (Max Delta Volts)	V _{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs


The **FLEXELEMENT 1 HYSTERESIS** setting defines the pickup–dropout relation of the element by specifying the width of the hysteresis loop as a percentage of the pickup value as shown in the *FlexElement direction*, *pickup*, *and hysteresis* diagram.

The FLEXELEMENT 1 DT UNIT setting specifies the time unit for the setting FLEXELEMENT 1 dt. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta". The FLEXELEMENT 1 DT setting specifies duration of the time interval for the rate of change mode of operation. This setting is applicable only if FLEXELEMENT 1 COMP MODE is set to "Delta".

This **FLEXELEMENT 1 PKP DELAY** setting specifies the pickup delay of the element. The **FLEXELEMENT 1 RST DELAY** setting specifies the reset delay of the element.

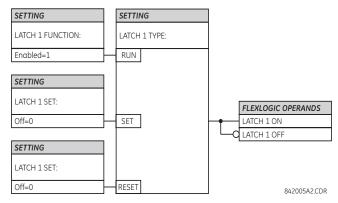
5.5.8 NON-VOLATILE LATCHES

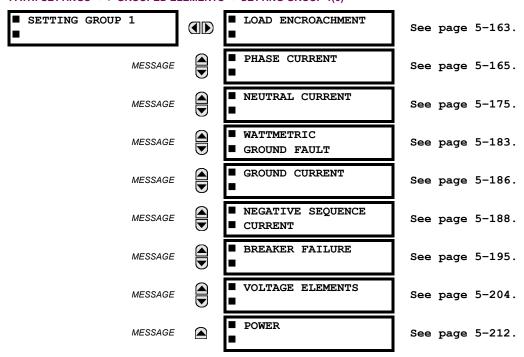
PATH: SETTINGS ⇔ \$\Partial \text{FLEXLOGIC} \$\Rightarrow \Partial \text{NON-VOLATILE LATCHES} \$\Rightarrow \text{LATCH 1(16)}\$

The non-volatile latches provide a permanent logical flag that is stored safely and will not reset upon reboot after the relay is powered down. Typical applications include sustaining operator commands or permanently block relay functions, such as Autorecloser, until a deliberate interface action resets the latch. The settings element operation is described below:

- LATCH 1 TYPE: This setting characterizes Latch 1 to be Set- or Reset-dominant.
- LATCH 1 SET: If asserted, the specified FlexLogic operands 'sets' Latch 1.
- LATCH 1 RESET: If asserted, the specified FlexLogic operand 'resets' Latch 1.

LATCH N TYPE	LATCH N SET	LATCH N RESET	LATCH N ON	LATCH N OFF
Reset Dominant	ON	OFF	ON	OFF
Dominant	OFF	OFF	Previous State	Previous State
	ON	ON	OFF	ON
	OFF	ON	OFF	ON
Set Dominant	ON	OFF	ON	OFF
Dominant	ON	ON	ON	OFF
	OFF	OFF	Previous State	Previous State
	OFF	ON	OFF	ON

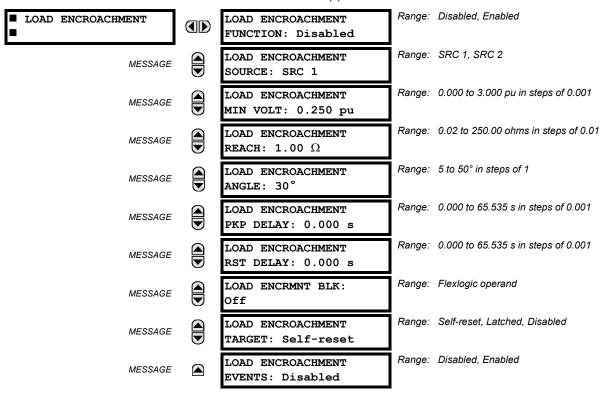



Figure 5-66: NON-VOLATILE LATCH OPERATION TABLE (N = 1 to 16) AND LOGIC

5.6.1 OVERVIEW

Each protection element can be assigned up to six different sets of settings according to setting group designations 1 to 6. The performance of these elements is defined by the active setting group at a given time. Multiple setting groups allow the user to conveniently change protection settings for different operating situations (for example, altered power system configuration, season of the year, etc.). The active setting group can be preset or selected via the **SETTING GROUPS** menu (see the *Control Elements* section later in this chapter). See also the *Introduction to Elements* section at the beginning of this chapter.

5.6.2 SETTING GROUP



Each of the six setting group menus is identical. Setting group 1 (the default active group) automatically becomes active if no other group is active (see the *Control elements* section for additional details).

5.6.3 LOAD ENCROACHMENT

PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ \$\Partial\$ LOAD ENCROACHMENT

The load encroachment element responds to the positive-sequence voltage and current and applies a characteristic shown in the figure below.

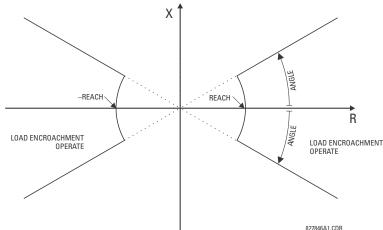


Figure 5-67: LOAD ENCROACHMENT CHARACTERISTIC

The element operates if the positive-sequence voltage is above a settable level and asserts its output signal that can be used to block selected protection elements such as distance or phase overcurrent. The following figure shows an effect of the load encroachment characteristics used to block the quadrilateral distance element.

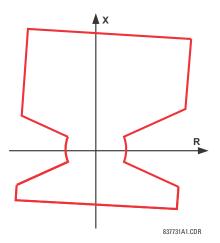


Figure 5-68: LOAD ENCROACHMENT APPLIED TO DISTANCE ELEMENT

LOAD ENCROACHMENT MIN VOLT: This setting specifies the minimum positive-sequence voltage required for operation of the element. If the voltage is below this threshold a blocking signal will not be asserted by the element. When selecting this setting one must remember that the F60 measures the phase-to-ground sequence voltages regardless of the VT connection.

The nominal VT secondary voltage as specified with the SYSTEM SETUP $\Rightarrow \emptyset$ AC INPUTS \Rightarrow VOLTAGE BANK X5 $\Rightarrow \emptyset$ PHASE VT SECONDARY setting is the per-unit base for this setting.

- LOAD ENCROACHMENT REACH: This setting specifies the resistive reach of the element as shown in the *Load* encroachment characteristic diagram. This setting should be entered in secondary ohms and be calculated as the positive-sequence resistance seen by the relay under maximum load conditions and unity power factor.
- LOAD ENCROACHMENT ANGLE: This setting specifies the size of the blocking region as shown on the *Load* encroachment characteristic diagram and applies to the positive-sequence impedance.

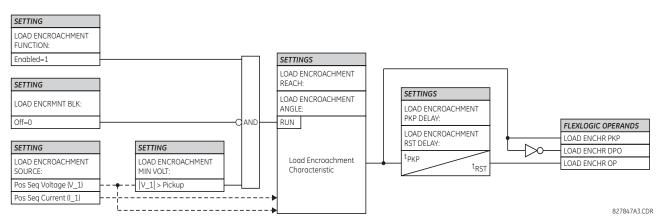
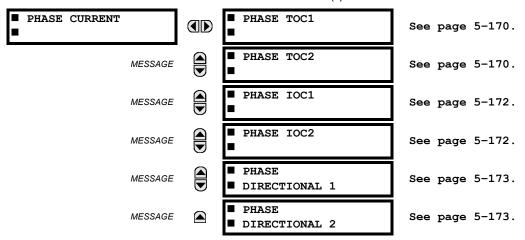



Figure 5-69: LOAD ENCROACHMENT SCHEME LOGIC

5.6.4 PHASE CURRENT

a) MAIN MENU

PATH: SETTINGS ⇒ \$\Partial GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ \$\Partial Phase current

The F60 Feeder Protection System has two (2) phase time overcurrent, two (2) phase instantaneous overcurrent, and two (2) phase directional overcurrent elements.

b) INVERSE TIME OVERCURRENT CHARACTERISTICS

The inverse time overcurrent curves used by the time overcurrent elements are the IEEE, IEC, GE Type IAC, and I²t standard curve shapes. This allows for simplified coordination with downstream devices.

If none of these curve shapes is adequate, FlexCurves may be used to customize the inverse time curve characteristics. The definite time curve is also an option that may be appropriate if only simple protection is required.

Table 5-20: OVERCURRENT CURVE TYPES

IEEE	IEC	GE TYPE IAC	OTHER
IEEE Extremely Inverse	IEC Curve A (BS142)	IAC Extremely Inverse	l ² t
IEEE Very Inverse	IEC Curve B (BS142)	IAC Very Inverse	FlexCurves A, B, C, and D
IEEE Moderately Inverse	IEC Curve C (BS142)	IAC Inverse	Recloser Curves
	IEC Short Inverse	IAC Short Inverse	Definite Time

A time dial multiplier setting allows selection of a multiple of the base curve shape (where the time dial multiplier = 1) with the curve shape (**CURVE**) setting. Unlike the electromechanical time dial equivalent, operate times are directly proportional to the time multiplier (**TD MULTIPLIER**) setting value. For example, all times for a multiplier of 10 are 10 times the multiplier 1 or base curve values. Setting the multiplier to zero results in an instantaneous response to all current levels above pickup.

Time overcurrent time calculations are made with an internal *energy capacity* memory variable. When this variable indicates that the energy capacity has reached 100%, a time overcurrent element will operate. If less than 100% energy capacity is accumulated in this variable and the current falls below the dropout threshold of 97 to 98% of the pickup value, the variable must be reduced. Two methods of this resetting operation are available: "Instantaneous" and "Timed". The "Instantaneous" selection is intended for applications with other relays, such as most static relays, which set the energy capacity directly to zero when the current falls below the reset threshold. The "Timed" selection can be used where the relay must coordinate with electromechanical relays.

IEEE CURVES:

The IEEE time overcurrent curve shapes conform to industry standards and the IEEE C37.112-1996 curve classifications for extremely, very, and moderately inverse. The IEEE curves are derived from the formulae:

$$T = TDM \times \left[\frac{A}{\left(\frac{I}{I_{pickup}} \right)^p - 1} + B \right], T_{RESET} = TDM \times \left[\frac{t_r}{1 - \left(\frac{I}{I_{pickup}} \right)^2} \right]$$
 (EQ 5.8)

where: T = operate time (in seconds), TDM = Multiplier setting, I = input current, I_{pickup} = Pickup Current setting A, B, p = constants, T_{RESET} = reset time in seconds (assuming energy capacity is 100% and RESET is "Timed"), t_r = characteristic constant

Table 5-21: IEEE INVERSE TIME CURVE CONSTANTS

IEEE CURVE SHAPE	Α	В	Р	T _R
IEEE Extremely Inverse	28.2	0.1217	2.0000	29.1
IEEE Very Inverse	19.61	0.491	2.0000	21.6
IEEE Moderately Inverse	0.0515	0.1140	0.02000	4.85

Table 5-22: IEEE CURVE TRIP TIMES (IN SECONDS)

MULTIPLIER		CURRENT (/ / I _{pickup})								
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEEE EXTRE	EXTREMELY INVERSE									
0.5	11.341	4.761	1.823	1.001	0.648	0.464	0.355	0.285	0.237	0.203
1.0	22.682	9.522	3.647	2.002	1.297	0.927	0.709	0.569	0.474	0.407
2.0	45.363	19.043	7.293	4.003	2.593	1.855	1.418	1.139	0.948	0.813
4.0	90.727	38.087	14.587	8.007	5.187	3.710	2.837	2.277	1.897	1.626
6.0	136.090	57.130	21.880	12.010	7.780	5.564	4.255	3.416	2.845	2.439
8.0	181.454	76.174	29.174	16.014	10.374	7.419	5.674	4.555	3.794	3.252
10.0	226.817	95.217	36.467	20.017	12.967	9.274	7.092	5.693	4.742	4.065
IEEE VERY I	NVERSE			•	•				•	
0.5	8.090	3.514	1.471	0.899	0.654	0.526	0.450	0.401	0.368	0.345
1.0	16.179	7.028	2.942	1.798	1.308	1.051	0.900	0.802	0.736	0.689
2.0	32.358	14.055	5.885	3.597	2.616	2.103	1.799	1.605	1.472	1.378
4.0	64.716	28.111	11.769	7.193	5.232	4.205	3.598	3.209	2.945	2.756
6.0	97.074	42.166	17.654	10.790	7.849	6.308	5.397	4.814	4.417	4.134
8.0	129.432	56.221	23.538	14.387	10.465	8.410	7.196	6.418	5.889	5.513
10.0	161.790	70.277	29.423	17.983	13.081	10.513	8.995	8.023	7.361	6.891
IEEE MODER	RATELY INV	ERSE		•	•				•	
0.5	3.220	1.902	1.216	0.973	0.844	0.763	0.706	0.663	0.630	0.603
1.0	6.439	3.803	2.432	1.946	1.688	1.526	1.412	1.327	1.260	1.207
2.0	12.878	7.606	4.864	3.892	3.377	3.051	2.823	2.653	2.521	2.414
4.0	25.756	15.213	9.729	7.783	6.753	6.102	5.647	5.307	5.041	4.827
6.0	38.634	22.819	14.593	11.675	10.130	9.153	8.470	7.960	7.562	7.241
8.0	51.512	30.426	19.458	15.567	13.507	12.204	11.294	10.614	10.083	9.654
10.0	64.390	38.032	24.322	19.458	16.883	15.255	14.117	13.267	12.604	12.068

IEC CURVES

For European applications, the relay offers three standard curves defined in IEC 255-4 and British standard BS142. These are defined as IEC Curve A, IEC Curve B, and IEC Curve C. The formulae for these curves are:

$$T = TDM \times \left[\frac{K}{(I/I_{pickup})^{E} - 1} \right], T_{RESET} = TDM \times \left[\frac{t_{r}}{1 - (I/I_{pickup})^{2}} \right]$$
 (EQ 5.9)

where: T = operate time (in seconds), TDM = Multiplier setting, I = input current, I_{pickup} = Pickup Current setting, K, E = constants, t_r = characteristic constant, and T_{RESET} = reset time in seconds (assuming energy capacity is 100% and **RESET** is "Timed")

Table 5-23: IEC (BS) INVERSE TIME CURVE CONSTANTS

IEC (BS) CURVE SHAPE	K	E	T _R
IEC Curve A (BS142)	0.140	0.020	9.7
IEC Curve B (BS142)	13.500	1.000	43.2
IEC Curve C (BS142)	80.000	2.000	58.2
IEC Short Inverse	0.050	0.040	0.500

Table 5-24: IEC CURVE TRIP TIMES (IN SECONDS)

MULTIPLIER					CURRENT	(I/I _{pickup})				
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IEC CURVE	A									
0.05	0.860	0.501	0.315	0.249	0.214	0.192	0.176	0.165	0.156	0.149
0.10	1.719	1.003	0.630	0.498	0.428	0.384	0.353	0.330	0.312	0.297
0.20	3.439	2.006	1.260	0.996	0.856	0.767	0.706	0.659	0.623	0.594
0.40	6.878	4.012	2.521	1.992	1.712	1.535	1.411	1.319	1.247	1.188
0.60	10.317	6.017	3.781	2.988	2.568	2.302	2.117	1.978	1.870	1.782
0.80	13.755	8.023	5.042	3.984	3.424	3.070	2.822	2.637	2.493	2.376
1.00	17.194	10.029	6.302	4.980	4.280	3.837	3.528	3.297	3.116	2.971
IEC CURVE	В									
0.05	1.350	0.675	0.338	0.225	0.169	0.135	0.113	0.096	0.084	0.075
0.10	2.700	1.350	0.675	0.450	0.338	0.270	0.225	0.193	0.169	0.150
0.20	5.400	2.700	1.350	0.900	0.675	0.540	0.450	0.386	0.338	0.300
0.40	10.800	5.400	2.700	1.800	1.350	1.080	0.900	0.771	0.675	0.600
0.60	16.200	8.100	4.050	2.700	2.025	1.620	1.350	1.157	1.013	0.900
0.80	21.600	10.800	5.400	3.600	2.700	2.160	1.800	1.543	1.350	1.200
1.00	27.000	13.500	6.750	4.500	3.375	2.700	2.250	1.929	1.688	1.500
IEC CURVE	С									
0.05	3.200	1.333	0.500	0.267	0.167	0.114	0.083	0.063	0.050	0.040
0.10	6.400	2.667	1.000	0.533	0.333	0.229	0.167	0.127	0.100	0.081
0.20	12.800	5.333	2.000	1.067	0.667	0.457	0.333	0.254	0.200	0.162
0.40	25.600	10.667	4.000	2.133	1.333	0.914	0.667	0.508	0.400	0.323
0.60	38.400	16.000	6.000	3.200	2.000	1.371	1.000	0.762	0.600	0.485
0.80	51.200	21.333	8.000	4.267	2.667	1.829	1.333	1.016	0.800	0.646
1.00	64.000	26.667	10.000	5.333	3.333	2.286	1.667	1.270	1.000	0.808
IEC SHORT	TIME									
0.05	0.153	0.089	0.056	0.044	0.038	0.034	0.031	0.029	0.027	0.026
0.10	0.306	0.178	0.111	0.088	0.075	0.067	0.062	0.058	0.054	0.052
0.20	0.612	0.356	0.223	0.175	0.150	0.135	0.124	0.115	0.109	0.104
0.40	1.223	0.711	0.445	0.351	0.301	0.269	0.247	0.231	0.218	0.207
0.60	1.835	1.067	0.668	0.526	0.451	0.404	0.371	0.346	0.327	0.311
0.80	2.446	1.423	0.890	0.702	0.602	0.538	0.494	0.461	0.435	0.415
1.00	3.058	1.778	1.113	0.877	0.752	0.673	0.618	0.576	0.544	0.518

IAC CURVES:

The curves for the General Electric type IAC relay family are derived from the formulae:

$$T = \text{TDM} \times \left(A + \frac{B}{(I/I_{pkp}) - C} + \frac{D}{((I/I_{pkp}) - C)^2} + \frac{E}{((I/I_{pkp}) - C)^3} \right), T_{RESET} = TDM \times \left[\frac{t_r}{1 - (I/I_{pkp})^2} \right]$$
(EQ 5.10)

where: T = operate time (in seconds), TDM = Multiplier setting, I = Input current, I_{pkp} = Pickup Current setting, A to E = constants, t_r = characteristic constant, and T_{RESET} = reset time in seconds (assuming energy capacity is 100% and **RESET** is "Timed")

Table 5-25: GE TYPE IAC INVERSE TIME CURVE CONSTANTS

IAC CURVE SHAPE	Α	В	С	D	E	T _R
IAC Extreme Inverse	0.0040	0.6379	0.6200	1.7872	0.2461	6.008
IAC Very Inverse	0.0900	0.7955	0.1000	-1.2885	7.9586	4.678
IAC Inverse	0.2078	0.8630	0.8000	-0.4180	0.1947	0.990
IAC Short Inverse	0.0428	0.0609	0.6200	-0.0010	0.0221	0.222

Table 5-26: IAC CURVE TRIP TIMES

MULTIPLIER		CURRENT (I / I _{pickup})								
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
IAC EXTREM	XTREMELY INVERSE									
0.5	1.699	0.749	0.303	0.178	0.123	0.093	0.074	0.062	0.053	0.046
1.0	3.398	1.498	0.606	0.356	0.246	0.186	0.149	0.124	0.106	0.093
2.0	6.796	2.997	1.212	0.711	0.491	0.372	0.298	0.248	0.212	0.185
4.0	13.591	5.993	2.423	1.422	0.983	0.744	0.595	0.495	0.424	0.370
6.0	20.387	8.990	3.635	2.133	1.474	1.115	0.893	0.743	0.636	0.556
8.0	27.183	11.987	4.846	2.844	1.966	1.487	1.191	0.991	0.848	0.741
10.0	33.979	14.983	6.058	3.555	2.457	1.859	1.488	1.239	1.060	0.926
IAC VERY IN	IVERSE									
0.5	1.451	0.656	0.269	0.172	0.133	0.113	0.101	0.093	0.087	0.083
1.0	2.901	1.312	0.537	0.343	0.266	0.227	0.202	0.186	0.174	0.165
2.0	5.802	2.624	1.075	0.687	0.533	0.453	0.405	0.372	0.349	0.331
4.0	11.605	5.248	2.150	1.374	1.065	0.906	0.810	0.745	0.698	0.662
6.0	17.407	7.872	3.225	2.061	1.598	1.359	1.215	1.117	1.046	0.992
8.0	23.209	10.497	4.299	2.747	2.131	1.813	1.620	1.490	1.395	1.323
10.0	29.012	13.121	5.374	3.434	2.663	2.266	2.025	1.862	1.744	1.654
IAC INVERS	E									
0.5	0.578	0.375	0.266	0.221	0.196	0.180	0.168	0.160	0.154	0.148
1.0	1.155	0.749	0.532	0.443	0.392	0.360	0.337	0.320	0.307	0.297
2.0	2.310	1.499	1.064	0.885	0.784	0.719	0.674	0.640	0.614	0.594
4.0	4.621	2.997	2.128	1.770	1.569	1.439	1.348	1.280	1.229	1.188
6.0	6.931	4.496	3.192	2.656	2.353	2.158	2.022	1.921	1.843	1.781
8.0	9.242	5.995	4.256	3.541	3.138	2.878	2.695	2.561	2.457	2.375
10.0	11.552	7.494	5.320	4.426	3.922	3.597	3.369	3.201	3.072	2.969
IAC SHORT	INVERSE									
0.5	0.072	0.047	0.035	0.031	0.028	0.027	0.026	0.026	0.025	0.025
1.0	0.143	0.095	0.070	0.061	0.057	0.054	0.052	0.051	0.050	0.049
2.0	0.286	0.190	0.140	0.123	0.114	0.108	0.105	0.102	0.100	0.099
4.0	0.573	0.379	0.279	0.245	0.228	0.217	0.210	0.204	0.200	0.197
6.0	0.859	0.569	0.419	0.368	0.341	0.325	0.314	0.307	0.301	0.296
8.0	1.145	0.759	0.559	0.490	0.455	0.434	0.419	0.409	0.401	0.394
10.0	1.431	0.948	0.699	0.613	0.569	0.542	0.524	0.511	0.501	0.493

5.6 GROUPED ELEMENTS

12t CURVES:

The curves for the I²t are derived from the formulae:

$$T = \text{TDM} \times \left[\frac{100}{\left(\frac{I}{I_{pickup}} \right)^2} \right], T_{RESET} = \text{TDM} \times \left[\frac{100}{\left(\frac{I}{I_{pickup}} \right)^{-2}} \right]$$
 (EQ 5.11)

where: T = Operate Time (sec.); TDM = Multiplier Setting; I = Input Current; $I_{pickup} = \text{Pickup Current Setting}$; $T_{RESET} = \text{Reset Time in sec. (assuming energy capacity is 100% and RESET: Timed)}$

Table 5-27: I²T CURVE TRIP TIMES

MULTIPLIER	CURRENT (I / I _{pickup})									
(TDM)	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
0.01	0.44	0.25	0.11	0.06	0.04	0.03	0.02	0.02	0.01	0.01
0.10	4.44	2.50	1.11	0.63	0.40	0.28	0.20	0.16	0.12	0.10
1.00	44.44	25.00	11.11	6.25	4.00	2.78	2.04	1.56	1.23	1.00
10.00	444.44	250.00	111.11	62.50	40.00	27.78	20.41	15.63	12.35	10.00
100.00	4444.4	2500.0	1111.1	625.00	400.00	277.78	204.08	156.25	123.46	100.00
600.00	26666.7	15000.0	6666.7	3750.0	2400.0	1666.7	1224.5	937.50	740.74	600.00

FLEXCURVES:

The custom FlexCurves are described in detail in the FlexCurves section of this chapter. The curve shapes for the Flex-Curves are derived from the formulae:

$$T = \text{TDM} \times \left[\text{FlexCurve Time at } \left(\frac{I}{I_{pickup}} \right) \right] \text{ when } \left(\frac{I}{I_{pickup}} \right) \ge 1.00$$
 (EQ 5.12)

$$T_{RESET} = \text{TDM} \times \left[\text{FlexCurve Time at } \left(\frac{I}{I_{pickup}} \right) \right] \text{ when } \left(\frac{I}{I_{pickup}} \right) \le 0.98$$
 (EQ 5.13)

where: T = Operate Time (sec.), TDM = Multiplier setting

I = Input Current, $I_{pickup} = Pickup Current setting$

 T_{RESET} = Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

DEFINITE TIME CURVE:

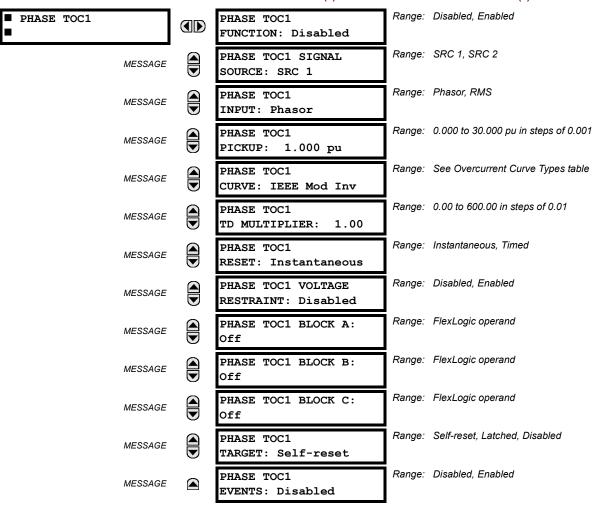
The Definite Time curve shape operates as soon as the pickup level is exceeded for a specified period of time. The base definite time curve delay is in seconds. The curve multiplier of 0.00 to 600.00 makes this delay adjustable from instantaneous to 600.00 seconds in steps of 10 ms.

$$T = TDM$$
 in seconds, when $I > I_{pickup}$ (EQ 5.14)

$$T_{RESET}$$
 = TDM in seconds (EQ 5.15)

where: T = Operate Time (sec.), TDM = Multiplier setting

I = Input Current, $I_{pickup} = Pickup Current setting$


T_{RESET} = Reset Time in seconds (assuming energy capacity is 100% and RESET: Timed)

RECLOSER CURVES:

The F60 uses the FlexCurve feature to facilitate programming of 41 recloser curves. See the FlexCurve section in this chapter for details.

c) PHASE TIME OVERCURRENT (ANSI 51P, IEC PTOC)

PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS \$\Rightarrow\$ SETTING GROUP 1(6) \$\Rightarrow\$ PHASE CURRENT \$\Rightarrow\$ PHASE TOC1(2)

The phase time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple definite time element. The phase current input quantities may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (see the *Inverse TOC Curve Characteristics* section earlier for details on curve setup, trip times, and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

The **PHASE TOC1 PICKUP** setting can be dynamically reduced by a voltage restraint feature (when enabled). This is accomplished via the multipliers (Mvr) corresponding to the phase-phase voltages of the voltage restraint characteristic curve (see the figure below); the pickup level is calculated as 'Mvr' times the **PHASE TOC1 PICKUP** setting. If the voltage restraint feature is disabled, the pickup level always remains at the setting value.

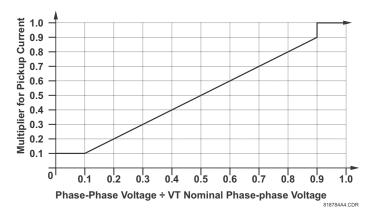


Figure 5-70: PHASE TIME OVERCURRENT VOLTAGE RESTRAINT CHARACTERISTIC

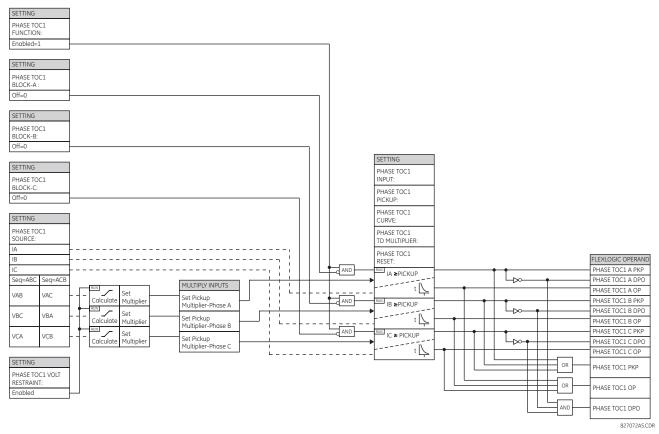
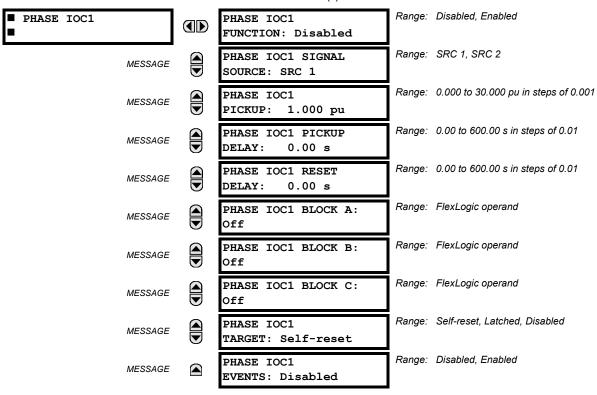



Figure 5-71: PHASE TIME OVERCURRENT 1 SCHEME LOGIC

d) PHASE INSTANTANEOUS OVERCURRENT (ANSI 50P, IEC PIOC)

PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow PHASE CURRENT \Rightarrow PHASE IOC 1

The phase instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a definite time element. The input current is the fundamental phasor magnitude. For timing curves, see the publication Instantaneous Overcurrent Element Response to Saturated Waveforms in UR-Series Relays (GET-8400A).

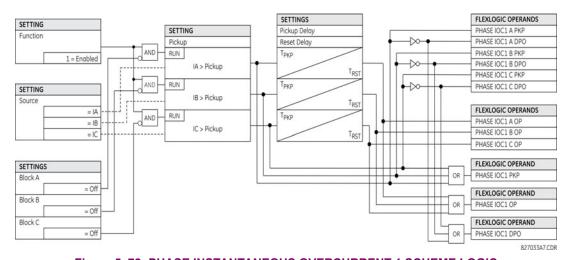
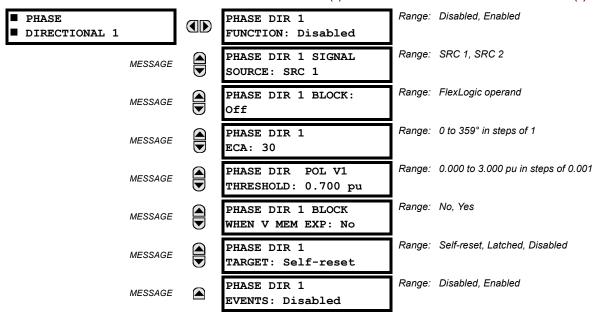



Figure 5–72: PHASE INSTANTANEOUS OVERCURRENT 1 SCHEME LOGIC

5 SETTINGS

e) PHASE DIRECTIONAL OVERCURRENT (ANSI 67P, IEC PDOC/PTOC)

PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow PHASE CURRENT \Rightarrow PHASE DIRECTIONAL 1(2)

The phase directional elements (one for each of phases A, B, and C) determine the phase current flow direction for steady state and fault conditions and can be used to control the operation of the phase overcurrent elements via the **BLOCK** inputs of these elements.

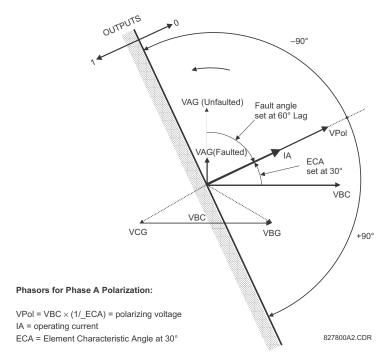


Figure 5-73: PHASE A DIRECTIONAL POLARIZATION

This element is intended to apply a block signal to an overcurrent element to prevent an operation when current is flowing in a particular direction. The direction of current flow is determined by measuring the phase angle between the current from the phase CTs and the line-line voltage from the VTs, based on the 90° or quadrature connection. If there is a requirement to supervise overcurrent elements for flows in opposite directions, such as can happen through a bus-tie breaker, two phase directional elements should be programmed with opposite element characteristic angle (ECA) settings.

To increase security for three phase faults very close to the VTs used to measure the polarizing voltage, a voltage memory feature is incorporated. This feature stores the polarizing voltage the moment before the voltage collapses, and uses it to determine direction. The voltage memory remains valid for one second after the voltage has collapsed.

The main component of the phase directional element is the phase angle comparator with two inputs: the operating signal (phase current) and the polarizing signal (the line voltage, shifted in the leading direction by the characteristic angle, ECA).

The following table shows the operating and polarizing signals used for phase directional control:

PHASE	OPERATING	POLARIZING SIGNAL V _{pol}					
	SIGNAL	ABC PHASE SEQUENCE	ACB PHASE SEQUENCE				
Α	angle of IA	angle of VBC × (1∠ECA)	angle of VCB × (1∠ECA)				
В	angle of IB	angle of VCA × (1∠ECA)	angle of VAC × 1∠ECA)				
С	angle of IC	angle of VAB × (1∠ECA)	angle of VBA × (1∠ECA)				

MODE OF OPERATION:

- When the function is "Disabled", or the operating current is below 5% x CT nominal, the element output is "0".
- When the function is "Enabled", the operating current is above 5% × CT nominal, and the polarizing voltage is above the **PRODUCT SETUP** ⇒ ♣ **DISPLAY PROPERTIES** ⇒ ♣ **VOLTAGE CUT-OFF LEVEL** value, the element output is dependent on the phase angle between the operating and polarizing signals:
 - The element output is logic "0" when the operating current is within polarizing voltage ±90°.
 - For all other angles, the element output is logic "1".
- Once the voltage memory has expired, the phase overcurrent elements under directional control can be set to block or trip on overcurrent as follows:
 - When BLOCK WHEN V MEM EXP is set to "Yes", the directional element will block the operation of any phase overcurrent element under directional control when voltage memory expires.
 - When **BLOCK WHEN V MEM EXP** is set to "No", the directional element allows tripping of phase overcurrent elements under directional control when voltage memory expires.

In all cases, directional blocking will be permitted to resume when the polarizing voltage becomes greater than the 'polarizing voltage threshold'.

SETTINGS:

- PHASE DIR 1 SIGNAL SOURCE: This setting is used to select the source for the operating and polarizing signals. The operating current for the phase directional element is the phase current for the selected current source. The polarizing voltage is the line voltage from the phase VTs, based on the 90° or 'quadrature' connection and shifted in the leading direction by the element characteristic angle (ECA).
- **PHASE DIR 1 ECA:** This setting is used to select the element characteristic angle, i.e. the angle by which the polarizing voltage is shifted in the leading direction to achieve dependable operation. In the design of the UR-series elements, a block is applied to an element by asserting logic 1 at the blocking input. This element should be programmed via the ECA setting so that the output is **logic 1 for current in the non-tripping direction**.
- PHASE DIR 1 POL V THRESHOLD: This setting is used to establish the minimum level of voltage for which the phase angle measurement is reliable. The setting is based on VT accuracy. The default value is "0.700 pu".
- PHASE DIR 1 BLOCK WHEN V MEM EXP: This setting is used to select the required operation upon expiration of
 voltage memory. When set to "Yes", the directional element blocks the operation of any phase overcurrent element
 under directional control, when voltage memory expires; when set to "No", the directional element allows tripping of
 phase overcurrent elements under directional control.

The phase directional element responds to the forward load current. In the case of a following reverse fault, the element needs some time – in the order of 8 ms – to establish a blocking signal. Some protection elements such as instantaneous overcurrent may respond to reverse faults before the blocking signal is established. Therefore, a coordination time of at least 10 ms must be added to all the instantaneous protection elements under the supervision of the phase directional element. If current reversal is of a concern, a longer delay – in the order of 20 ms – may be needed.

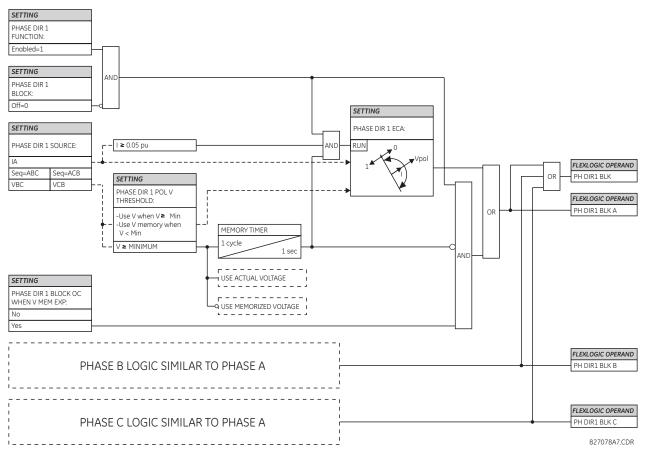
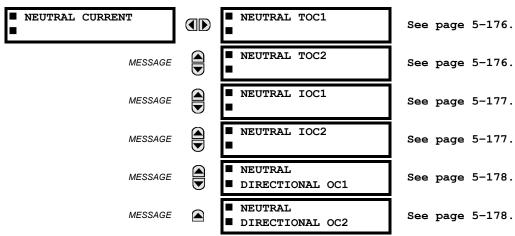
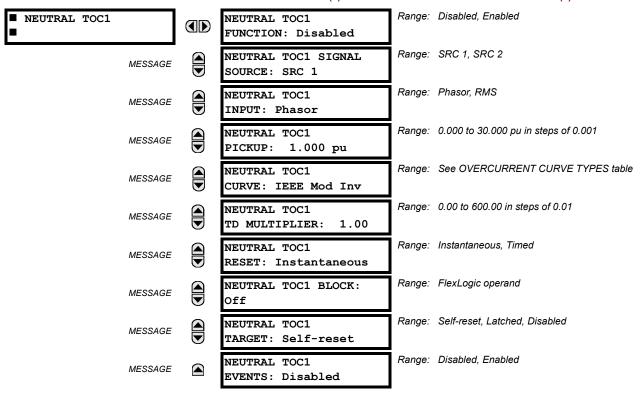



Figure 5-74: PHASE DIRECTIONAL SCHEME LOGIC

5.6.5 NEUTRAL CURRENT

a) MAIN MENU


PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ \$\Partial\$ NEUTRAL CURRENT

The F60 Feeder Protection System has two (2) Neutral Time Overcurrent, two (2) Neutral Instantaneous Overcurrent, and two (2) Neutral Directional Overcurrent elements.

b) NEUTRAL TIME OVERCURRENT (ANSI 51N, IEC PTOC)

PATH: SETTINGS ⇒ ♣ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ♣ NEUTRAL CURRENT ⇒ NEUTRAL TOC1(2)

The neutral time overcurrent element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple definite time element. The neutral current input value is a quantity calculated as 3lo from the phase currents and may be programmed as fundamental phasor magnitude or total waveform RMS magnitude as required by the application.

Two methods of resetting operation are available: "Timed" and "Instantaneous" (see the *Inverse TOC Curve Characteristics* section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

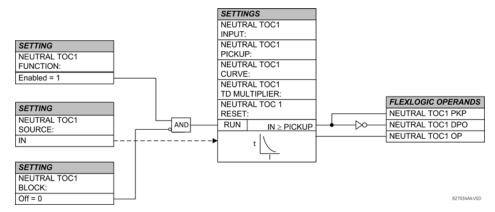
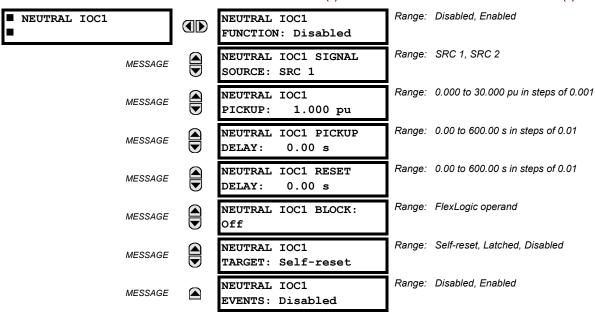



Figure 5-75: NEUTRAL TIME OVERCURRENT 1 SCHEME LOGIC

c) NEUTRAL INSTANTANEOUS OVERCURRENT (ANSI 50N, IEC PIOC)

PATH: SETTINGS $\Rightarrow \mathbb{Q}$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \mathbb{Q}$ NEUTRAL CURRENT $\Rightarrow \mathbb{Q}$ NEUTRAL IOC1(2)

The neutral instantaneous overcurrent element may be used as an instantaneous function with no intentional delay or as a definite time function. The element essentially responds to the magnitude of a neutral current fundamental frequency phasor calculated from the phase currents. A positive-sequence restraint is applied for better performance. A small portion (6.25%) of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity of the element as follows:

$$I_{op} = 3 \times (|I_0| - K \cdot |I_1|)$$
 where $K = 1/16$ (EQ 5.16)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

- System unbalances under heavy load conditions
- Transformation errors of current transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on how test currents are injected into the relay (single-phase injection: $I_{op} = 0.9375 \cdot I_{injected}$; three-phase pure zero-sequence injection: $I_{op} = 3 \times I_{injected}$).

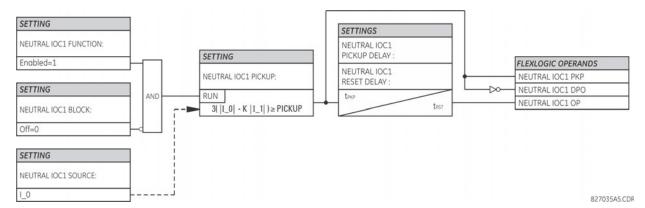
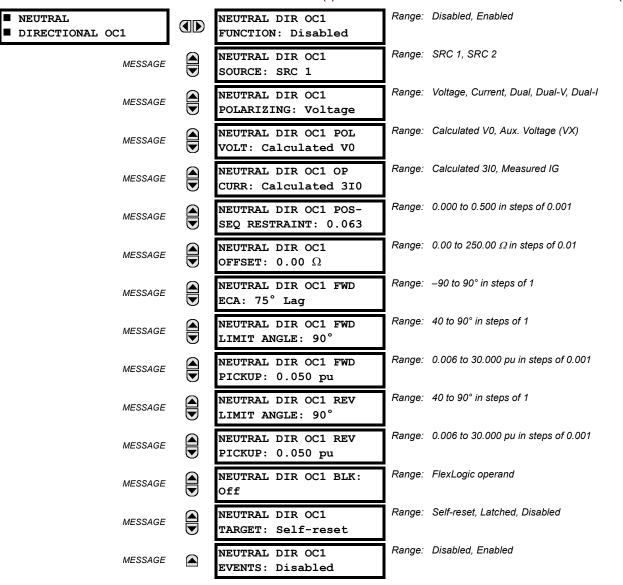



Figure 5-76: NEUTRAL IOC1 SCHEME LOGIC

d) NEUTRAL DIRECTIONAL OVERCURRENT (ANSI 67N, IEC PDEF/PTOC)

PATH: SETTINGS $\Rightarrow \oplus$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) \Rightarrow NEUTRAL CURRENT $\Rightarrow \oplus$ NEUTRAL DIRECTIONAL OC1(2)

The neutral directional overcurrent element provides both forward and reverse fault direction indications the NEUTRAL DIR OC1 FWD and NEUTRAL DIR OC1 REV operands, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as *forward* or *reverse*, respectively (directional unit).

The **overcurrent unit** responds to the magnitude of a fundamental frequency phasor of the either the neutral current calculated from the phase currents or the ground current. There are separate pickup settings for the forward-looking and reverse-looking functions. If set to use the calculated 3I_0, the element applies a *positive-sequence restraint* for better performance: a small user-programmable portion of the positive-sequence current magnitude is subtracted from the zero-sequence current magnitude when forming the operating quantity.

$$I_{op} = 3 \times (|I_0| - K \times |I_1|)$$
 (EQ 5.17)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious zero-sequence currents resulting from:

• System unbalances under heavy load conditions.

- Transformation errors of current transformers (CTs) during double-line and three-phase faults.
- Switch-off transients during double-line and three-phase faults.

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{op} = (1 - K) \times I_{injected}$; three-phase pure zero-sequence injection: $I_{op} = 3 \times I_{injected}$).

The positive-sequence restraint is removed for low currents. If the positive-sequence current is below 0.8 pu, the restraint is removed by changing the constant K to zero. This facilitates better response to high-resistance faults when the unbalance is very small and there is no danger of excessive CT errors as the current is low.

The **directional unit** uses the zero-sequence current (I_0) or ground current (IG) for fault direction discrimination and may be programmed to use either zero-sequence voltage ("Calculated V0" or "Measured VX"), ground current (IG), or both for polarizing. The zero-sequence current (I_0) must be greater than the **PRODUCT SETUP** $\Rightarrow \emptyset$ **DISPLAY PROPERTIES** $\Rightarrow \emptyset$ **CURRENT CUT-OFF LEVEL** setting value and IG must be greater than 0.05 pu to be validated as the operating quantity for directional current. The following tables define the neutral directional overcurrent element.

Table 5-28: QUANTITIES FOR "CALCULATED 310" CONFIGURATION

	DIRE	OVERCURRENT UNIT			
POLARIZING MODE	DIRECTION	COMPARED	PHASORS	OVERCORRENT UNIT	
Voltage	Forward	-V_0 + Z_offset × I_0	I_0 × 1∠ECA		
	Reverse	-V_0 + Z_offset × I_0	-I_0 × 1∠ECA		
Current	Forward	IG	I_0		
	Reverse	IG	-l_0		
Dual, Dual-V, Dual-I	Forward	-V_0 + Z_offset × I_0	I_0 × 1∠ECA	$I_{op} = 3 \times (I_0 - K \times I_1) \text{ if } I_1 > 0.8 \text{ pu}$	
		or		$I_{op} = 3 \times (I_0)$ if $ I_1 \le 0.8$ pu	
		IG	1_0		
		-V_0 + Z_offset × I_0	-I_0 × 1∠ECA		
	Reverse	or			
		IG	-l_0		

Table 5-29: QUANTITIES FOR "MEASURED IG" CONFIGURATION

DIRECTIONAL UNIT				OVERCURRENT UNIT	
POLARIZING MODE	DIRECTION	COMPARED PHASORS		OVERCORRENT ONT	
Voltage	Forward	-V_0 + Z_offset × IG/3	IG × 1∠ECA	I _{op} = IG	
voltage	Reverse	-V_0 + Z_offset × IG/3	–IG × 1∠ECA	1 10p - 1101	

where: $V_0 = \frac{1}{3}(VAG + VBG + VCG) = zero sequence voltage,$

$$I_0 = \frac{1}{3}IN = \frac{1}{3}(IA + IB + IC) = \text{zero sequence current}$$
,

ECA = element characteristic angle and IG = ground current

When **NEUTRAL DIR OC1 POL VOLT** is set to "Measured VX", one-third of this voltage is used in place of V_0 . The following figure explains the usage of the voltage polarized directional unit of the element.

The figure below shows the voltage-polarized phase angle comparator characteristics for a phase A to ground fault, with:

- ECA = 90° (element characteristic angle = centerline of operating characteristic)
- FWD LA = 80° (forward limit angle = the ± angular limit with the ECA for operation)
- REV LA = 80° (reverse limit angle = the ± angular limit with the ECA for operation)

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication is delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals results in faster directional discrimination bringing more security to the element operation.

5.6 GROUPED ELEMENTS 5 SETTINGS

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore, should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-looking function and should be used for the blocking direction. This allows for better protection coordination.

The above bias should be taken into account when using the neutral directional overcurrent element to directionalize other protection elements.

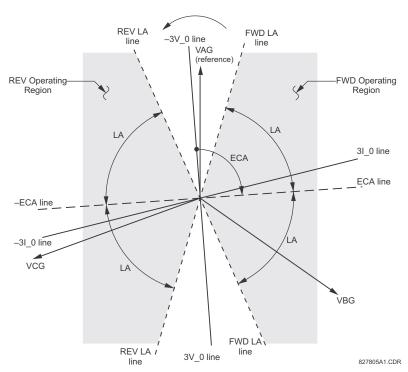


Figure 5-77: NEUTRAL DIRECTIONAL VOLTAGE-POLARIZED CHARACTERISTICS

- NEUTRAL DIR OC1 POLARIZING: This setting selects the polarizing mode for the directional unit.
 - If "Voltage" polarizing is selected, the element uses the zero-sequence voltage angle for polarization. The user
 can use either the zero-sequence voltage V_0 calculated from the phase voltages, or the zero-sequence voltage
 supplied externally as the auxiliary voltage V_X, both from the NEUTRAL DIR OC1 SOURCE.

The calculated V_0 can be used as polarizing voltage only if the voltage transformers are connected in Wye. The auxiliary voltage can be used as the polarizing voltage provided **SYSTEM SETUP** \Rightarrow **AC INPUTS** \Rightarrow **VOLTAGE BANK** \Rightarrow **AUXILIARY VT CONNECTION** is set to "Vn" and the auxiliary voltage is connected to a zero-sequence voltage source (such as broken delta connected secondary of VTs).

The zero-sequence (V_0) or auxiliary voltage (V_X), accordingly, must be greater than the **VOLTAGE CUTOFF LEVEL** setting specified in the **PRODUCT SETUP** $\Rightarrow \oplus$ **DISPLAY PROPERTIES** menu to be validated for use as a polarizing signal. If the polarizing signal is invalid, neither forward nor reverse indication is given.

— If "Current" polarizing is selected, the element uses the ground current angle connected externally and configured under NEUTRAL OC1 SOURCE for polarization. The ground CT must be connected between the ground and neutral point of an adequate local source of ground current. The ground current must be greater than 0.05 pu to be validated as a polarizing signal. If the polarizing signal is not valid, neither forward nor reverse indication is given. In addition, the zero-sequence current (I_0) must be greater than the PRODUCT SETUP ⇒ DISPLAY PROPERTIES ⇒ CURRENT CUT-OFF LEVEL setting value.

For a choice of current polarizing, it is recommended that the polarizing signal be analyzed to ensure that a known direction is maintained irrespective of the fault location. For example, if using an autotransformer neutral current as a polarizing source, it should be ensured that a reversal of the ground current does not occur for a high-side fault. The low-side system impedance should be assumed minimal when checking for this condition. A similar situation arises for a wye/delta/wye transformer, where current in one transformer winding neutral may reverse when faults on both sides of the transformer are considered.

If "Dual" polarizing is selected, the element performs both directional comparisons as described. A given direction
is confirmed if either voltage or current comparators indicate so. If a conflicting (simultaneous forward and
reverse) indication occurs, the forward direction overrides the reverse direction.

- If "Dual-V" polarizing is selected, "Voltage" polarizing is performed and "Current" polarizing is ignored if the voltage
 polarizing signal is valid; otherwise "Current" polarizing is performed if the current polarizing signal is valid. If neither of them is valid, neither forward nor reverse indication is given.
- If "Dual-I" polarizing is selected, "Current" polarizing is performed and "Voltage" polarizing is ignored if the current polarizing signal is valid; otherwise "Voltage" polarizing is performed if the voltage polarizing signal is valid. If neither of them is valid, neither forward nor reverse indication is given.
- NEUTRAL DIR OC1 POL VOLT: Selects the polarizing voltage used by the directional unit when "Voltage," "Dual,"
 "Dual-V," or "Dual-I" polarizing mode is set. The polarizing voltage can be programmed to be either the zero-sequence
 voltage calculated from the phase voltages ("Calculated V0") or supplied externally as an auxiliary voltage ("Measured VX").
- NEUTRAL DIR OC1 OP CURR: This setting indicates whether the 3I_0 current calculated from the phase currents, or the ground current shall be used by this protection. This setting acts as a switch between the neutral and ground modes of operation (67N and 67G). If set to "Calculated 3I0" the element uses the phase currents and applies the positive-sequence restraint; if set to "Measured IG" the element uses ground current supplied to the ground CT of the CT bank configured as NEUTRAL DIR OC1 SOURCE. If this setting is "Measured IG", then the NEUTRAL DIR OC1 POLARIZING setting must be "Voltage", as it is not possible to use the ground current as an operating and polarizing signal simultaneously. IG current has to be above 0.05 ps to be used as operate quantity.
- NEUTRAL DIR OC1 POS-SEQ RESTRAINT: This setting controls the amount of the positive-sequence restraint. Set
 to 0.063 for backward compatibility with firmware revision 3.40 and older. Set to zero to remove the restraint. Set
 higher if large system unbalances or poor CT performance are expected.
- NEUTRAL DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines. In regular applications, the offset impedance ensures proper operation even if the zero-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the zero-sequence impedance of the protected circuit. Practically, it shall be several times smaller. The offset impedance shall be entered in secondary ohms.
- **NEUTRAL DIR OC1 FWD ECA**: This setting defines the characteristic angle (ECA) for the forward direction in the "Voltage" polarizing mode. The "Current" polarizing mode uses a fixed ECA of 0°. The ECA in the reverse direction is the angle set for the forward direction shifted by 180°.
- NEUTRAL DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit
 angle for the forward direction.
- **NEUTRAL DIR OC1 FWD PICKUP:** This setting defines the pickup level for the overcurrent unit of the element in the forward direction. When selecting this setting it must be kept in mind that the design uses a 'positive-sequence restraint' technique for the "Calculated 310" mode of operation.
- NEUTRAL DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit
 angle for the reverse direction.
- **NEUTRAL DIR OC1 REV PICKUP:** This setting defines the pickup level for the overcurrent unit of the element in the reverse direction. When selecting this setting it must be kept in mind that the design uses a *positive-sequence restraint* technique for the "Calculated 310" mode of operation.

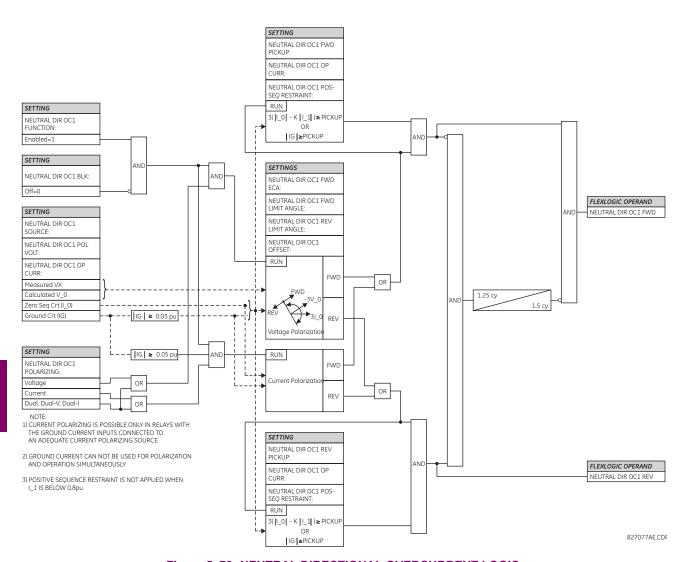


Figure 5–78: NEUTRAL DIRECTIONAL OVERCURRENT LOGIC

5.6.6 WATTMETRIC GROUND FAULT

a) WATTMETRIC ZERO-SEQUENCE DIRECTIONAL (ANSI 32N, IEC PSDE)

PATH: SETTINGS ⇒ \$\partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ WATTMETRIC... ⇒ \$\partial\$ WATTMETRIC GROUND FAULT 1(2)

■ WATTMETRIC ■ GROUND FAULT 1	WATTMETRIC GND FLT 1 FUNCTION: Disabled	Range: Disabled, Enabled
MESSAGE	WATTMETRIC GND FLT 1 SOURCE: SRC 1	Range: SRC 1, SRC 2
MESSAGE	WATTMETRIC GND FLT 1 VOLT: Calculated VN	Range: Calculated VN, Measured VX
MESSAGE	WATTMETRIC GND FLT 1 OV PKP: 0.20 pu	Range: 0.02 to 3.00 pu in steps of 0.01
MESSAGE	WATTMETRIC GND FLT 1 CURR: Calculated IN	Range: Calculated IN, Measured IG
MESSAGE	WATTMETRIC GND FLT 1 OC PKP: 0.060 pu	Range: 0.002 to 30.000 pu in steps of 0.001
MESSAGE	WATTMETRIC GND FLT 1 OC PKP DEL: 0.20 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	WATTMETRIC GND FLT 1 PWR PKP: 0.100 pu	Range: 0.001 to 1.200 pu in steps of 0.001
MESSAGE	WATTMETRIC GND FLT 1 REF PWR: 0.500 pu	Range: 0.001 to 1.200 pu in steps of 0.001
MESSAGE	WATTMETRIC GND FLT 1 ECA: 0° Lag	Range: 0 to 360° Lag in steps of 1
MESSAGE	WATTMETRIC GND FLT 1 PWR PKP DEL: 0.20 s	Range: 0.00 to 600.00 s in steps of 0.01
MESSAGE	WATTMETRIC GND FLT 1 CURVE: Definite Time	Range: Definite Time, Inverse, FlexCurves A through D
MESSAGE	WATTMETRIC GND FLT 1 MULTIPLIER: 1.00 s	Range: 0.01 to 2.00 s in steps of 0.01
MESSAGE	WATT GND FLT 1 BLK: Off	Range: FlexLogic operand
MESSAGE	WATTMETRIC GND FLT 1 TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSAGE	WATTMETRIC GND FLT 1 EVENTS: Disabled	Range: Disabled, Enabled

The wattmetric zero-sequence directional element responds to power derived from zero-sequence voltage and current in a direction specified by the element characteristic angle. The angle can be set within all four quadrants and the power can be active or reactive. Therefore, the element may be used to sense either forward or reverse ground faults in either inductive, capacitive or resistive networks. The inverse time characteristic allows time coordination of elements across the network.

Typical applications include ground fault protection in solidly grounded transmission networks, grounded/ungrounded/resistor-grounded/resonant-grounded distribution networks, or for directionalizing other non-directional ground elements.

WATTMETRIC GND FLT 1 VOLT: The element uses neutral voltage (that is, three times the zero-sequence voltage).
This setting allows selecting between the internally calculated neutral voltage, or externally supplied voltage (broken delta VT connected to the auxiliary channel bank of the relay). When the latter selection is made, the auxiliary channel must be identified by the user as a neutral voltage under the VT bank settings. This element operates when the auxiliary voltage is configured as neutral.

- WATTMETRIC GND FLT 1 OV PKP: This setting specifies the minimum zero sequence voltage supervising the directional power measurement. This threshold should be higher than possible unbalance during normal operation of the system. Typically, this setting would be selected at 0.1 to 0.2 pu for the ungrounded or resonant grounded systems, and at 0.05 to 0.1 pu for solidly or resistor-grounded systems. When using externally supplied voltage via the auxiliary voltage channel, 1 pu is the nominal voltage of this channel as per VT bank settings. When using internally calculated neutral voltage, 1 pu is the nominal phase to ground voltage as per the VT bank settings.
- WATTMETRIC GND FLT 1 CURR: The element responds to the neutral current (that is, three times zero-sequence
 current), either calculated internally from the phase currents or supplied externally via the ground CT input from more
 accurate sources such as the core balanced CT. This setting allows selecting the source of the operating current.
- WATTMETRIC GND FLT 1 OC PKP: This setting specifies the current supervision level for the measurement of the zero-sequence power.
- WATTMETRIC GND FLT 1 OC PKP DEL: This setting specifies delay for the overcurrent portion of this element. The
 delay applies to the WATTMETRIC 1 PKP operand driven from the overcurrent condition.
- WATTMETRIC GND FLT 1 PWR PKP: This setting specifies the operating point of the element. A value of 1 pu is a
 product of the 1 pu voltage as specified for the overvoltage condition of this element, and 1 pu current as specified for
 the overcurrent condition of this element.
- **WATTMETRIC GND FLT 1 REF PWR**: This setting is used to calculate the inverse time characteristic delay (defined by S_{ref} in the following equations). A value of 1 pu represents the product of a 1 pu voltage (as specified in the overvoltage condition for this element) and a 1 pu current (as specified in the overcurrent condition for this element.
- WATTMETRIC GND FLT 1 ECA: This setting adjusts the maximum torque angle of the element. The operating power
 is calculated as:

$$S_{op} = Re(V_n(I_n \times 1 \angle ECA)^*)$$
 (EQ 5.18)

where * indicates complex conjugate. By varying the element characteristic angle (ECA), the element can be made to respond to forward or reverse direction in inductive, resistive, or capacitive networks as shown in the *Wattmetric characteristic angle response* diagram.

- WATTMETRIC GND FLT 1 PWR PKP DEL: This setting defines a definite time delay before the inverse time characteristic is activated. If the curve selection is set as "Definite Time", the element would operate after this security time delay. If the curve selection is "Inverse" or one of the FlexCurves, the element uses both the definite and inverse time timers simultaneously. The definite time timer, specified by this setting, is used and when expires it releases the inverse time timer for operation (torque control).
- WATTMETRIC GND FLT 1 CURVE: This setting allows choosing one of three methods to delay operate signal once all
 conditions are met to discriminate fault direction.

The "Definite Time" selection allows for a fixed time delay defined by the WATTMETRIC GND FLT 1 PWR PKP DEL setting.

The "Inverse" selection allows for inverse time characteristics delay defined by the following formula:

$$t = m \times \frac{S_{ref}}{S_{op}}$$
 (EQ 5.19)

where m is a multiplier defined by the multiplier setting, S_{ref} is the multiplier setting, and S_{op} is the operating power at the time. This timer starts after the definite time timer expires.

The four FlexCurves allow for custom user-programmable time characteristics. When working with FlexCurves, the element uses the operate to pickup ratio, and the multiplier setting is not applied:

$$t = \text{FlexCurve}\left(\frac{S_{op}}{S_{ref}}\right)$$
 (EQ 5.20)

Again, the FlexCurve timer starts after the definite time timer expires.

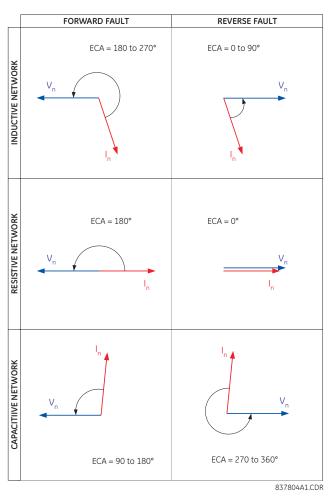


Figure 5-79: WATTMETRIC CHARACTERISTIC ANGLE RESPONSE

• WATTMETRIC GND FLT 1 MULTIPLIER: This setting is applicable if WATTMETRIC GND FLT 1 CURVE above is selected to Inverse and defines the multiplier factor for the inverse time delay.

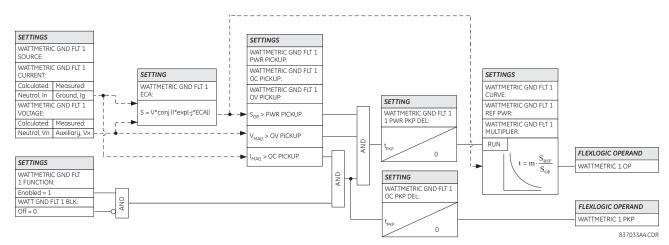
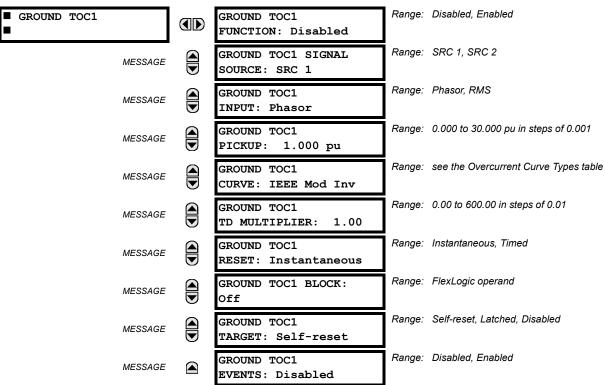



Figure 5-80: WATTMETRIC ZERO-SEQUENCE DIRECTIONAL LOGIC

5.6.7 GROUND CURRENT

a) GROUND TIME OVERCURRENT (ANSI 51G, IEC PTOC)

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ GROUND CURRENT ⇒ GROUND TOC1(2)

This element can provide a desired time-delay operating characteristic versus the applied current or be used as a simple definite time element. The ground current input value is the quantity measured by the ground input CT and is the fundamental phasor or RMS magnitude. Two methods of resetting operation are available: "Timed" and "Instantaneous" (see the *Inverse TOC Curve Characteristics* section for details). When the element is blocked, the time accumulator will reset according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator will be cleared immediately.

These elements measure the current that is connected to the ground channel of a CT/VT module. The conversion range of a standard channel is from 0.02 to 46 times the CT rating.

This channel may be also equipped with a sensitive input. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.

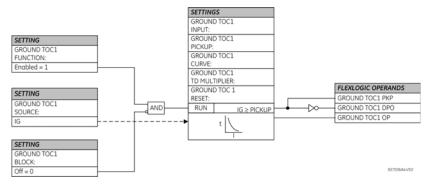
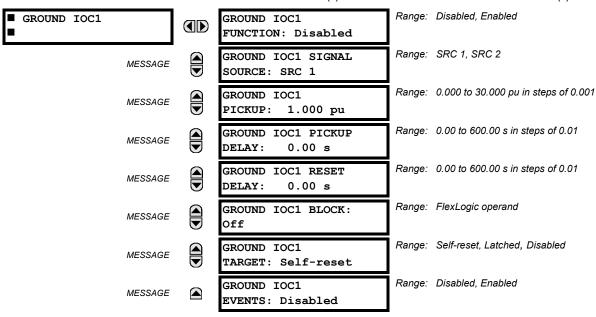



Figure 5-81: GROUND TOC1 SCHEME LOGIC

b) GROUND INSTANTANEOUS OVERCURRENT (ANSI 50G, IEC PIOC)

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ GROUND CURRENT ⇒ ⊕ GROUND IOC1(2)

The ground instantaneous overcurrent element may be used as an instantaneous element with no intentional delay or as a definite time element. The ground current input is the quantity measured by the ground input CT and is the fundamental phasor magnitude.

These elements measure the current that is connected to the ground channel of a CT/VT module. The conversion range of a standard channel is from 0.02 to 46 times the CT rating.

This channel may be equipped with a standard or sensitive input. The conversion range of a sensitive channel is from 0.002 to 4.6 times the CT rating.

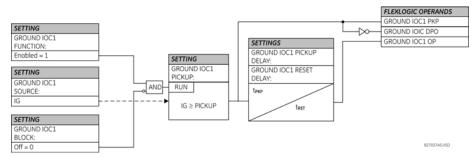
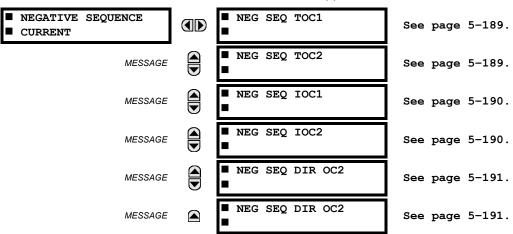
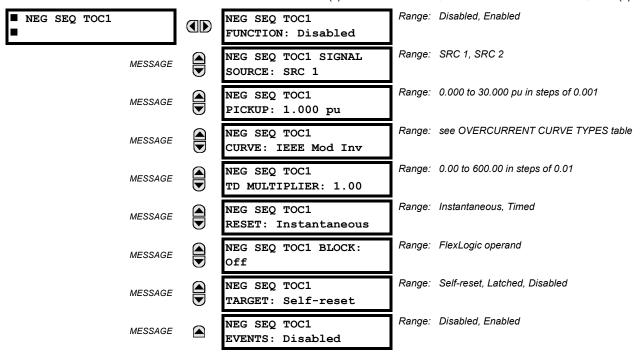



Figure 5-82: GROUND IOC1 SCHEME LOGIC

a) MAIN MENU


PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ \$\Partial\$ NEGATIVE SEQUENCE CURRENT

The F60 relay provides two (2) negative-sequence time overcurrent elements, two (2) negative-sequence instantaneous overcurrent elements, and two (2) negative-sequence directional overcurrent elements. For additional information on the negative sequence time overcurrent curves, refer to the *Inverse Time Overcurrent Curves* section earlier.

5

b) NEGATIVE SEQUENCE TIME OVERCURRENT (ANSI 51Q, IEC PTOC)

The negative-sequence time overcurrent element may be used to determine and clear unbalance in the system. The input for calculating negative-sequence current is the fundamental phasor value.

Two methods of resetting operation are available; "Timed" and "Instantaneous" (refer to the *Inverse Time Overcurrent Characteristics* sub-section for details on curve setup, trip times and reset operation). When the element is blocked, the time accumulator resets according to the reset characteristic. For example, if the element reset characteristic is set to "Instantaneous" and the element is blocked, the time accumulator is cleared immediately.

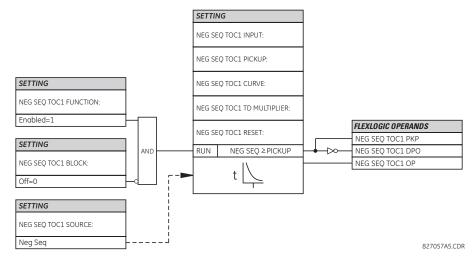
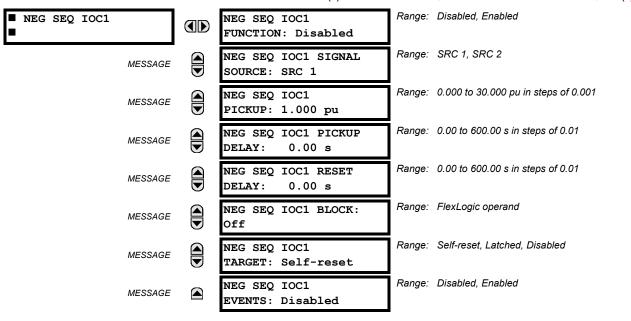



Figure 5-83: NEGATIVE SEQUENCE TOC1 SCHEME LOGIC

c) NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT (ANSI 50Q, IEC PIOC)

PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ \$\Partial\$ NEGATIVE SEQUENCE CURRENT ⇒ \$\Partial\$ NEG SEQ OC1(2)

The negative-sequence instantaneous overcurrent element may be used as an instantaneous function with no intentional delay or as a definite time function. The element responds to the negative-sequence current fundamental frequency phasor magnitude (calculated from the phase currents) and applies a positive-sequence restraint for better performance: a small portion (12.5%) of the positive-sequence current magnitude is subtracted from the negative-sequence current magnitude when forming the operating quantity:

$$I_{op} = |I_2| - K \cdot |I_1|$$
 where $K = 1/8$ (EQ 5.21)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative-sequence currents resulting from:

- system unbalances under heavy load conditions
- transformation errors of current transformers (CTs) during three-phase faults
- · fault inception and switch-off transients during three-phase faults

The positive-sequence restraint must be considered when testing for pickup accuracy and response time (multiple of pickup). The operating quantity depends on the way the test currents are injected into the relay (single-phase injection: $I_{op} = 0.2917 \cdot I_{injected}$; three-phase injection, opposite rotation: $I_{op} = I_{injected}$).

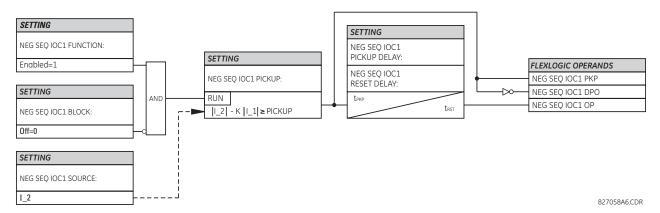


Figure 5–84: NEGATIVE SEQUENCE IOC1 SCHEME LOGIC

d) NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT (ANSI 67Q, IEC PDEF/PTOC)

PATH: SETTINGS ⇒ ♣ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ♣ NEGATIVE SEQUENCE CURRENT ⇒ ♣ NEG SEQ DIR OC1(2)

■ NEG SEQ DIR OC1	NEG SEQ DIR OC1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	NEG SEQ DIR OC1 SOURCE: SRC 1	Range:	SRC 1, SRC 2
MESSAGE	NEG SEQ DIR OC1 OFFSET: 0.00 Ω	Range:	0.00 to 250.00 ohms in steps of 0.01
MESSAGE	NEG SEQ DIR OC1 TYPE: Neg Sequence	Range:	Neg Sequence, Zero Sequence
MESSAGE	NEG SEQ DIR OC1 POS- SEQ RESTRAINT: 0.063	Range:	0.000 to 0.500 in steps of 0.001
MESSAGE	NEG SEQ DIR OC1 FWD ECA: 75° Lag	Range:	0 to 90° Lag in steps of 1
MESSAGE	NEG SEQ DIR OC1 FWD LIMIT ANGLE: 90°	Range:	40 to 90° in steps of 1
MESSAGE	NEG SEQ DIR OC1 FWD PICKUP: 0.050 pu	Range:	0.015 to 30.000 pu in steps of 0.001
MESSAGE	NEG SEQ DIR OC1 REV LIMIT ANGLE: 90°	Range:	40 to 90° in steps of 1
MESSAGE	NEG SEQ DIR OC1 REV PICKUP: 0.050 pu	Range:	0.015 to 30.000 pu in steps of 0.001
MESSAGE	NEG SEQ DIR OC1 BLK: Off	Range:	FlexLogic operand
MESSAGE	NEG SEQ DIR OC1 TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	NEG SEQ DIR OC1 EVENTS: Disabled	Range:	Disabled, Enabled

There are two negative-sequence directional overcurrent protection elements available. The element provides both forward and reverse fault direction indications through its output operands NEG SEQ DIR OC1 FWD and NEG SEQ DIR OC1 REV, respectively. The output operand is asserted if the magnitude of the operating current is above a pickup level (overcurrent unit) and the fault direction is seen as *forward* or *reverse*, respectively (directional unit).

The overcurrent unit of the element essentially responds to the magnitude of a fundamental frequency phasor of either the negative-sequence or neutral current as per user selection.

A positive-sequence restraint is applied for better performance: a small user-programmable portion of the positive-sequence current magnitude is subtracted from the negative or zero-sequence current magnitude, respectively, when forming the element operating quantity.

$$I_{op} = |I_2| - K \times |I_1|$$
 or $I_{op} = 3 \times (|I_0| - K \times |I_1|)$ (EQ 5.22)

The positive-sequence restraint allows for more sensitive settings by counterbalancing spurious negative-sequence and zero-sequence currents resulting from:

- System unbalances under heavy load conditions.
- Transformation errors of current transformers (CTs).
- Fault inception and switch-off transients.

The positive-sequence restraint must be considered when testing for pick-up accuracy and response time (multiple of pickup). The positive-sequence restraint is removed for low currents. If the positive-sequence current is less than 0.8 pu, then the restraint is removed by changing the constant K to zero. This results in better response to high-resistance faults when the unbalance is very small and there is no danger of excessive CT errors, since the current is low.

The operating quantity depends on the way the test currents are injected into the F60. For single phase injection:

- $I_{op} = \frac{1}{3} \times (1 K) \times I_{injected}$ for I_2 mode.
- $I_{op} = (1 K) \times I_{injected}$ for I_0 mode if I_1 > 0.8 pu.

The directional unit uses the negative-sequence current (I 2) and negative-sequence voltage (V 2).

The following tables define the negative-sequence directional overcurrent element.

Table 5-30: NEGATIVE-SEQUENCE DIRECTIONAL OVERCURRENT UNIT

MODE	OPERATING CURRENT		
Negative-sequence	$I_{op} = I_2 - K \times I_1 $		
Zero-sequence	$I_{op} = 3 \times (I_0 - K \times I_1) \text{ if } I_1 > 0.8 \text{ pu}$ $I_{op} = 3 \times I_0 \text{ if } I_1 \le 0.8 \text{ pu}$		

Table 5-31: NEGATIVE-SEQUENCE DIRECTIONAL UNIT

DIRECTION	COMPARED PHASORS		
Forward	-V_2 + Z_offset × I_2	I_2 × 1∠ECA	
Reverse	-V_2 + Z_offset × I_2	–(I_2 × 1∠ECA)	
Forward	-V_2 + Z_offset × I_2	I_2 × 1∠ECA	
Reverse	-V_2 + Z_offset × I_2	–(I_2 × 1∠ECA)	

The negative-sequence voltage must be greater than the **VOLTAGE CUTOFF LEVEL** setting specified in the **PRODUCT SETUP** $\Rightarrow \emptyset$ **DISPLAY PROPERTIES** menu to be validated for use as a polarizing signal. If the polarizing signal is not validated neither forward nor reverse indication is given. The following figure explains the usage of the voltage polarized directional unit of the element.

The following figure shows the phase angle comparator characteristics for a phase A to ground fault, with settings of:

ECA = 75° (element characteristic angle = centerline of operating characteristic) FWD LA = 80° (forward limit angle = \pm the angular limit with the ECA for operation) REV LA = 80° (reverse limit angle = \pm the angular limit with the ECA for operation) 5 SETTINGS 5.6 GROUPED ELEMENTS

The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emulate an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimination bringing more security to the element operation.

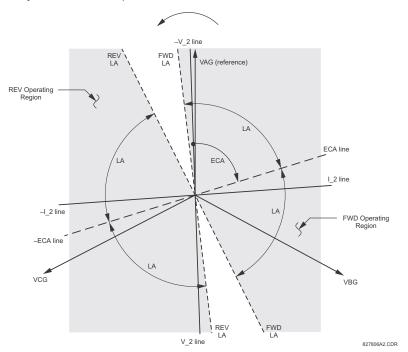


Figure 5-85: NEGATIVE-SEQUENCE DIRECTIONAL CHARACTERISTIC

The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-looking function and should be used for the blocking direction. This allows for better protection coordination. Take this bias into account when using the negative-sequence directional overcurrent element to directionalize other protection elements. The negative-sequence directional pickup must be greater than the **PRODUCT SETUP** $\Rightarrow \emptyset$ **DISPLAY PROPERTIES** $\Rightarrow \emptyset$ **CURRENT CUT-OFF LEVEL** setting value.

- NEG SEQ DIR OC1 OFFSET: This setting specifies the offset impedance used by this protection. The primary application for the offset impedance is to guarantee correct identification of fault direction on series compensated lines (see the Application of settings chapter for information on how to calculate this setting). In regular applications, the offset impedance ensures proper operation even if the negative-sequence voltage at the relaying point is very small. If this is the intent, the offset impedance shall not be larger than the negative-sequence impedance of the protected circuit. Practically, it is several times smaller. The offset impedance is entered in secondary ohms. See the Theory of operation chapter for additional details.
- NEG SEQ DIR OC1 TYPE: This setting selects the operating mode for the overcurrent unit of the element. The
 choices are "Neg Sequence" and "Zero Sequence". In some applications it is advantageous to use a directional negative-sequence overcurrent function instead of a directional zero-sequence overcurrent function as inter-circuit mutual
 effects are minimized.
- **NEG SEQ DIR OC1 POS-SEQ RESTRAINT**: This setting controls the positive-sequence restraint. Set to 0.063 (in "Zero Sequence" mode) or 0.125 (in "Neg Sequence" mode) for backward compatibility with revisions 3.40 and earlier. Set to zero to remove the restraint. Set higher if large system unbalances or poor CT performance are expected.
- **NEG SEQ DIR OC1 FWD ECA:** This setting select the element characteristic angle (ECA) for the forward direction. The element characteristic angle in the reverse direction is the angle set for the forward direction shifted by 180°.
- NEG SEQ DIR OC1 FWD LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit
 angle for the forward direction.

5.6 GROUPED ELEMENTS 5 SETTINGS

• **NEG SEQ DIR OC1 FWD PICKUP:** This setting defines the pickup level for the overcurrent unit in the forward direction. Upon **NEG SEQ DIR OC1 TYPE** selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a *positive-sequence restraint* technique.

- NEG SEQ DIR OC1 REV LIMIT ANGLE: This setting defines a symmetrical (in both directions from the ECA) limit
 angle for the reverse direction.
- **NEG SEQ DIR OC1 REV PICKUP:** This setting defines the pickup level for the overcurrent unit in the reverse direction. Upon **NEG SEQ DIR OC1 TYPE** selection, this pickup threshold applies to zero- or negative-sequence current. When selecting this setting it must be kept in mind that the design uses a *positive-sequence restraint* technique.

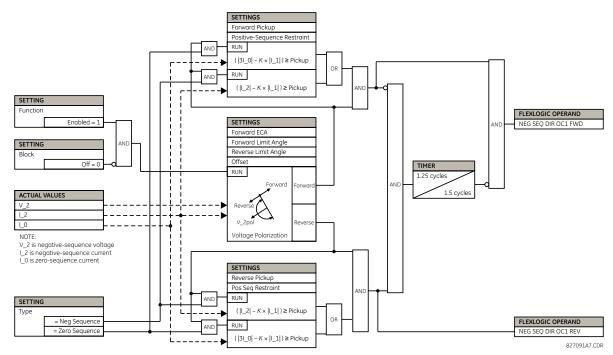
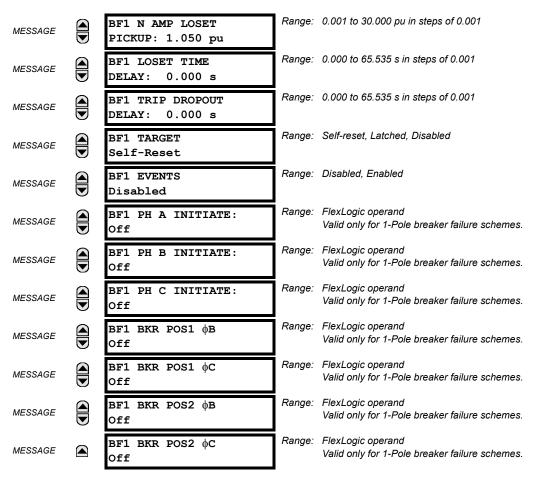



Figure 5-86: NEGATIVE SEQUENCE DIRECTIONAL OC1 SCHEME LOGIC

5.6.9 BREAKER FAILURE

PATH: SETTINGS ⇒ ♣ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ♣ BREAKER FAILURE ⇒ BREAKER FAILURE 1(2)

■ BREAKER FAILURE 1	BF1 FUNCTION: Disabled		Disabled, Enabled
MESSAGE	BF1 MODE: 3-Pole	Range:	3-Pole, 1-Pole
MESSAGE	BF1 SOURCE: SRC 1	Range:	SRC 1, SRC 2
MESSAGE	BF1 USE AMP SUPV: Yes	Range:	Yes, No
MESSAGE	BF1 USE SEAL-IN: Yes	Range:	Yes, No
MESSAGE	BF1 3-POLE INITIATE: Off	Range:	FlexLogic operand
MESSAGE	BF1 BLOCK: Off	Range:	FlexLogic operand
MESSAGE	BF1 PH AMP SUPV PICKUP: 1.050 pu		0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 N AMP SUPV PICKUP: 1.050 pu		0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 USE TIMER 1: Yes		Yes, No
MESSAGE	BF1 TIMER 1 PICKUP DELAY: 0.000 s		0.000 to 65.535 s in steps of 0.001
MESSAGE	BF1 USE TIMER 2: Yes		Yes, No
MESSAGE	BF1 TIMER 2 PICKUP DELAY: 0.000 s		0.000 to 65.535 s in steps of 0.001
MESSAGE	BF1 USE TIMER 3: Yes		Yes, No
MESSAGE	BF1 TIMER 3 PICKUP DELAY: 0.000 s		0.000 to 65.535 s in steps of 0.001
MESSAGE	BF1 BKR POS1 ϕ A/3P: Off		FlexLogic operand
MESSAGE	BF1 BKR POS2 \$\phi A/3P: Off		FlexLogic operand FlexLogic operand
MESSAGE	BF1 BREAKER TEST ON: Off		0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 PH AMP HISET PICKUP: 1.050 pu		0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 N AMP HISET PICKUP: 1.050 pu		0.001 to 30.000 pu in steps of 0.001
MESSAGE	BF1 PH AMP LOSET PICKUP: 1.050 pu	nange.	0.00 i to 00.000 pu iii steps oi 0.00 i

In general, a breaker failure scheme determines that a breaker signaled to trip has not cleared a fault within a definite time, so further tripping action must be performed. Tripping from the breaker failure scheme should trip all breakers, both local and remote, that can supply current to the faulted zone. Usually operation of a breaker failure element will cause clearing of a larger section of the power system than the initial trip. Because breaker failure can result in tripping a large number of breakers and this affects system safety and stability, a very high level of security is required.

Two schemes are provided: one for three-pole tripping only (identified by the name "3BF") and one for three pole plus single-pole operation (identified by the name "1BF"). The philosophy used in these schemes is identical. The operation of a breaker failure element includes three stages: initiation, determination of a breaker failure condition, and output.

INITIATION STAGE:

A FlexLogic operand representing the protection trip signal initially sent to the breaker must be selected to initiate the scheme. The initiating signal should be sealed-in if primary fault detection can reset before the breaker failure timers have finished timing. The seal-in is supervised by current level, so it is reset when the fault is cleared. If desired, an incomplete sequence seal-in reset can be implemented by using the initiating operand to also initiate a FlexLogic timer, set longer than any breaker failure timer, whose output operand is selected to block the breaker failure scheme.

Schemes can be initiated either directly or with current level supervision. It is particularly important in any application to decide if a current-supervised initiate is to be used. The use of a current-supervised initiate results in the breaker failure element not being initiated for a breaker that has very little or no current flowing through it, which may be the case for transformer faults. For those situations where it is required to maintain breaker fail coverage for fault levels below the **BF1 PH AMP SUPV PICKUP** or the **BF1 N AMP SUPV PICKUP** setting, a current supervised initiate should *not* be used. This feature should be utilized for those situations where coordinating margins may be reduced when high speed reclosing is used. Thus, if this choice is made, fault levels must always be above the supervision pickup levels for dependable operation of the breaker fail scheme. This can also occur in breaker-and-a-half or ring bus configurations where the first breaker closes into a fault; the protection trips and attempts to initiate breaker failure for the second breaker, which is in the process of closing, but does not yet have current flowing through it.

5 SETTINGS 5.6 GROUPED ELEMENTS

When the scheme is initiated, it immediately sends a trip signal to the breaker initially signaled to trip (this feature is usually described as re-trip). This reduces the possibility of widespread tripping that results from a declaration of a failed breaker.

DETERMINATION OF A BREAKER FAILURE CONDITION:

The schemes determine a breaker failure condition via three *paths*. Each of these paths is equipped with a time delay, after which a failed breaker is declared and trip signals are sent to all breakers required to clear the zone. The delayed paths are associated with breaker failure timers 1, 2, and 3, which are intended to have delays increasing with increasing timer numbers. These delayed paths are individually enabled to allow for maximum flexibility.

Timer 1 logic (early path) is supervised by a fast-operating breaker auxiliary contact. If the breaker is still closed (as indicated by the auxiliary contact) and fault current is detected after the delay interval, an output is issued. Operation of the breaker auxiliary switch indicates that the breaker has mechanically operated. The continued presence of current indicates that the breaker has failed to interrupt the circuit.

Timer 2 logic (main path) is not supervised by a breaker auxiliary contact. If fault current is detected after the delay interval, an output is issued. This path is intended to detect a breaker that opens mechanically but fails to interrupt fault current; the logic therefore does not use a breaker auxiliary contact.

The timer 1 and 2 paths provide two levels of current supervision, high-set and low-set, that allow the supervision level to change from a current which flows before a breaker inserts an opening resistor into the faulted circuit to a lower level after resistor insertion. The high-set detector is enabled after timeout of timer 1 or 2, along with a timer that will enable the low-set detector after its delay interval. The delay interval between high-set and low-set is the expected breaker opening time. Both current detectors provide a fast operating time for currents at small multiples of the pickup value. The overcurrent detectors are required to operate after the breaker failure delay interval to eliminate the need for very fast resetting overcurrent detectors.

Timer 3 logic (slow path) is supervised by a breaker auxiliary contact and a control switch contact used to indicate that the breaker is in or out-of-service, disabling this path when the breaker is out-of-service for maintenance. There is no current level check in this logic as it is intended to detect low magnitude faults and it is therefore the slowest to operate.

OUTPUT:

The outputs from the schemes are:

- FlexLogic operands that report on the operation of portions of the scheme
- · FlexLogic operand used to re-trip the protected breaker
- FlexLogic operands that initiate tripping required to clear the faulted zone. The trip output can be sealed-in for an adjustable period.
- Target message indicating a failed breaker has been declared
- Illumination of the faceplate Trip LED (and the Phase A, B or C LED, if applicable)

MAIN PATH SEQUENCE:

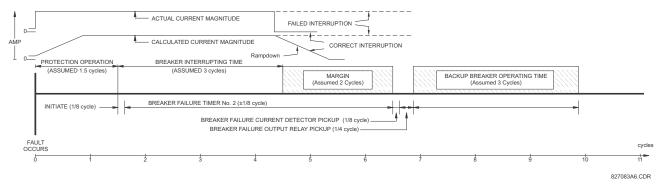


Figure 5-87: BREAKER FAILURE MAIN PATH SEQUENCE

GE Multilin

The current supervision elements reset in less than 0.7 of a power cycle for any multiple of pickup current as shown below.

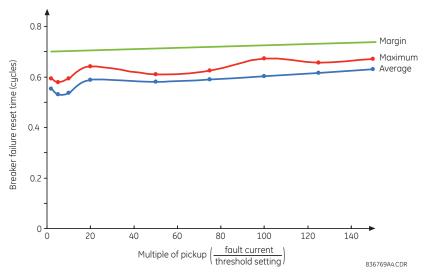


Figure 5-88: BREAKER FAILURE OVERCURRENT SUPERVISION RESET TIME

SETTINGS:

- BF1 MODE: This setting is used to select the breaker failure operating mode: single or three pole.
- **BF1 USE AMP SUPV:** If set to "Yes", the element will only be initiated if current flowing through the breaker is above the supervision pickup level.
- **BF1 USE SEAL-IN:** If set to "Yes", the element will only be sealed-in if current flowing through the breaker is above the supervision pickup level.
- BF1 3-POLE INITIATE: This setting selects the FlexLogic operand that will initiate three-pole tripping of the breaker.
- **BF1 PH AMP SUPV PICKUP:** This setting is used to set the phase current initiation and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. It can be set as low as necessary (lower than breaker resistor current or lower than load current) high-set and low-set current supervision will guarantee correct operation.
- **BF1 N AMP SUPV PICKUP:** This setting is used to set the neutral current initiate and seal-in supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker. Neutral current supervision is used only in the three phase scheme to provide increased sensitivity. This setting is valid only for three-pole tripping schemes.
- **BF1 USE TIMER 1:** If set to "Yes", the early path is operational.
- **BF1 TIMER 1 PICKUP DELAY:** Timer 1 is set to the shortest time required for breaker auxiliary contact Status-1 to open, from the time the initial trip signal is applied to the breaker trip circuit, plus a safety margin.
- BF1 USE TIMER 2: If set to "Yes", the main path is operational.
- **BF1 TIMER 2 PICKUP DELAY:** Timer 2 is set to the expected opening time of the breaker, plus a safety margin. This safety margin was historically intended to allow for measuring and timing errors in the breaker failure scheme equipment. In microprocessor relays this time is not significant. In F60 relays, which use a Fourier transform, the calculated current magnitude will ramp-down to zero one power frequency cycle after the current is interrupted, and this lag should be included in the overall margin duration, as it occurs after current interruption. The *Breaker failure main path sequence* diagram below shows a margin of two cycles; this interval is considered the minimum appropriate for most applications.

Note that in bulk oil circuit breakers, the interrupting time for currents less than 25% of the interrupting rating can be significantly longer than the normal interrupting time.

- **BF1 USE TIMER 3:** If set to "Yes", the Slow Path is operational.
- **BF1 TIMER 3 PICKUP DELAY:** Timer 3 is set to the same interval as timer 2, plus an increased safety margin. Because this path is intended to operate only for low level faults, the delay can be in the order of 300 to 500 ms.

5 SETTINGS 5.6 GROUPED ELEMENTS

• **BF1 BKR POS1** φA/3**P:** This setting selects the FlexLogic operand that represents the protected breaker early-type auxiliary switch contact (52/a). When using the single-pole breaker failure scheme, this operand represents the protected breaker early-type auxiliary switch contact on pole A. This is normally a non-multiplied form-A contact. The contact may even be adjusted to have the shortest possible operating time.

- **BF1 BKR POS2** ϕ A/**3P:** This setting selects the FlexLogic operand that represents the breaker normal-type auxiliary switch contact (52/a). When using the single-pole breaker failure scheme, this operand represents the protected breaker auxiliary switch contact on pole A. This may be a multiplied contact.
- BF1 BREAKER TEST ON: This setting is used to select the FlexLogic operand that represents the breaker in-service/ out-of-service switch set to the out-of-service position.
- **BF1 PH AMP HISET PICKUP:** This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted.
- BF1 N AMP HISET PICKUP: This setting sets the neutral current output supervision level. Generally this setting
 should detect the lowest expected fault current on the protected breaker, before a breaker opening resistor is inserted.
 Neutral current supervision is used only in the three pole scheme to provide increased sensitivity. This setting is valid
 only for three-pole breaker failure schemes.
- **BF1 PH AMP LOSET PICKUP:** This setting sets the phase current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current).
- **BF1 N AMP LOSET PICKUP:** This setting sets the neutral current output supervision level. Generally this setting should detect the lowest expected fault current on the protected breaker, after a breaker opening resistor is inserted (approximately 90% of the resistor current). This setting is valid only for three-pole breaker failure schemes.
- BF1 LOSET TIME DELAY: Sets the pickup delay for current detection after opening resistor insertion.
- BF1 TRIP DROPOUT DELAY: This setting is used to set the period of time for which the trip output is sealed-in. This
 timer must be coordinated with the automatic reclosing scheme of the failed breaker, to which the breaker failure element sends a cancel reclosure signal. Reclosure of a remote breaker can also be prevented by holding a transfer trip
 signal on longer than the reclaim time.
- **BF1 PH A INITIATE / BF1 PH B INITIATE / BF 1 PH C INITIATE:** These settings select the FlexLogic operand to initiate phase A, B, or C single-pole tripping of the breaker and the phase A, B, or C portion of the scheme, accordingly. This setting is only valid for single-pole breaker failure schemes.
- BF1 BKR POS1 φB / BF1 BKR POS 1 φC: These settings select the FlexLogic operand to represents the protected breaker early-type auxiliary switch contact on poles B or C, accordingly. This contact is normally a non-multiplied Form-A contact. The contact may even be adjusted to have the shortest possible operating time. This setting is valid only for single-pole breaker failure schemes.
- BF1 BKR POS2 φB: Selects the FlexLogic operand that represents the protected breaker normal-type auxiliary switch
 contact on pole B (52/a). This may be a multiplied contact. This setting is valid only for single-pole breaker failure
 schemes.
- **BF1 BKR POS2** ϕ **C:** This setting selects the FlexLogic operand that represents the protected breaker normal-type auxiliary switch contact on pole C (52/a). This may be a multiplied contact. For single-pole operation, the scheme has the same overall general concept except that it provides re-tripping of each single pole of the protected breaker. The approach shown in the following single pole tripping diagram uses the initiating information to determine which pole is supposed to trip. The logic is segregated on a per-pole basis. The overcurrent detectors have ganged settings. *This setting is valid only for single-pole breaker failure schemes*.

Upon operation of the breaker failure element for a single pole trip command, a three-pole trip command should be given via output operand BKR FAIL 1 TRIP OP.

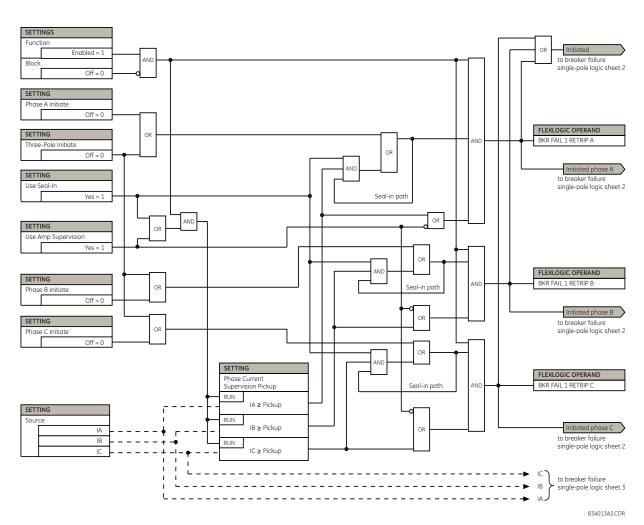


Figure 5-89: SINGLE-POLE BREAKER FAILURE, INITIATE

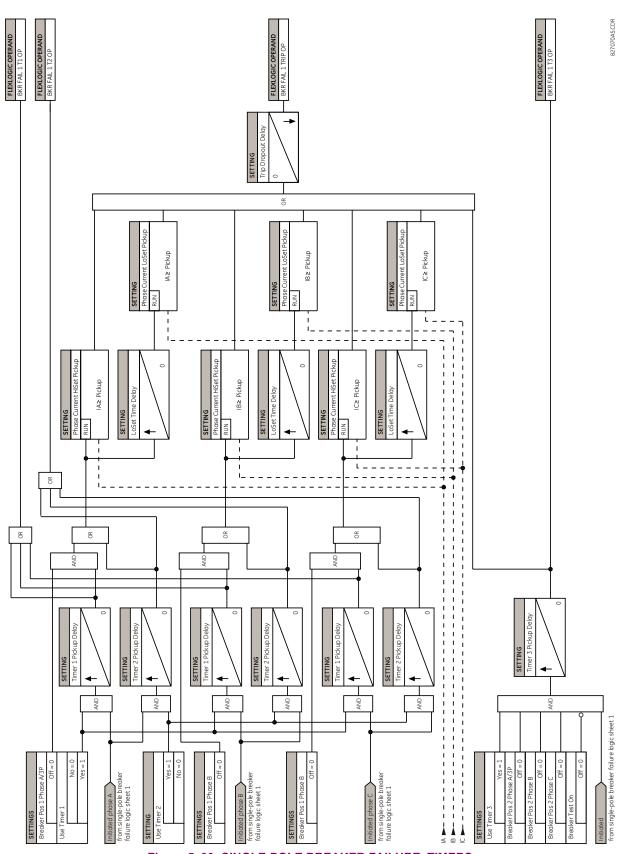


Figure 5-90: SINGLE-POLE BREAKER FAILURE, TIMERS

BF1 FUNCTION: Disable=0 Enable=1 SETTING AND BF1 BLOCK: Off=0 SETTING FLEXLOGIC OPERAND BF1 INITIATE: BKR FAIL 1 RETRIP Off=0 OR AND SETTING TO SHEET 2 OF 2 (Initiated) BF1 USE SEAL-IN: YES=1 AND NO=0 Seal In Path AND SETTING OR BF1 USE AMP SUPV: YES=1 OR NO=0 SETTING BF1 PH AMP SUPV PICKUP: SETTING BF1 N AMP SUPV PICKUP: BF1 SOURCE: RUN ΙA $IA \geq PICKUP$ RUN ΙB $IB \geq PICKUP$ OR RUN IC $IC \geq PICKUP$ RUN IN $IN \geq PICKUP$ TO SHEET 2 OF 2 (827068.DWG) 827067A4.DWG

Figure 5-91: THREE-POLE BREAKER FAILURE, INITIATE

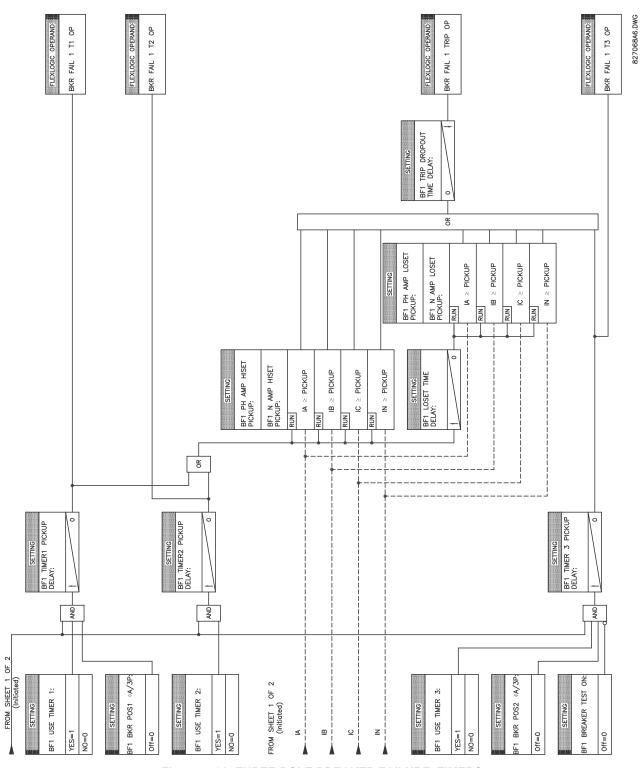
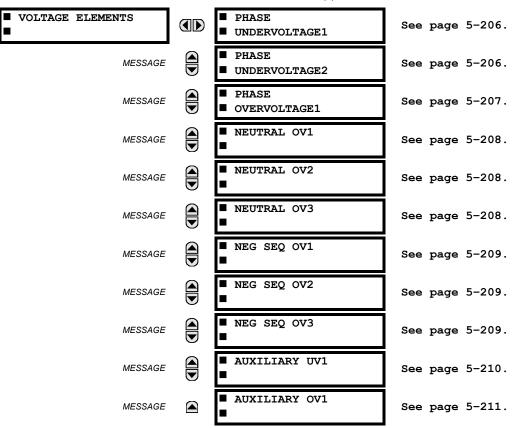



Figure 5-92: THREE-POLE BREAKER FAILURE, TIMERS

a) MAIN MENU

PATH: SETTINGS ⇒ U GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ U VOLTAGE ELEMENTS

These protection elements can be used for a variety of applications such as:

- Undervoltage Protection: For voltage sensitive loads, such as induction motors, a drop in voltage increases the
 drawn current which may cause dangerous overheating in the motor. The undervoltage protection feature can be used
 to either cause a trip or generate an alarm when the voltage drops below a specified voltage setting for a specified time
 delay.
- **Permissive Functions:** The undervoltage feature may be used to block the functioning of external devices by operating an output relay when the voltage falls below the specified voltage setting. The undervoltage feature may also be used to block the functioning of other elements through the block feature of those elements.
- **Source Transfer Schemes:** In the event of an undervoltage, a transfer signal may be generated to transfer a load from its normal source to a standby or emergency power source.

The undervoltage elements can be programmed to have a definite time delay characteristic. The definite time curve operates when the voltage drops below the pickup level for a specified period of time. The time delay is adjustable from 0 to 600.00 seconds in steps of 0.01. The undervoltage elements can also be programmed to have an inverse time delay characteristic.

The undervoltage delay setting defines the family of curves shown below.

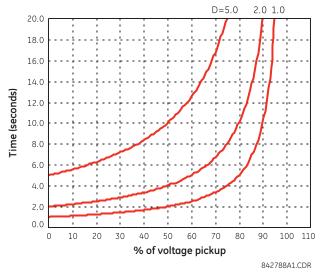
$$T = \frac{D}{\left(1 - \frac{V}{V_{pickup}}\right)}$$
 (EQ 5.23)

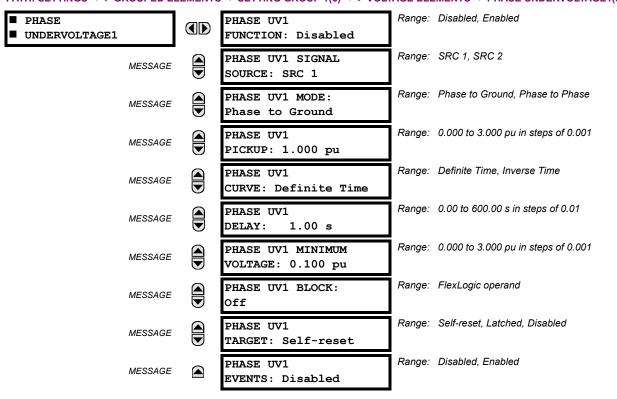
where: T =operating time

D = undervoltage delay setting (D = 0.00 operates instantaneously)

V = secondary voltage applied to the relay

 V_{pickup} = pickup level




Figure 5-93: INVERSE TIME UNDERVOLTAGE CURVES

At 0% of pickup, the operating time equals the UNDERVOLTAGE DELAY setting.

b) PHASE UNDERVOLTAGE (ANSI 27P, IEC PTUV)

PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS \$\Rightarrow\$ SETTING GROUP 1(6) \$\Rightarrow\$ VOLTAGE ELEMENTS \$\Rightarrow\$ PHASE UNDERVOLTAGE1(3)

This element may be used to give a desired time-delay operating characteristic versus the applied fundamental voltage (phase-to-ground or phase-to-phase for wye VT connection, or phase-to-phase for delta VT connection) or as a definite time element. The element resets instantaneously if the applied voltage exceeds the dropout voltage. The delay setting selects the minimum operating time of the phase undervoltage. The minimum voltage setting selects the operating voltage below which the element is blocked (a setting of "0" will allow a dead source to be considered a fault condition).

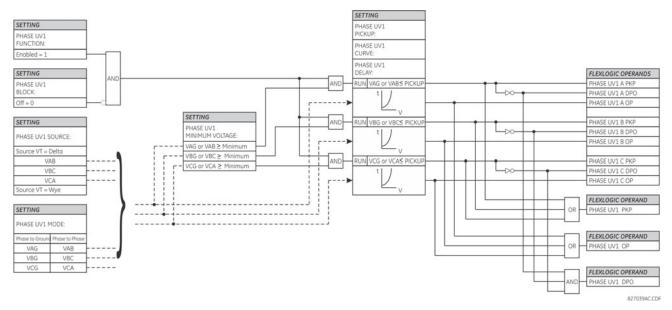
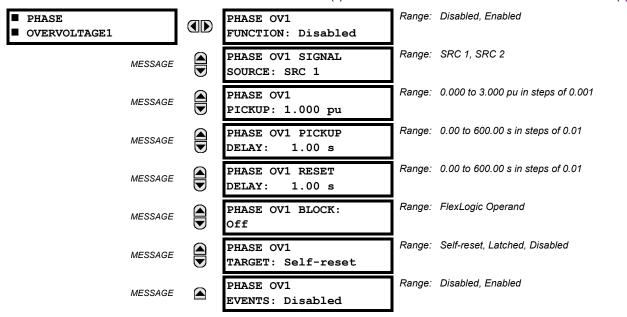



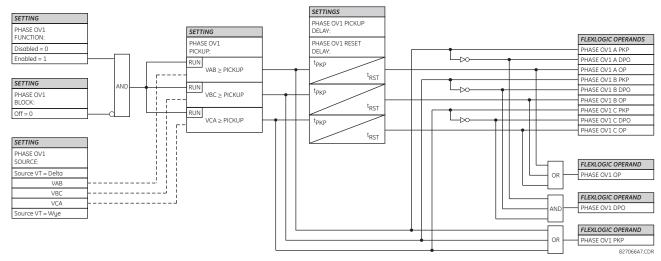
Figure 5-94: PHASE UNDERVOLTAGE1 SCHEME LOGIC

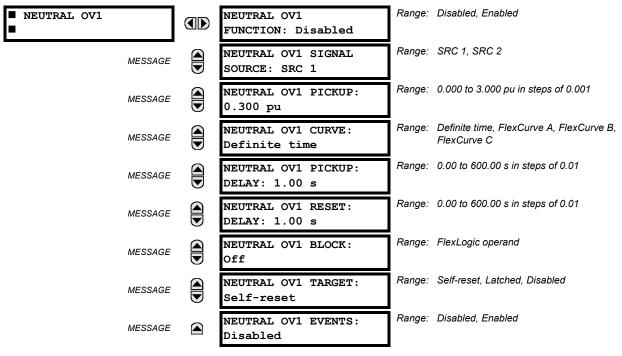
5 SETTINGS 5.6 GROUPED ELEMENTS

c) PHASE OVERVOLTAGE (ANSI 59P, IEC PTOV)

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ VOLTAGE ELEMENTS ⇒ ⊕ PHASE OVERVOLTAGE1(3)

There are three phase overvoltage elements available. A phase overvoltage element is used as an instantaneous element with no intentional time delay or as a definite time element. The input voltage is the phase-to-phase voltage, either measured directly from delta-connected VTs or as calculated from phase-to-ground (wye) connected VTs. The specific voltages to be used for each phase are shown below.




Figure 5-95: PHASE OVERVOLTAGE SCHEME LOGIC

If the source VT is wye-connected, then the phase overvoltage pickup condition is $V > \sqrt{3} \times \text{Pickup}$ for V_{AB} , V_{BC} , and V_{CA} .

d) NEUTRAL OVERVOLTAGE (ANSI 59N, IEC PTOV)

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ VOLTAGE ELEMENTS ⇒ ⊕ NEUTRAL OV1(3)

There are three neutral overvoltage elements available. The neutral overvoltage element can be used to detect asymmetrical system voltage condition due to a ground fault or to the loss of one or two phases of the source. The element responds to the system neutral voltage (3V_0), calculated from the phase voltages. The nominal secondary voltage of the phase voltage channels entered under SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP \Rightarrow AC INPUTS $\Rightarrow \emptyset$ VOLTAGE BANK \Rightarrow PHASE VT SECONDARY is the p.u. base used when setting the pickup level.

The neutral overvoltage element can provide a time-delayed operating characteristic versus the applied voltage (initialized from FlexCurves A, B, or C) or be used as a definite time element. The **NEUTRAL OV1 PICKUP DELAY** setting applies only if the **NEUTRAL OV1 CURVE** setting is "Definite time". The source assigned to this element must be configured for a phase VT.

VT errors and normal voltage unbalance must be considered when setting this element. This function requires the VTs to be wye-connected.

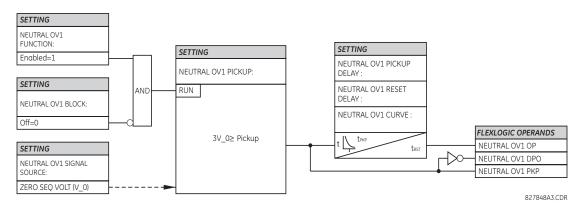


Figure 5-96: NEUTRAL OVERVOLTAGE1 SCHEME LOGIC

5 SETTINGS 5.6 GROUPED ELEMENTS

e) NEGATIVE SEQUENCE OVERVOLTAGE (ANSI 59Q, IEC PTOV)

PATH: SETTINGS ⇒ \$\Partial\$ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ \$\Partial\$ VOLTAGE ELEMENTS ⇒ \$\Partial\$ NEG SEQ OV1(3)

There are three negative-sequence overvoltage elements available.

The negative-sequence overvoltage element may be used to detect loss of one or two phases of the source, a reversed phase sequence of voltage, or a non-symmetrical system voltage condition.

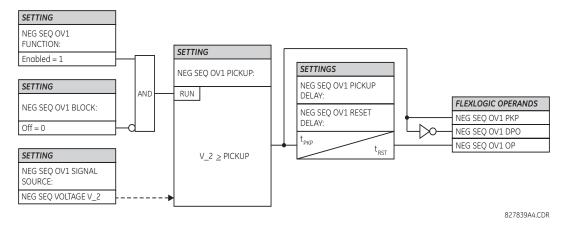
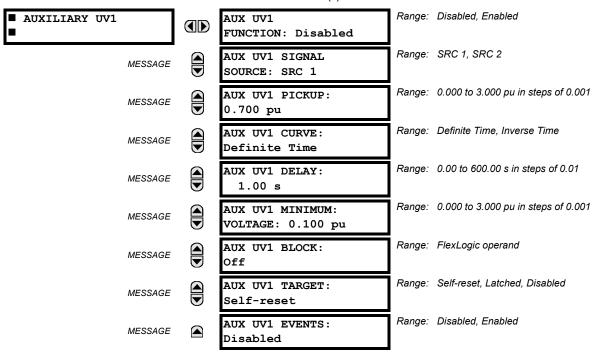



Figure 5-97: NEGATIVE-SEQUENCE OVERVOLTAGE SCHEME LOGIC

f) AUXILIARY UNDERVOLTAGE (ANSI 27X, IEC PTUV)

PATH: SETTINGS $\Rightarrow \emptyset$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \emptyset$ VOLTAGE ELEMENTS $\Rightarrow \emptyset$ AUXILIARY UV1

The F60 contains one auxiliary undervoltage element for each VT bank. This element is intended for monitoring undervoltage conditions of the auxiliary voltage. The AUX UV1 PICKUP selects the voltage level at which the time undervoltage element starts timing. The nominal secondary voltage of the auxiliary voltage channel entered under SETTINGS ⇒ SYSTEM SETUP ⇒ AC INPUTS ⇒ VOLTAGE BANK X5 ⇒ AUXILIARY VT X5 SECONDARY is the per-unit base used when setting the pickup level.

The AUX UV1 DELAY setting selects the minimum operating time of the auxiliary undervoltage element. Both AUX UV1 PICKUP and AUX UV1 DELAY settings establish the operating curve of the undervoltage element. The auxiliary undervoltage element can be programmed to use either definite time delay or inverse time delay characteristics. The operating characteristics and equations for both definite and inverse time delay are as for the phase undervoltage element.

The element resets instantaneously. The minimum voltage setting selects the operating voltage below which the element is blocked.

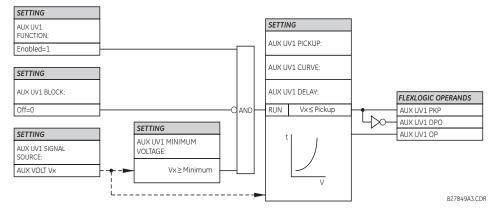
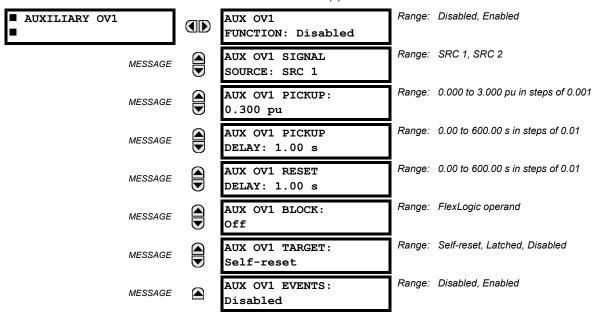



Figure 5-98: AUXILIARY UNDERVOLTAGE SCHEME LOGIC

5 SETTINGS 5.6 GROUPED ELEMENTS

g) AUXILIARY OVERVOLTAGE (ANSI 59X, IEC PTOV)

PATH: SETTINGS ⇒ ⊕ GROUPED ELEMENTS ⇒ SETTING GROUP 1(6) ⇒ ⊕ VOLTAGE ELEMENTS ⇒ ⊕ AUXILIARY OV1

The F60 contains one auxiliary overvoltage element for each VT bank. This element is intended for monitoring overvoltage conditions of the auxiliary voltage. The nominal secondary voltage of the auxiliary voltage channel entered under SYSTEM SETUP \Rightarrow AC INPUTS \P \Rightarrow VOLTAGE BANK X5 \P \Rightarrow AUXILIARY VT X5 SECONDARY is the per-unit (pu) base used when setting the pickup level.

A typical application for this element is monitoring the zero-sequence voltage (3V_0) supplied from an open-corner-delta VT connection.

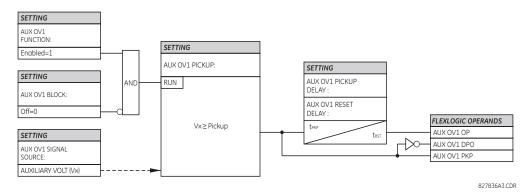
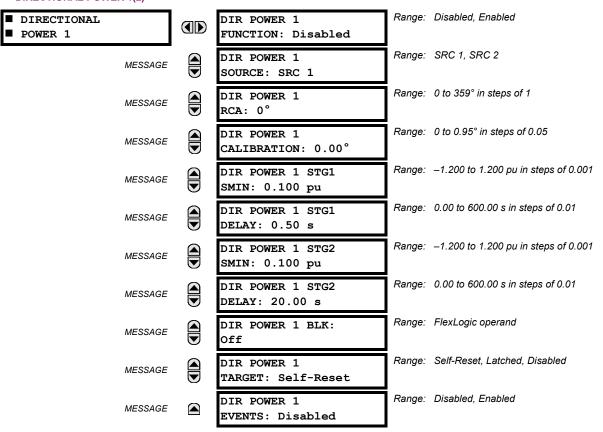



Figure 5-99: AUXILIARY OVERVOLTAGE SCHEME LOGIC

PATH: SETTINGS $\Rightarrow \oplus$ GROUPED ELEMENTS \Rightarrow SETTING GROUP 1(6) $\Rightarrow \oplus$ POWER $\Rightarrow \oplus$ SENSITIVE DIRECTIONAL POWER \Rightarrow DIRECTIONAL POWER 1(2)

The sensitive directional power element responds to three-phase directional power and is designed for reverse power and low forward power applications for synchronous machines or interconnections involving co-generation. The relay measures the three-phase power from either full set of wye-connected VTs or full-set of delta-connected VTs. In the latter case, the two-wattmeter method is used. Refer to the *UR-series metering conventions* section in chapter 6 for details regarding the active and reactive powers used by the sensitive directional power element.

The element has an adjustable characteristic angle and minimum operating power as shown in the *Directional power characteristic* diagram. The element responds to the following condition:

$$P\cos\theta + Q\sin\theta > SMIN$$
 (EQ 5.24)

where: *P* and *Q* are active and reactive powers as measured per the UR-series metering convention, θ is a sum of the element characteristic (**DIR POWER 1 RCA**) and calibration (**DIR POWER 1 CALIBRATION**) angles, and *SMIN* is the minimum operating power

The operating quantity is displayed in the ACTUAL VALUES ⇒ METERING ⇒ \$\Preceq\$ SENSITIVE DIRECTIONAL POWER 1(2) actual value. The element has two independent (as to the pickup and delay settings) stages for alarm and trip, respectively.

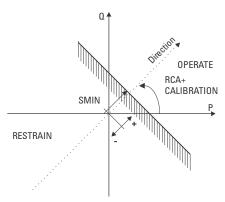


Figure 5-100: DIRECTIONAL POWER CHARACTERISTIC

By making the characteristic angle adjustable and providing for both negative and positive values of the minimum operating power a variety of operating characteristics can be achieved as presented in the figure below. For example, section (a) in the figure below shows settings for reverse power, while section (b) shows settings for low forward power applications.

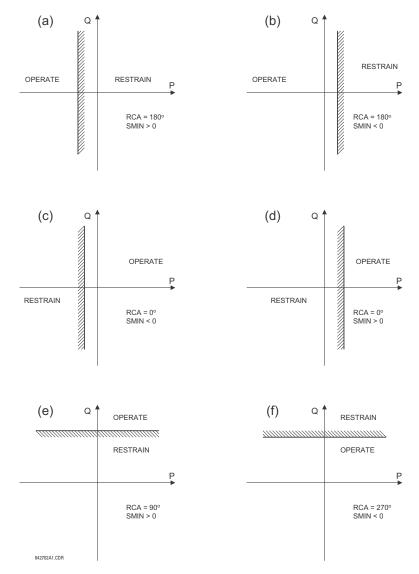


Figure 5-101: DIRECTIONAL POWER ELEMENT SAMPLE APPLICATIONS

5.6 GROUPED ELEMENTS 5 SETTINGS

DIR POWER 1 RCA: Specifies the relay characteristic angle (RCA) for the sensitive directional power function. Application of this setting is threefold:

- 1. It allows the element to respond to active or reactive power in any direction (active overpower/underpower, etc.).
- Together with a precise calibration angle, it allows compensation for any CT and VT angular errors to permit more sensitive settings.
- 3. It allows for required direction in situations when the voltage signal is taken from behind a delta-wye connected power transformer and the phase angle compensation is required.

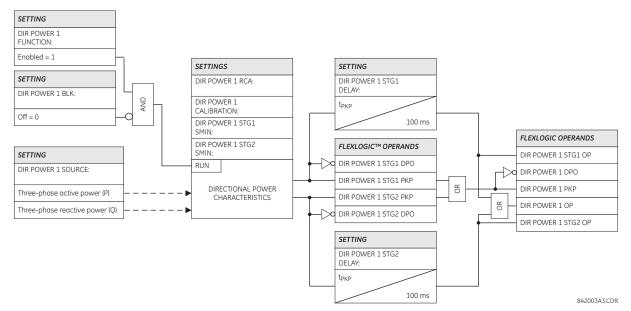
For example, the active overpower characteristic is achieved by setting **DIR POWER 1 RCA** to "0°", reactive overpower by setting **DIR POWER 1 RCA** to "180°", and reactive underpower by setting **DIR POWER 1 RCA** to "180°", and reactive underpower by setting **DIR POWER 1 RCA** to "270°".

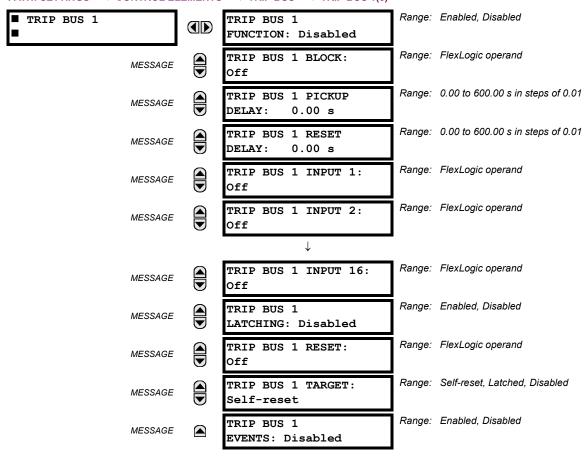
- **DIR POWER 1 CALIBRATION:** This setting allows the relay characteristic angle to change in steps of 0.05°. This may be useful when a small difference in VT and CT angular errors is to be compensated to permit more sensitive settings. This setting virtually enables calibration of the directional power function in terms of the angular error of applied VTs and CTs. The element responds to the sum of the **DIR POWER 1 RCA** and **DIR POWER 1 CALIBRATION** settings.
- **DIR POWER 1 STG1 SMIN:** This setting specifies the minimum power as defined along the relay characteristic angle (RCA) for the stage 1 of the element. The positive values imply a shift towards the operate region along the RCA line; the negative values imply a shift towards the restrain region along the RCA line. Refer to the *Directional power sample applications* figure for details. Together with the RCA, this setting enables a wide range of operating characteristics. This setting applies to three-phase power and is entered in per-unit (pu) values. The base quantity is 3-phase power on primary side, which is calculated as √3 x Phase CT Primary x Phase VT Ratio x Phase VT Secondary in case of delta connected VTs; and 3 x Phase CT Primary x Phase VT Ratio x Phase VT Secondary in case of wye connected VTs.

For example, a setting of 2% for a 200 MW machine is 0.02×200 MW = 4 MW. If 13.8kV is line voltage and 10 kA is a primary CT current, the source pu quantity is 239 MVA, and thus, SMIN should be set at 4 MW / 239 MVA = 0.0167 pu ≈ 0.017 pu. If the reverse power application is considered, RCA = 180° and SMIN = 0.017 pu.

The element drops out if the magnitude of the positive-sequence current becomes virtually zero, that is, it drops below the cutoff level.

• **DIR POWER 1 STG1 DELAY:** This setting specifies a time delay for stage 1. For reverse power or low forward power applications for a synchronous machine, stage 1 is typically applied for alarming and stage 2 for tripping.




Figure 5-102: SENSITIVE DIRECTIONAL POWER SCHEME LOGIC

5.7.1 OVERVIEW

Control elements are generally used for control rather than protection. See the *Introduction to Elements* section at the beginning of this chapter for further information.

5.7.2 TRIP BUS

PATH: SETTINGS ⇔ ⊕ CONTROL ELEMENTS ⇔ ⊕ TRIP BUS ⇔ ⊕ TRIP BUS 1(6)

The trip bus element allows aggregating outputs of protection and control elements without using FlexLogic and assigning them a simple and effective manner. Each trip bus can be assigned for either trip or alarm actions. Simple trip conditioning such as latch, delay, and seal-in delay are available.

The easiest way to assign element outputs to a trip bus is through the EnerVista UR Setup software A protection summary is displayed by navigating to a specific protection or control protection element and checking the desired bus box. Once the desired element is selected for a specific bus, a list of element operate-type operands are displayed and can be assigned to a trip bus. If more than one operate-type operand is required, it may be assigned directly from the trip bus menu.

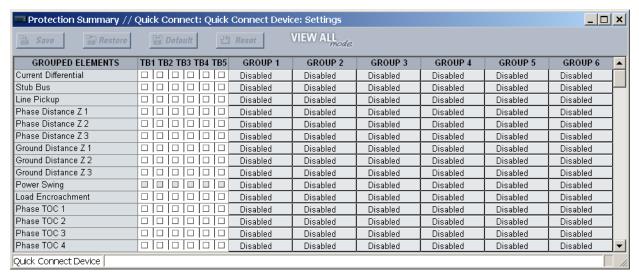


Figure 5-103: TRIP BUS FIELDS IN THE PROTECTION SUMMARY

The following settings are available.

- TRIP BUS 1 BLOCK: The trip bus output is blocked when the operand assigned to this setting is asserted.
- TRIP BUS 1 PICKUP DELAY: This setting specifies a time delay to produce an output depending on how output is
 used.
- TRIP BUS 1 RESET DELAY: This setting specifies a time delay to reset an output command. The time delay should be set long enough to allow the breaker or contactor to perform a required action.
- TRIP BUS 1 INPUT 1 to TRIP BUS 1 INPUT 16: These settings select a FlexLogic operand to be assigned as an input to the trip bus.
- TRIP BUS 1 LATCHING: This setting enables or disables latching of the trip bus output. This is typically used when lockout is required or user acknowledgement of the relay response is required.
- TRIP BUS 1 RESET: The trip bus output is reset when the operand assigned to this setting is asserted. Note that the
 RESET OP operand is pre-wired to the reset gate of the latch, As such, a reset command the front panel interface or via
 communications will reset the trip bus output.

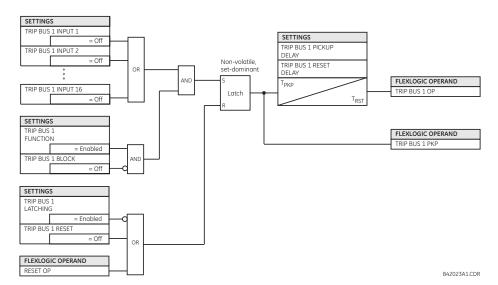
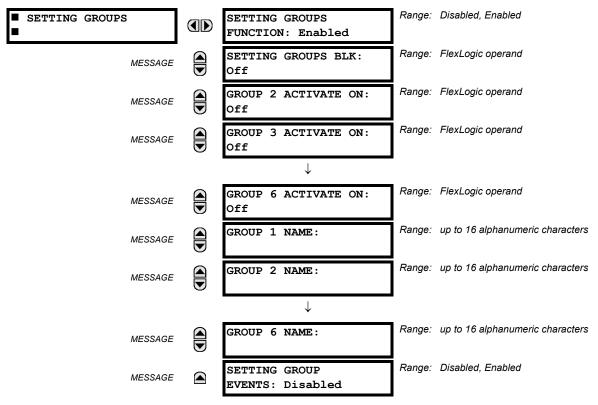



Figure 5-104: TRIP BUS LOGIC

5.7.3 SETTING GROUPS

The 61850 standard provides for the ability to monitor, edit, and change setting groups in a relay through a series of services operating on Setting Group Control Block values. There is one SGCB in LLN0 in LD1 in the UR as, at present, the other LDs do not support multiple setting groups The default value of **SETTING GROUPS** is Disabled. In order for 61850 and/ or UR setting group control to function, the **SETTING GROUPS FUNCTION** must be set to Enabled.

The active setting group in the UR is settable from either the value set via a FlexLogic operand in the UR (present practice) or a SelectActiveSG command from a 61850 Client. For both the UR and IEC 61850, the default active setting group is "1".

A 61850 SelectActiveSG command sets one of the internal Non-Volatile flags (61850 SG Level x) that represents the requested Active Setting Group shown as follows:

Table 5-32: ACTIVE SETTING GROUP

SELECTACTIVESG VALUE	FLAG SET
1 (default)	SG Level 1
2	SG Level 2
3	SG Level 3
4	SG Level 4
5	SG Level 4
6	SG Level 6

On power-up or restart, the previously selected 61850 SG Level x is re-instated. Similarly, the input to the setting group control in the UR can be designed with Non-Volatile latches to achieve the same effect.

The setting groups menu controls the activation and deactivation of up to six possible groups of settings in the **GROUPED ELEMENTS** settings menu. The faceplate Settings In Use LEDs indicate which active group (with a non-flashing energized LED) is in service.

5.7 CONTROL ELEMENTS 5 SETTINGS

The **SETTING GROUPS BLK** setting prevents the active setting group from changing when the FlexLogic parameter is set to "On". This can be useful in applications where it is undesirable to change the settings under certain conditions, such as the breaker being open.

The **GROUP 2 ACTIVATE ON** to **GROUP 6 ACTIVATE ON** settings select a FlexLogic operand which, when set, makes the particular setting group active for use by any grouped element. A priority scheme ensures that only one group is active at a given time – the highest-numbered group that is activated by its **ACTIVATE ON** parameter takes priority over the lower-numbered groups. There is no activate on setting for group 1 (the default active group), because group 1 automatically becomes active if no other group is active.

The **SETTING GROUP 1 NAME** to **SETTING GROUP 6 NAME** settings allows the user to assign a name to each of the six settings groups. Once programmed, this name appears on the second line of the **GROUPED ELEMENTS** ⇒ **SETTING GROUP 1(6)** menu display.

The relay can be set up via a FlexLogic equation to receive requests to activate or de-activate a particular non-default settings group. The following FlexLogic equation (see the following figure) illustrates requests via remote communications (for example, VIRTUAL INPUT 1 ON) or from a local contact input (for example, CONTACT IP 1 ON) to initiate the use of a particular settings group, and requests from several overcurrent pickup measuring elements to inhibit the use of the particular settings group. The assigned VIRTUAL OUTPUT 1 operand is used to control the "On" state of a particular settings group.

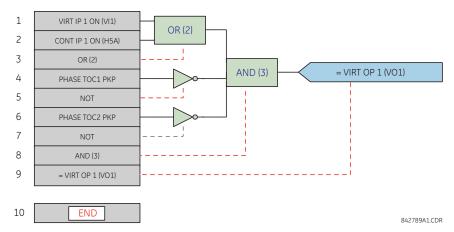


Figure 5-105: EXAMPLE FLEXLOGIC CONTROL OF A SETTINGS GROUP

5.7.4 SELECTOR SWITCH

■ SELECTOR SWITCH 1	SELECTOR 1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	SELECTOR 1 FULL RANGE: 7	Range:	1 to 7 in steps of 1
MESSAGE	SELECTOR 1 TIME-OUT: 5.0 s	Range:	3.0 to 60.0 s in steps of 0.1
MESSAGE	SELECTOR 1 STEP-UP: Off	Range:	FlexLogic operand
MESSAGE	SELECTOR 1 STEP-UP MODE: Time-out	Range:	Time-out, Acknowledge
MESSAGE	SELECTOR 1 ACK: Off	Range:	FlexLogic operand
MESSAGE	SELECTOR 1 3BIT A0: Off	Range:	FlexLogic operand
MESSAGE	SELECTOR 1 3BIT A1: Off	Range:	FlexLogic operand
MESSAGE	SELECTOR 1 3BIT A2: Off	Range:	FlexLogic operand
MESSAGE	SELECTOR 1 3BIT MODE: Time-out	Range:	Time-out, Acknowledge
MESSAGE	SELECTOR 1 3BIT ACK: Off	Range:	FlexLogic operand
MESSAGE	SELECTOR 1 POWER-UP MODE: Restore	Range:	Restore, Synchronize, Sync/Restore
MESSAGE	SELECTOR 1 TARGETS: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	SELECTOR 1 EVENTS: Disabled	Range:	Disabled, Enabled

The selector switch element is intended to replace a mechanical selector switch. Typical applications include setting group control or control of multiple logic sub-circuits in user-programmable logic.

The element provides for two control inputs. The step-up control allows stepping through selector position one step at a time with each pulse of the control input, such as a user-programmable pushbutton. The three-bit control input allows setting the selector to the position defined by a three-bit word.

The element allows pre-selecting a new position without applying it. The pre-selected position gets applied either after timeout or upon acknowledgement via separate inputs (user setting). The selector position is stored in non-volatile memory. Upon power-up, either the previous position is restored or the relay synchronizes to the current three-bit word (user setting). Basic alarm functionality alerts the user under abnormal conditions; for example, the three-bit control input being out of range.

SELECTOR 1 FULL RANGE: This setting defines the upper position of the selector. When stepping up through available positions of the selector, the upper position wraps up to the lower position (position 1). When using a direct three-bit control word for programming the selector to a desired position, the change would take place only if the control word is within the range of 1 to the SELECTOR FULL RANGE. If the control word is outside the range, an alarm is established by setting the SELECTOR ALARM FlexLogic operand for 3 seconds.

- SELECTOR 1 TIME-OUT: This setting defines the time-out period for the selector. This value is used by the relay in
 the following two ways. When the SELECTOR STEP-UP MODE is "Time-out", the setting specifies the required period of
 inactivity of the control input after which the pre-selected position is automatically applied. When the SELECTOR STEPUP MODE is "Acknowledge", the setting specifies the period of time for the acknowledging input to appear. The timer is
 re-started by any activity of the control input. The acknowledging input must come before the SELECTOR 1 TIME-OUT
 timer expires; otherwise, the change will not take place and an alarm will be set.
- SELECTOR 1 STEP-UP: This setting specifies a control input for the selector switch. The switch is shifted to a new position at each rising edge of this signal. The position changes incrementally, wrapping up from the last (SELECTOR 1 FULL RANGE) to the first (position 1). Consecutive pulses of this control operand must not occur faster than every 50 ms. After each rising edge of the assigned operand, the time-out timer is restarted and the SELECTOR SWITCH 1: POS Z CHNG INITIATED target message is displayed, where Z the pre-selected position. The message is displayed for the time specified by the FLASH MESSAGE TIME setting. The pre-selected position is applied after the selector times out ("Time-out" mode), or when the acknowledging signal appears before the element times out ("Acknowledge" mode). When the new position is applied, the relay displays the SELECTOR SWITCH 1: POSITION Z IN USE message. Typically, a user-programmable pushbutton is configured as the stepping up control input.
- SELECTOR 1 STEP-UP MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector will change its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require any explicit confirmation of the intent to change the selector's position. When set to "Acknowledge", the selector will change its position only after the intent is confirmed through a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector does not accept the change and an alarm is established by setting the SELECTOR STP ALARM output FlexLogic operand for 3 seconds.
- **SELECTOR 1 ACK**: This setting specifies an acknowledging input for the stepping up control input. The pre-selected position is applied on the rising edge of the assigned operand. This setting is active only under "Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the **SELECTOR 1 TIME-OUT** setting after the last activity of the control input. A user-programmable pushbutton is typically configured as the acknowledging input.
- **SELECTOR 1 3BIT A0, A1, and A2**: These settings specify a three-bit control input of the selector. The three-bit control word pre-selects the position using the following encoding convention:

A2	A1	A0	POSITION
0	0	0	rest
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

The "rest" position (0, 0, 0) does not generate an action and is intended for situations when the device generating the three-bit control word is having a problem. When **SELECTOR 1 3BIT MODE** is "Time-out", the pre-selected position is applied in **SELECTOR 1 TIME-OUT** seconds after the last activity of the three-bit input. When **SELECTOR 1 3BIT MODE** is "Acknowledge", the pre-selected position is applied on the rising edge of the **SELECTOR 1 3BIT ACK** acknowledging input.

The stepping up control input (SELECTOR 1 STEP-UP) and the three-bit control inputs (SELECTOR 1 3BIT A0 through A2) lock-out mutually: once the stepping up sequence is initiated, the three-bit control input is inactive; once the three-bit control sequence is initiated, the stepping up input is inactive.

- SELECTOR 1 3BIT MODE: This setting defines the selector mode of operation. When set to "Time-out", the selector changes its position after a pre-defined period of inactivity at the control input. The change is automatic and does not require explicit confirmation to change the selector position. When set to "Acknowledge", the selector changes its position only after confirmation via a separate acknowledging signal. If the acknowledging signal does not appear within a pre-defined period of time, the selector rejects the change and an alarm established by invoking the SELECTOR BIT ALARM FlexLogic operand for 3 seconds.
- SELECTOR 1 3BIT ACK: This setting specifies an acknowledging input for the three-bit control input. The preselected position is applied on the rising edge of the assigned FlexLogic operand. This setting is active only under the

5 SETTINGS 5.7 CONTROL ELEMENTS

"Acknowledge" mode of operation. The acknowledging signal must appear within the time defined by the **SELECTOR TIME-OUT** setting after the last activity of the three-bit control inputs. Note that the stepping up control input and three-bit control input have independent acknowledging signals (**SELECTOR 1 ACK** and **SELECTOR 1 3BIT ACK**, accordingly).

• SELECTOR 1 POWER-UP MODE: This setting specifies the element behavior on power up of the relay.

When set to "Restore", the last position of the selector (stored in the non-volatile memory) is restored after powering up the relay. If the position restored from memory is out of range, position 0 (no output operand selected) is applied and an alarm is set (SELECTOR 1 PWR ALARM).

When set to "Synchronize" selector switch acts as follows. For two power cycles, the selector applies position 0 to the switch and activates SELECTOR 1 PWR ALARM. After two power cycles expire, the selector synchronizes to the position dictated by the three-bit control input. This operation does not wait for time-out or the acknowledging input. When the synchronization attempt is unsuccessful (that is, the three-bit input is not available (0,0,0) or out of range) then the selector switch output is set to position 0 (no output operand selected) and an alarm is established (SELECTOR 1 PWR ALARM).

The operation of "Synch/Restore" mode is similar to the "Synchronize" mode. The only difference is that after an unsuccessful synchronization attempt, the switch will attempt to restore the position stored in the relay memory. The "Synch/Restore" mode is useful for applications where the selector switch is employed to change the setting group in redundant (two relay) protection schemes.

SELECTOR 1 EVENTS: If enabled, the following events are logged:

EVENT NAME	DESCRIPTION
SELECTOR 1 POS Z	Selector 1 changed its position to Z.
SELECTOR 1 STP ALARM	The selector position pre-selected via the stepping up control input has not been confirmed before the time out.
SELECTOR 1 BIT ALARM	The selector position pre-selected via the three-bit control input has not been confirmed before the time out.

The following figures illustrate the operation of the selector switch. In these diagrams, "T" represents a time-out setting.

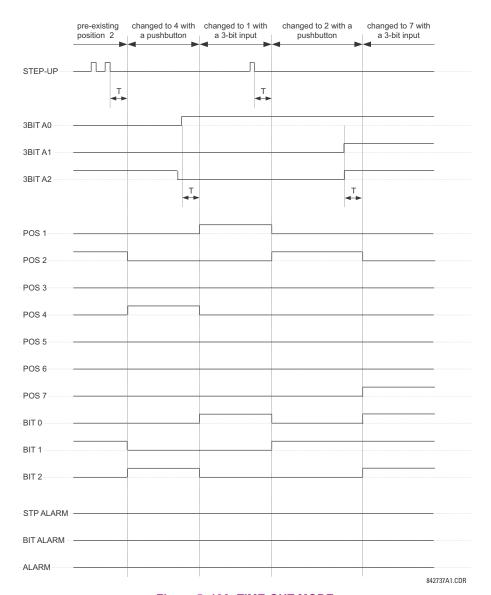


Figure 5-106: TIME-OUT MODE

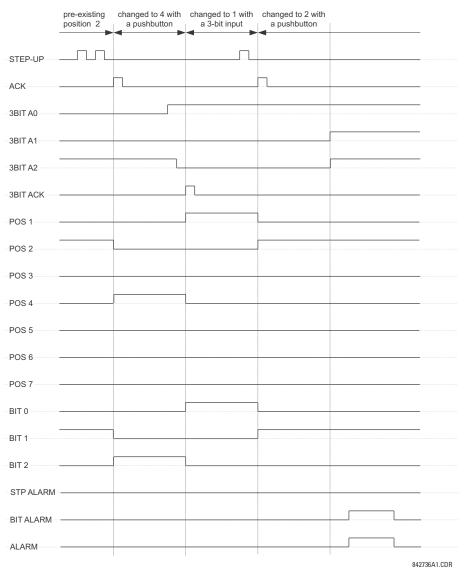


Figure 5-107: ACKNOWLEDGE MODE

APPLICATION EXAMPLE

GROUP 3 ACTIVATE ON: "SELECTOR 1 POS 3"

Consider an application where the selector switch is used to control setting groups 1 through 4 in the relay. The setting groups are to be controlled from both user-programmable pushbutton 1 and from an external device via contact inputs 1 through 3. The active setting group shall be available as an encoded three-bit word to the external device and SCADA via output contacts 1 through 3. The pre-selected setting group shall be applied automatically after 5 seconds of inactivity of the control inputs. When the relay powers up, it should synchronize the setting group to the three-bit control input.

Make the following changes to setting group control in the SETTINGS ⇒ ⊕ CONTROL ELEMENTS ⇒ SETTING GROUPS menu:

SETTING GROUPS FUNCTION: "Enabled" GROUP 4 ACTIVATE ON: "SELECTOR 1 POS 4"

SETTING GROUPS BLK: "Off" GROUP 5 ACTIVATE ON: "Off" GROUP 2 ACTIVATE ON: "SELECTOR 1 POS 2" GROUP 6 ACTIVATE ON: "Off"

Make the following changes to selector switch element in the **SETTINGS** ⇒ **\$\Pi\$ CONTROL ELEMENTS** ⇒ **\$\Pi\$ SELECTOR SWITCH** ⇒ **SELECTOR SWITCH** 1 menu to assign control to user programmable pushbutton 1 and contact inputs 1 through 3:

5.7 CONTROL ELEMENTS 5 SETTINGS

SELECTOR 1 FUNCTION: "Enabled"SELECTOR 1 3BIT A0: "CONT IP 1 ON"SELECTOR 1 FULL-RANGE: "4"SELECTOR 1 3BIT A1: "CONT IP 2 ON"SELECTOR 1 STEP-UP MODE: "Time-out"SELECTOR 1 3BIT A2: "CONT IP 3 ON"SELECTOR 1 TIME-OUT: "5.0 s"SELECTOR 1 3BIT MODE: "Time-out"

SELECTOR 1 STEP-UP: "PUSHBUTTON 1 ON" SELECTOR 1 3BIT ACK: "Off"

SELECTOR 1 ACK: "Off" SELECTOR 1 POWER-UP MODE: "Synchronize"

Now, assign the contact output operation (assume the H6E module) to the selector switch element by making the following changes in the SETTINGS ⇔∜ INPUTS/OUTPUTS ⇔∜ CONTACT OUTPUTS menu:

OUTPUT H1 OPERATE: "SELECTOR 1 BIT 0" OUTPUT H2 OPERATE: "SELECTOR 1 BIT 1" OUTPUT H3 OPERATE: "SELECTOR 1 BIT 2"

Finally, assign configure user-programmable pushbutton 1 by making the following changes in the SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 menu:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBUTTON 1 DROP-OUT TIME: "0.10 s"

The logic for the selector switch is shown below:

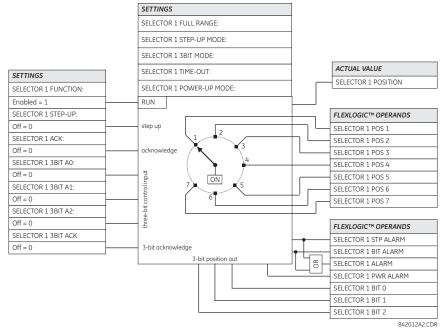
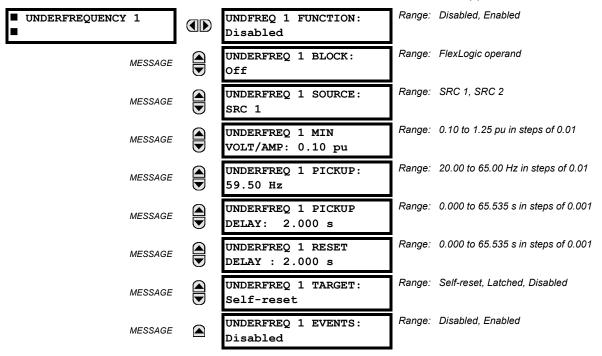



Figure 5-108: SELECTOR SWITCH LOGIC

5.7.5 UNDERFREQUENCY

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ UNDERFREQUENCY 1(6)

There are six identical underfrequency elements, numbered from 1 through 6.

The steady-state frequency of a power system is a certain indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the loss of an important generating unit or the isolation of part of the system from the rest of the system, the effect will be a reduction in frequency. If the control systems of the system generators do not respond fast enough, the system may collapse. A reliable method to quickly restore the balance between load and generation is to automatically disconnect selected loads, based on the actual system frequency. This technique, called "load-shedding", maintains system integrity and minimize widespread outages. After the frequency returns to normal, the load may be automatically or manually restored.

The **UNDERFREQ 1 SOURCE** setting is used to select the source for the signal to be measured. The element first checks for a live phase voltage available from the selected source. If voltage is not available, the element attempts to use a phase current. If neither voltage nor current is available, the element will not operate, as it will not measure a parameter below the minimum voltage/current setting.

The UNDERFREQ 1 MIN VOLT/AMP setting selects the minimum per unit voltage or current level required to allow the underfrequency element to operate. This threshold is used to prevent an incorrect operation because there is no signal to measure.

This **UNDERFREQ 1 PICKUP** setting is used to select the level at which the underfrequency element is to pickup. For example, if the system frequency is 60 Hz and the load shedding is required at 59.5 Hz, the setting will be 59.50 Hz.

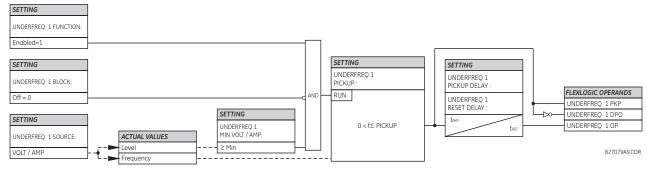
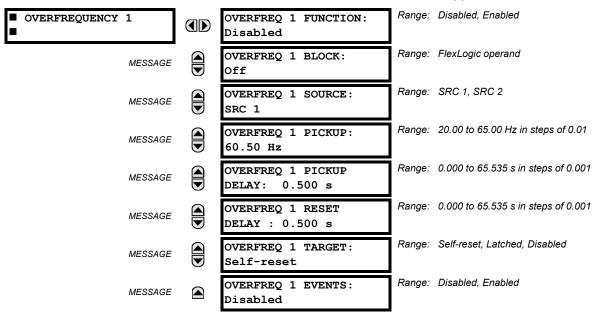



Figure 5-109: UNDERFREQUENCY SCHEME LOGIC

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ OVERFREQUENCY 1(4)

There are four overfrequency elements, numbered 1 through 4.

A frequency calculation for a given source is made on the input of a voltage or current channel, depending on which is available. The channels are searched for the signal input in the following order: voltage channel A, auxiliary voltage channel, current channel A, ground current channel. The first available signal is used for frequency calculation.

The steady-state frequency of a power system is an indicator of the existing balance between the generated power and the load. Whenever this balance is disrupted through the disconnection of significant load or the isolation of a part of the system that has a surplus of generation, the effect will be an increase in frequency. If the control systems of the generators do not respond fast enough, to quickly ramp the turbine speed back to normal, the overspeed can lead to the turbine trip. The overfrequency element can be used to control the turbine frequency ramp down at a generating location. This element can also be used for feeder reclosing as part of the "after load shedding restoration".

The **OVERFREQ 1 SOURCE** setting selects the source for the signal to be measured. The **OVERFREQ 1 PICKUP** setting selects the level at which the overfrequency element is to pickup.

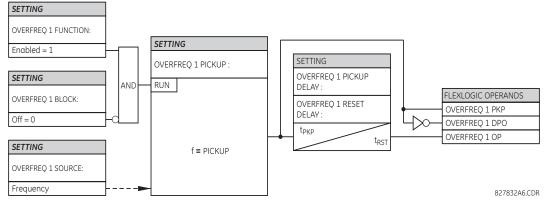
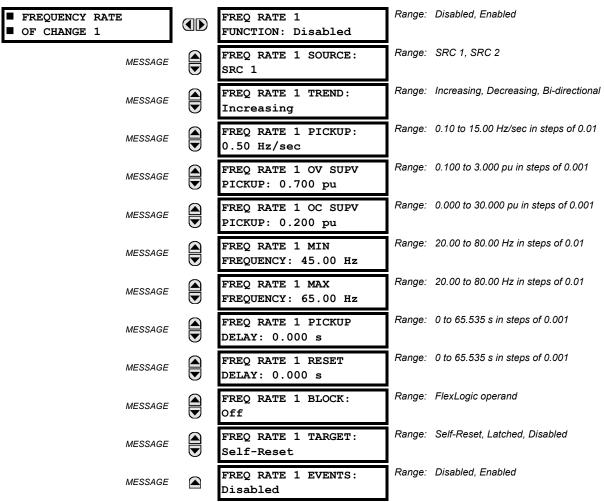



Figure 5-110: OVERFREQUENCY SCHEME LOGIC

5.7.7 FREQUENCY RATE OF CHANGE

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ FREQUENCY RATE OF CHANGE ⇒ FREQUENCY RATE OF CHANGE 1(4)

Four independent rate of change of frequency elements are available. The element responds to rate of change of frequency with voltage, current and frequency supervision.

- FREQ RATE 1 TREND: This setting allows configuring the element to respond to increasing or decreasing frequency, or to frequency change in either direction.
- FREQ RATE 1 PICKUP: This setting specifies an intended df/dt pickup threshold. For applications monitoring a
 decreasing trend, set FREQ RATE 1 TREND to "Decreasing" and specify the pickup threshold accordingly. The operating
 condition is: -df/dt > Pickup.

For applications monitoring an increasing trend, set **FREQ RATE 1 TREND** to "Increasing" and specify the pickup threshold accordingly. The operating condition is: df/dt > Pickup .

For applications monitoring rate of change of frequency in any direction set **FREQ RATE 1 TREND** to "Bi-Directional" and specify the pickup threshold accordingly. The operating condition is: abs(df/dt) > Pickup

- FREQ RATE 1 OV SUPV PICKUP: This setting defines minimum voltage level required for operation of the element.
 The supervising function responds to the positive-sequence voltage. Overvoltage supervision should be used to prevent operation under specific system conditions such as faults.
- FREQ RATE 1 OC SUPV PICKUP: This setting defines minimum current level required for operation of the element. The supervising function responds to the positive-sequence current. Typical application includes load shedding. Set the pickup threshold to zero if no overcurrent supervision is required.

5.7 CONTROL ELEMENTS 5 SETTINGS

FREQ RATE 1 MIN FREQUENCY: This setting defines minimum frequency level required for operation of the element.
 The setting may be used to effectively block the feature based on frequency. For example, if the intent is to monitor an increasing trend but only if the frequency is already above certain level, this setting should be set to the required frequency level.

FREQ RATE 1 MAX FREQUENCY: This setting defines maximum frequency level required for operation of the element. The setting may be used to effectively block the feature based on frequency. For example, if the intent is to monitor a decreasing trend but only if the frequency is already below certain level (such as for load shedding), this setting should be set to the required frequency level.

If the signal source assigned to the frequency rate of change element is only set to auxiliary VT, then the minimum voltage supervision is 3 V.

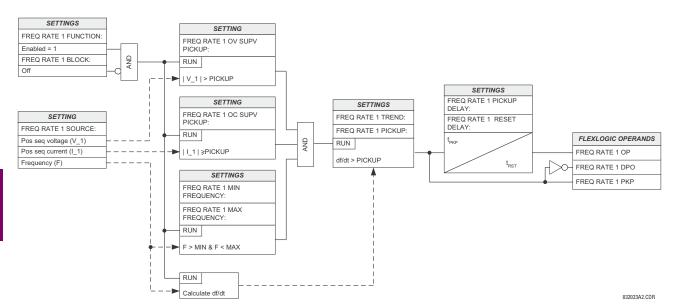
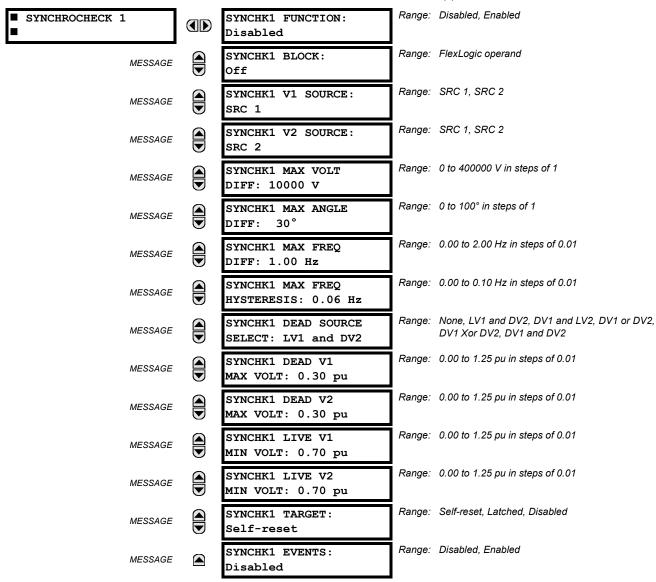



Figure 5-111: FREQUENCY RATE OF CHANGE SCHEME LOGIC

5.7.8 SYNCHROCHECK

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ SYNCHROCHECK 1(4)

There are four identical synchrocheck elements available, numbered 1 to 4.

The synchronism check function is intended for supervising the paralleling of two parts of a system which are to be joined by the closure of a circuit breaker. The synchrocheck elements are typically used at locations where the two parts of the system are interconnected through at least one other point in the system.

Synchrocheck verifies that the voltages (V1 and V2) on the two sides of the supervised circuit breaker are within set limits of magnitude, angle and frequency differences. The time that the two voltages remain within the admissible angle difference is determined by the setting of the phase angle difference $\Delta\Phi$ and the frequency difference ΔF (slip frequency). It can be defined as the time it would take the voltage phasor V1 or V2 to traverse an angle equal to $2 \times \Delta\Phi$ at a frequency equal to the frequency difference ΔF . This time can be calculated by:

$$T = \frac{1}{\frac{360^{\circ}}{2 \times \Delta \Phi} \times \Delta F}$$
 (EQ 5.25)

where: $\Delta\Phi$ = phase angle difference in degrees; ΔF = frequency difference in Hz.

If one or both sources are de-energized, the synchrocheck programming can allow for closing of the circuit breaker using undervoltage control to by-pass the synchrocheck measurements (dead source function).

- SYNCHK1 V1 SOURCE: This setting selects the source for voltage V1 (see NOTES below).
- SYNCHK1 V2 SOURCE: This setting selects the source for voltage V2, which must not be the same as used for the V1 (see NOTES below).
- SYNCHK1 MAX VOLT DIFF: This setting selects the maximum primary voltage difference in volts between the two sources. A primary voltage magnitude difference between the two input voltages below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX ANGLE DIFF: This setting selects the maximum angular difference in degrees between the two sources. An angular difference between the two input voltage phasors below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ DIFF: This setting selects the maximum frequency difference in 'Hz' between the two sources.
 A frequency difference between the two input voltage systems below this value is within the permissible limit for synchronism.
- SYNCHK1 MAX FREQ HYSTERESIS: This setting specifies the required hysteresis for the maximum frequency difference condition. The condition becomes satisfied when the frequency difference becomes lower than SYNCHK1 MAX FREQ DIFF. Once the Synchrocheck element has operated, the frequency difference must increase above the SYNCHK1 MAX FREQ DIFF + SYNCHK1 MAX FREQ HYSTERESIS sum to drop out (assuming the other two conditions, voltage and angle, remain satisfied).
- SYNCHK1 DEAD SOURCE SELECT: This setting selects the combination of dead and live sources that will by-pass synchronism check function and permit the breaker to be closed when one or both of the two voltages (V1 or/and V2) are below the maximum voltage threshold. A dead or live source is declared by monitoring the voltage level. Six options are available:

None: Dead Source function is disabled

LV1 and DV2: Live V1 and Dead V2
DV1 and LV2: Dead V1 and Live V2
DV1 or DV2: Dead V1 or Dead V2

DV1 Xor DV2: Dead V1 exclusive-or Dead V2 (one source is Dead and the other is Live)

DV1 and DV2: Dead V1 and Dead V2

- SYNCHK1 DEAD V1 MAX VOLT: This setting establishes a maximum voltage magnitude for V1 in 1 'pu'. Below this magnitude, the V1 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 DEAD V2 MAX VOLT: This setting establishes a maximum voltage magnitude for V2 in 'pu'. Below this magnitude, the V2 voltage input used for synchrocheck will be considered "Dead" or de-energized.
- SYNCHK1 LIVE V1 MIN VOLT: This setting establishes a minimum voltage magnitude for V1 in 'pu'. Above this magnitude, the V1 voltage input used for synchrocheck will be considered "Live" or energized.
- SYNCHK1 LIVE V2 MIN VOLT: This setting establishes a minimum voltage magnitude for V2 in 'pu'. Above this magnitude, the V2 voltage input used for synchrocheck will be considered "Live" or energized.

NOTES ON THE SYNCHROCHECK FUNCTION:

1. The selected sources for synchrocheck inputs V1 and V2 (which must not be the same source) may include both a three-phase and an auxiliary voltage. The relay will automatically select the specific voltages to be used by the synchrocheck element in accordance with the following table.

NO.	V1 OR V2 (SOURCE Y)	V2 OR V1 (SOURCE Z)	AUTO-SELECTED COMBINATION		AUTO-SELECTED VOLTAGE
			SOURCE Y	SOURCE Z	
1	Phase VTs and Auxiliary VT	Phase VTs and Auxiliary VT	Phase	Phase	VAB
2	Phase VTs and Auxiliary VT	Phase VT	Phase	Phase	VAB
3	Phase VT	Phase VT	Phase	Phase	VAB

NO.	V1 OR V2 (SOURCE Y)	V2 OR V1 (SOURCE Z)	AUTO-SELECTED COMBINATION		AUTO-SELECTED VOLTAGE
			SOURCE Y	SOURCE Z	
4	Phase VT and Auxiliary VT	Auxiliary VT	Phase	Auxiliary	V auxiliary (as set for Source z)
5	Auxiliary VT	Auxiliary VT	Auxiliary	Auxiliary	V auxiliary (as set for selected sources)

The voltages V1 and V2 will be matched automatically so that the corresponding voltages from the two sources will be used to measure conditions. A phase to phase voltage will be used if available in both sources; if one or both of the Sources have only an auxiliary voltage, this voltage will be used. For example, if an auxiliary voltage is programmed to VAG, the synchrocheck element will automatically select VAG from the other source. If the comparison is required on a specific voltage, the user can externally connect that specific voltage to auxiliary voltage terminals and then use this "Auxiliary Voltage" to check the synchronism conditions.

If using a single CT/VT module with both phase voltages and an auxiliary voltage, ensure that <u>only</u> the auxiliary voltage is programmed in one of the sources to be used for synchrocheck.

Exception: Synchronism cannot be checked between Delta connected phase VTs and a Wye connected auxiliary voltage.

2. The relay measures frequency and Volts/Hz from an input on a given source with priorities as established by the configuration of input channels to the source. The relay will use the phase channel of a three-phase set of voltages if programmed as part of that source. The relay will use the auxiliary voltage channel only if that channel is programmed as part of the Source and a three-phase set is not.

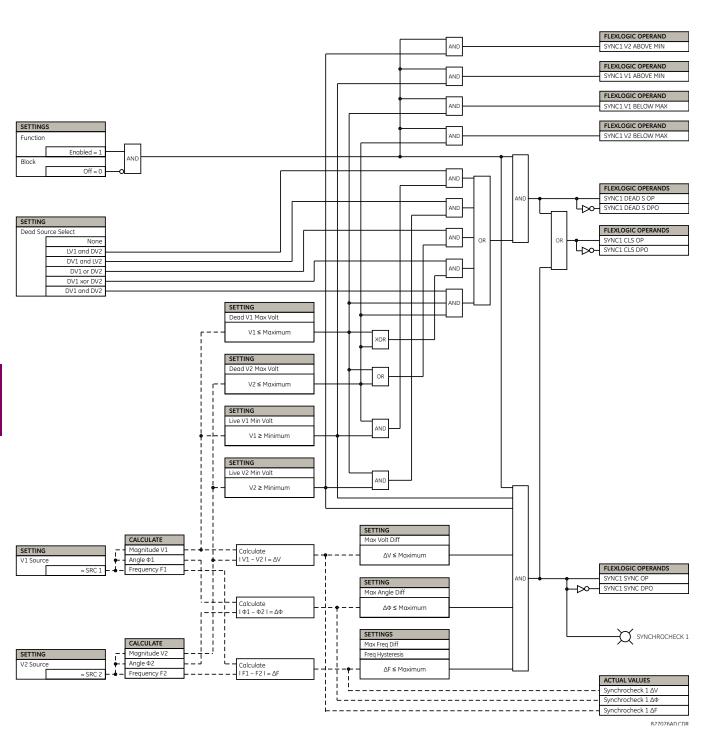
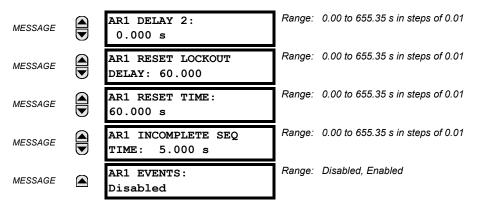



Figure 5-112: SYNCHROCHECK SCHEME LOGIC

5.7.9 AUTORECLOSE

PATH: SETTINGS $\Rightarrow \mathbb{Q}$ CONTROL ELEMENTS $\Rightarrow \mathbb{Q}$ AUTORECLOSE \Rightarrow AUTORECLOSE 1(2)

■ AUTORECLOSE 1	AR1 FUNCTION: Disabled	Range:	Disabled, Enabled
MESSAGE	AR1 INITIATE: Off	Range:	FlexLogic operand
MESSAGE	AR1 BLOCK: Off	Range:	FlexLogic operand
MESSAGE	AR1 MAX NUMBER OF SHOTS: 1	Range:	1, 2, 3, 4
MESSAGE	AR1 REDUCE MAX TO 1: Off	Range:	FlexLogic operand
MESSAGE	AR1 REDUCE MAX TO 2: Off	Range:	FlexLogic operand
MESSAGE	AR1 REDUCE MAX TO 3: Off	Range:	FlexLogic operand
MESSAGE	AR1 MANUAL CLOSE: Off	Range:	FlexLogic operand
MESSAGE	AR1 MNL RST FRM LO: Off	Range:	FlexLogic operand
MESSAGE	AR1 RESET LOCKOUT IF BREAKER CLOSED: Off	Range:	Off, On
MESSAGE	AR1 RESET LOCKOUT ON MANUAL CLOSE: Off	Range:	Off, On
MESSAGE	AR1 BKR CLOSED: Off	Range:	FlexLogic operand
MESSAGE	AR1 BKR OPEN: Off	Range:	FlexLogic operand
MESSAGE	AR1 BLK TIME UPON MNL CLS: 10.000 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 DEAD TIME 1: 1.000 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 DEAD TIME 2: 2.000 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 DEAD TIME 3: 3.000 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 DEAD TIME 4: 4.000 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 ADD DELAY 1: Off	Range:	FlexLogic operand
MESSAGE	AR1 DELAY 1: 0.000 s	Range:	0.00 to 655.35 s in steps of 0.01
MESSAGE	AR1 ADD DELAY 2: Off	Range:	FlexLogic operand

The maximum number of autoreclosure elements available is equal to the number of installed CT banks.

The autoreclosure feature is intended for use with transmission and distribution lines, in three-pole tripping schemes for single breaker applications. Up to four selectable reclosures 'shots' are possible prior to locking out. Each shot has an independently settable dead time. The protection settings can be changed between shots if so desired, using FlexLogic. Logic inputs are available for disabling or blocking the scheme.

Faceplate panel LEDs indicate the state of the autoreclose scheme as follows:

- Reclose Enabled: The scheme is enabled and may reclose if initiated.
- · Reclose Disabled: The scheme is disabled.
- Reclose In Progress: An autoreclosure has been initiated but the breaker has not yet been signaled to close.
- Reclose Locked Out: The scheme has generated the maximum number of breaker closures allowed and, as the fault
 persists, will not close the breaker again; known as 'Lockout'. The scheme may also be sent in 'Lockout' when the
 incomplete sequence timer times out or when a block signal occurs while in 'reclose in progress'. The scheme must be
 reset from Lockout in order to perform reclose for further faults.

The reclosure scheme is considered enabled when all of the following conditions are true:

- The AR1 FUNCTION is set to "Enabled".
- The scheme is not in the 'Lockout' state.
- The 'Block' input is not asserted.
- The AR1 BLK TIME UPON MNL CLS timer is not active.

The autoreclose scheme is initiated by a trip signal from any selected protection feature operand. The scheme is initiated provided the circuit breaker is in the closed state before protection operation.

The reclose-in-progress (RIP) is set when a reclosing cycle begins following a reclose initiate signal. Once the cycle is successfully initiated, the RIP signal will seal-in and the scheme will continue through its sequence until one of the following conditions is satisfied:

- The close signal is issued when the dead timer times out, or
- The scheme goes to lockout.

While RIP is active, the scheme checks that the breaker is open and the shot number is below the limit, and then begins measuring the dead time.

Each of the four possible shots has an independently settable dead time. Two additional timers can be used to increase the initial set dead times 1 to 4 by a delay equal to **AR1 DELAY 1** or **AR1 DELAY 2** or the sum of these two delays depending on the selected settings. This offers enhanced setting flexibility using FlexLogic operands to turn the two additional timers "on" and "off". These operands may possibly include AR1 SHOT CNT =n, SETTING GROUP ACT 1, etc. The autoreclose provides up to maximum 4 selectable shots. Maximum number of shots can be dynamically modified through the settings **AR1 REDUCE MAX TO 1 (2, 3)**, using the appropriate FlexLogic operand.

Scheme lockout blocks all phases of the reclosing cycle, preventing automatic reclosure, if any of the following occurs:

- The maximum shot number was reached.
- A 'Block' input is in effect (for instance; Breaker Failure, bus differential protection operated, etc.).

The 'Incomplete Sequence' timer times out.

The recloser will be latched in the Lockout state until a 'reset from lockout' signal is asserted, either from a manual close of the breaker or from a manual reset command (local or remote). The reset from lockout can be accomplished by operator command, by manually closing the breaker, or whenever the breaker has been closed and stays closed for a preset time.

After the dead time elapses, the scheme issues the close signal. The close signal is latched until the breaker closes or the scheme goes to Lockout.

A reset timer output resets the recloser following a successful reclosure sequence. The reset time is based on the breaker 'reclaim time' which is the minimum time required between successive reclose sequences.

SETTINGS:

- AR1 INITIATE: Selects the FlexLogic operand that initiates the scheme, typically the trip signal from protection.
- AR1 BLOCK: Selects the FlexLogic operand that blocks the autoreclosure initiate (it could be from the breaker failure, bus differential protection, etc.).
- AR1 MAX NUMBER OF SHOTS: Specifies the number of reclosures that can be attempted before reclosure goes to "Lockout" because the fault is permanent.
- AR1 REDUCE MAX TO 1(3): Selects the FlexLogic operand that changes the maximum number of shots from the initial setting to 1, 2, or 3, respectively.
- AR1 MANUAL CLOSE: Selects the logic input set when the breaker is manually closed.
- AR1 MNL RST FRM LO: Selects the FlexLogic operand that resets the autoreclosure from Lockout condition. Typically this is a manual reset from lockout, local or remote.
- AR1 RESET LOCKOUT IF BREAKER CLOSED: This setting allows the autoreclose scheme to reset from Lockout if
 the breaker has been manually closed and stays closed for a preset time. In order for this setting to be effective, the
 next setting (AR1 RESET LOCKOUT ON MANUAL CLOSE) should be disabled.
- AR1 RESET LOCKOUT ON MANUAL CLOSE: This setting allows the autoreclose scheme to reset from Lockout
 when the breaker is manually closed regardless if the breaker remains closed or not. This setting overrides the previous setting (AR1 RESET LOCKOUT IF BREAKER CLOSED).
- AR1 BLK TIME UPON MNL CLS: The autoreclose scheme can be disabled for a programmable time delay after the
 associated circuit breaker is manually closed. This prevents reclosing onto a fault after a manual close. This delay
 must be longer than the slowest expected trip from any protection not blocked after manual closing. If no overcurrent
 trips occur after a manual close and this time expires, the autoreclose scheme is enabled.
- AR1 DEAD TIME 1 to AR1 DEAD TIME 4: These are the intentional delays before first, second, third, and fourth breaker automatic reclosures (1st, 2nd, and 3rd shots), respectively, and should be set longer than the estimated deionizing time following a three pole trip.
- AR1 ADD DELAY 1: This setting selects the FlexLogic operand that introduces an additional delay (Delay 1) to the initial set Dead Time (1 to 4). When this setting is "Off", Delay 1 is by-passed.
- AR1 DELAY 1: This setting establishes the extent of the additional dead time Delay 1.
- AR1 ADD DELAY 2: This setting selects the FlexLogic operand that introduces an additional delay (Delay 2) to the initial set Dead Time (1 to 4). When this setting is "Off", Delay 2 is by-passed.
- AR1 DELAY 2: This setting establishes the extent of the additional dead time Delay 2.
- AR1 RESET LOCKOUT DELAY: This setting establishes how long the breaker should stay closed after a manual close command, in order for the autorecloser to reset from Lockout.
- AR1 RESET TIME: A reset timer output resets the recloser following a successful reclosure sequence. The setting is based on the breaker 'reclaim time' which is the minimum time required between successive reclose sequences.
- AR1 INCOMPLETE SEQ TIME: This timer defines the maximum time interval allowed for a single reclose shot. It is
 started whenever a reclosure is initiated and is active when the scheme is in the 'reclose-in-progress' state. If all conditions allowing a breaker closure are not satisfied when this time expires, the scheme goes to "Lockout".

This timer must be set to a delay less than the reset timer.

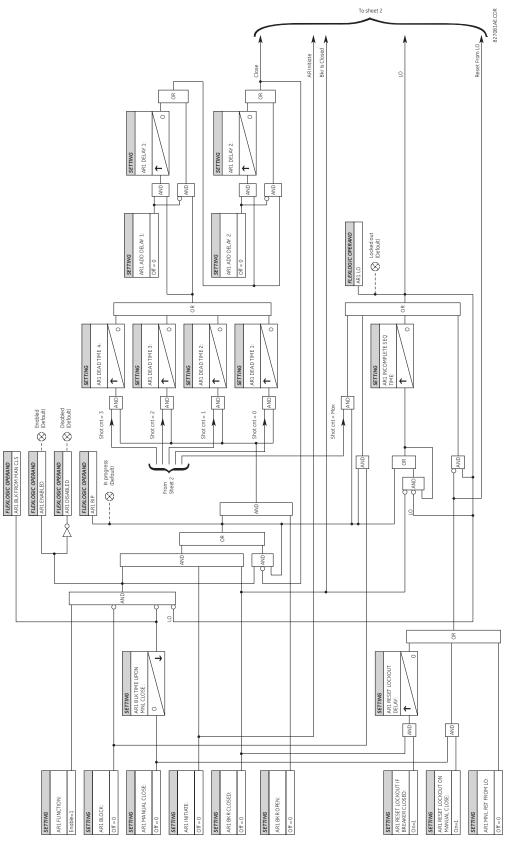


Figure 5–113: AUTORECLOSURE SCHEME LOGIC (Sheet 1 of 2)

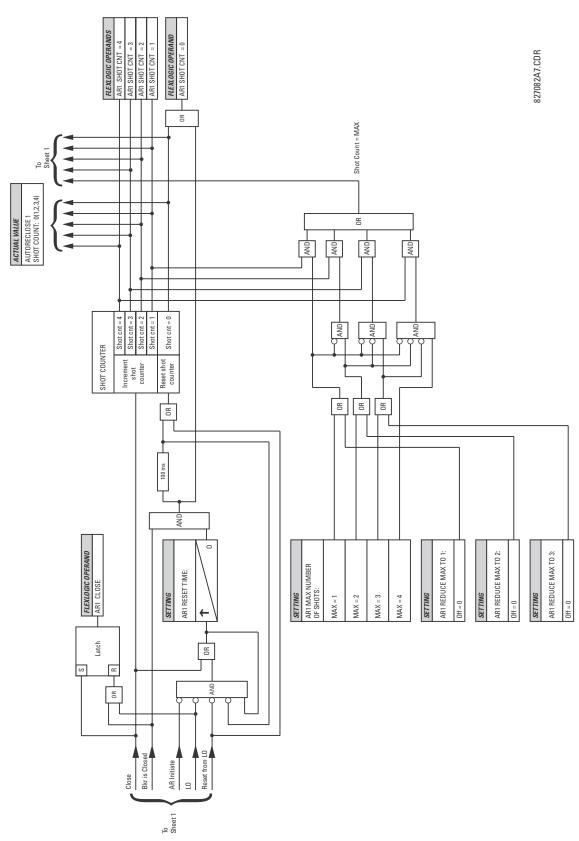


Figure 5–114: AUTORECLOSURE SCHEME LOGIC (Sheet 2 of 2)

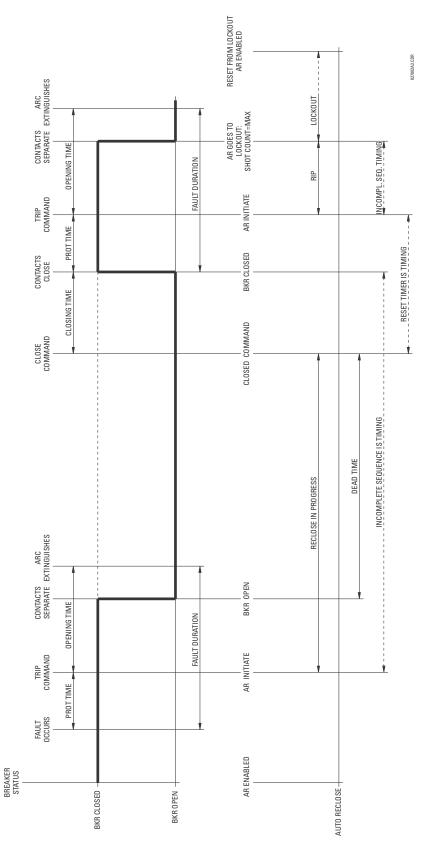
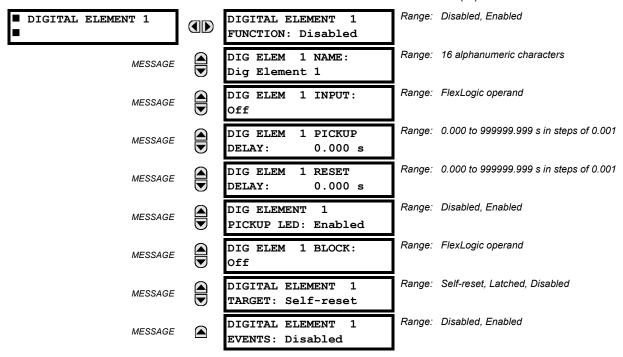



Figure 5-115: SINGLE SHOT AUTORECLOSING SEQUENCE - PERMANENT FAULT

5.7.10 DIGITAL ELEMENTS

There are 48 identical digital elements available, numbered 1 to 48. A digital element can monitor any FlexLogic operand and present a target message and/or enable events recording depending on the output operand state. The digital element settings include a name which will be referenced in any target message, a blocking input from any selected FlexLogic operand, and a timer for pickup and reset delays for the output operand.

- DIGITAL ELEMENT 1 INPUT: Selects a FlexLogic operand to be monitored by the digital element.
- DIGITAL ELEMENT 1 PICKUP DELAY: Sets the time delay to pickup. If a pickup delay is not required, set to "0".
- DIGITAL ELEMENT 1 RESET DELAY: Sets the time delay to reset. If a reset delay is not required, set to "0".
- **DIGITAL ELEMENT 1 PICKUP LED**: This setting enables or disabled the digital element pickup LED. When set to "Disabled", the operation of the pickup LED is blocked.

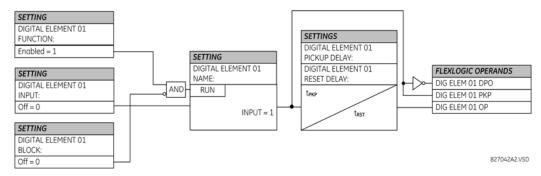


Figure 5–116: DIGITAL ELEMENT SCHEME LOGIC

CIRCUIT MONITORING APPLICATIONS:

Some versions of the digital input modules include an active voltage monitor circuit connected across form-A contacts. The voltage monitor circuit limits the trickle current through the output circuit (see technical specifications for form-A).

As long as the current through the voltage monitor is above a threshold (see technical specifications for form-A), the "Cont Op 1 VOn" FlexLogic operand will be set (for contact input 1 – corresponding operands exist for each contact output). If the output circuit has a high resistance or the DC current is interrupted, the trickle current will drop below the threshold and the "Cont Op 1 VOff" FlexLogic operand will be set. Consequently, the state of these operands can be used as indicators of the integrity of the circuits in which form-A contacts are inserted.

EXAMPLE 1: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

In many applications it is desired to monitor the breaker trip circuit integrity so problems can be detected before a trip operation is required. The circuit is considered to be healthy when the voltage monitor connected across the trip output contact detects a low level of current, well below the operating current of the breaker trip coil. If the circuit presents a high resistance, the trickle current will fall below the monitor threshold and an alarm would be declared.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact which is open when the breaker is open (see diagram below). To prevent unwanted alarms in this situation, the trip circuit monitoring logic must include the breaker position.

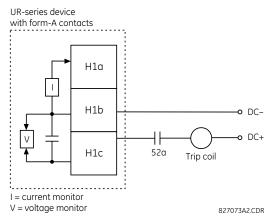
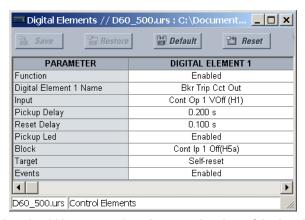
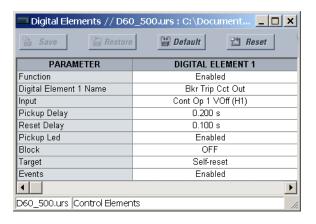



Figure 5-117: TRIP CIRCUIT EXAMPLE 1

Assume the output contact H1 is a trip contact. Using the contact output settings, this output will be given an ID name; for example, "Cont Op 1". Assume a 52a breaker auxiliary contact is connected to contact input H7a to monitor breaker status. Using the contact input settings, this input will be given an ID name, for example, "Cont Ip 1", and will be set "On" when the breaker is closed. The settings to use digital element 1 to monitor the breaker trip circuit are indicated below (EnerVista UR Setup example shown):



The PICKUP DELAY setting should be greater than the operating time of the breaker to avoid nuisance alarms.

EXAMPLE 2: BREAKER TRIP CIRCUIT INTEGRITY MONITORING

If it is required to monitor the trip circuit continuously, independent of the breaker position (open or closed), a method to maintain the monitoring current flow through the trip circuit when the breaker is open must be provided (as shown in the figure below). This can be achieved by connecting a suitable resistor (see figure below) across the auxiliary contact in the trip circuit. In this case, it is not required to supervise the monitoring circuit with the breaker position – the **BLOCK** setting is selected to "Off". In this case, the settings are as follows (EnerVista UR Setup example shown).

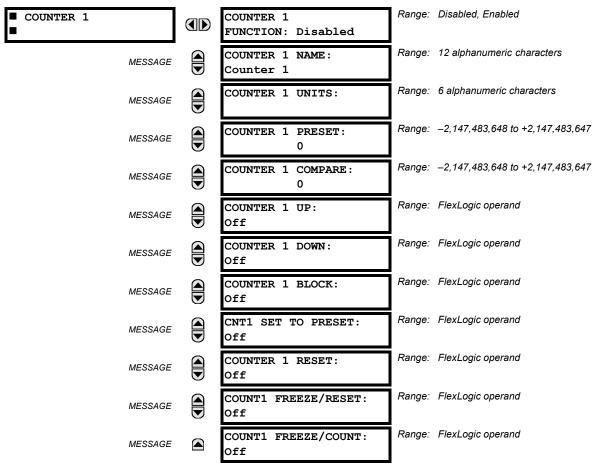



Figure 5-118: TRIP CIRCUIT EXAMPLE 2

The wiring connection for two examples above is applicable to both form-A contacts with voltage monitoring and solid-state contact with voltage monitoring.

There are 8 identical digital counters, numbered from 1 to 8. A digital counter counts the number of state transitions from Logic 0 to Logic 1. The counter is used to count operations such as the pickups of an element, the changes of state of an external contact (e.g. breaker auxiliary switch), or pulses from a watt-hour meter.

- **COUNTER 1 UNITS:** Assigns a label to identify the unit of measure pertaining to the digital transitions to be counted. The units label will appear in the corresponding actual values status.
- **COUNTER 1 PRESET:** Sets the count to a required preset value before counting operations begin, as in the case where a substitute relay is to be installed in place of an in-service relay, or while the counter is running.
- COUNTER 1 COMPARE: Sets the value to which the accumulated count value is compared. Three FlexLogic output operands are provided to indicate if the present value is 'more than (HI)', 'equal to (EQL)', or 'less than (LO)' the set value.
- **COUNTER 1 UP:** Selects the FlexLogic operand for incrementing the counter. If an enabled UP input is received when the accumulated value is at the limit of +2,147,483,647 counts, the counter will rollover to -2,147,483,648.
- **COUNTER 1 DOWN:** Selects the FlexLogic operand for decrementing the counter. If an enabled DOWN input is received when the accumulated value is at the limit of -2,147,483,648 counts, the counter will rollover to +2,147,483,647.
- COUNTER 1 BLOCK: Selects the FlexLogic operand for blocking the counting operation. All counter operands are blocked.

5 SETTINGS 5.7 CONTROL ELEMENTS

 CNT1 SET TO PRESET: Selects the FlexLogic operand used to set the count to the preset value. The counter will be set to the preset value in the following situations:

- 1. When the counter is enabled and the **CNT1 SET TO PRESET** operand has the value 1 (when the counter is enabled and **CNT1 SET TO PRESET** operand is 0, the counter will be set to 0).
- 2. When the counter is running and the CNT1 SET TO PRESET operand changes the state from 0 to 1 (CNT1 SET TO PRESET changing from 1 to 0 while the counter is running has no effect on the count).
- 3. When a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 1 (when a reset or reset/freeze command is sent to the counter and the CNT1 SET TO PRESET operand has the value 0, the counter will be set to 0).
- COUNTER 1 RESET: Selects the FlexLogic operand for setting the count to either "0" or the preset value depending on the state of the CNT1 SET TO PRESET operand.
- **COUNTER 1 FREEZE/RESET:** Selects the FlexLogic operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and resetting the count to "0".
- COUNTER 1 FREEZE/COUNT: Selects the FlexLogic operand for capturing (freezing) the accumulated count value into a separate register with the date and time of the operation, and continuing counting. The present accumulated value and captured frozen value with the associated date/time stamp are available as actual values. If control power is interrupted, the accumulated and frozen values are saved into non-volatile memory during the power down operation.

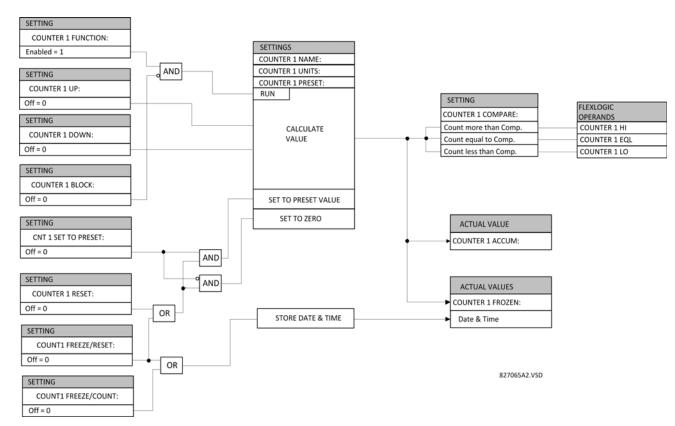
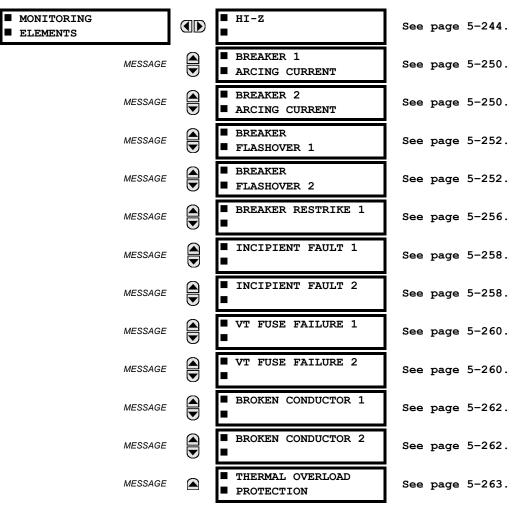
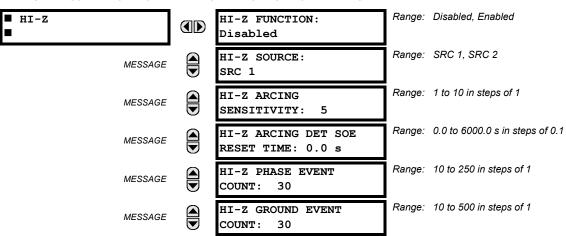



Figure 5-119: DIGITAL COUNTER SCHEME LOGIC


a) MAIN MENU

b) HIGH IMPEDANCE FAULT DETECTION

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS \$\Rightarrow\$ MONITORING ELEMENTS \$\Rightarrow\$ HI-Z

MESSAGE	HI-Z EVENT COUNT TIME: 15 min	Range:	5 to 180 min. in steps of 1
MESSAGE	HI-Z OC PROTECTION COORD TIMEOUT: 15 s	Range:	10 to 200 s in steps of 1
MESSAGE	HI-Z PHASE OC MIN PICKUP: 1.50 pu	Range:	0.01 to 10.00 pu in steps of 0.01
MESSAGE	HI-Z NEUTRAL OC MIN PICKUP: 1.00 pu	Range:	0.01 to 10.00 pu in steps of 0.01
MESSAGE	HI-Z PHASE RATE OF CHANGE: 150 A/2cycle	Range:	1 to 999 A/2cycle in steps of 1
MESSAGE	HI-Z NEUTRAL RATE OF CHANGE: 150 A/2cycle	Range:	1 to 999 A/2cycle in steps of 1
MESSAGE	HI-Z LOSS OF LOAD THRESHOLD: 15%	Range:	5 to 100% in steps of 1
MESSAGE	HI-Z 3-PHASE EVENT THRESHOLD: 25 A	Range:	1 to 1000 A in steps of 1
MESSAGE	HI-Z VOLTAGE SUPV THRESHOLD: 5%	Range:	0 (off) to 100% in steps of 1
MESSAGE	HI-Z VOLTAGE SUPV DELAY: 60 cycles	Range:	0 to 300 cycles in steps of 2
MESSAGE	HI-Z EVEN HARMONIC RESTRAINT: 20%	Range:	0 to 100% in steps of 1
MESSAGE	HI-Z TARGET: Self-reset	Range:	Self-reset, Latched, Disabled
MESSAGE	HI-Z EVENTS: Disabled	Range:	Disabled, Enabled

Some faults in overhead distribution feeders are characterized by low fault current due to high ground resistance. If the fault current is in the order of expected unbalance load or less, it cannot be reliably detected by overcurrent protection. These faults are classified as high-impedance (Hi-Z) faults. Since a Hi-Z fault is not accompanied by excessive current, it is generally not dangerous to the electrical installation except for some damage to the overhead conductor at the fault location. However, an undetected Hi-Z fault is a risk to people and property as well as having a potential to evolve into a full-blown fault.

The following event types are associated with Hi-Z faults. It is assumed that for all cases that ground is involved.

- · High impedance fault: a fault with fault impedance sufficiently high such that it is not detected by overcurrent protection
- High impedance, downed conductor fault: a high impedance fault for which the primary conductor is no longer intact on pole top insulators, but instead is in contact with earth or a grounded object
- Arcing fault: any high impedance fault which exhibits arcing

Combinations of these events are possible: for example, an arcing high impedance, downed conductor fault. The Hi-Z element is intended to detect high impedance faults that arc and to differentiate those that are downed conductors from those that are not. It should be noted that no known technology can detect all Hi-Z faults.

The Hi-Z element was primarily designed for solidly grounded systems. The similar Hi-Z element in the DFM200 relay has been tested with some success on impedance grounded systems as well. However, there are no guarantees of certain operation of the high impedance fault detection element on non-solidly grounded systems.

The Hi-Z data collection consists of RMS Data Capture and Hi-Z Data capture:

RMS Data Capture: The RMS data captures are triggered by two-cycle Hi-Z overcurrent conditions, loss of load conditions, and high arc confidence conditions. Captures triggered by loss of load and high arc confidence conditions are saved to a temporary capture table, and deleted if the event does not result in an Arcing or Downed Conductor conditions.

tion. The relay maintains a history of four captures and utilizes a combination of age, priority and access for determining which capture to save.

The RMS data capture contains the two-cycle RMS values for the voltage and current for each of the phases and current for the neutral channel. The capture frequency is half the system frequency. Each capture contains 1800 points.

• **High-Z Data Capture**: Hi-Z Data Captures are triggered and maintained in an identical manner as RMS Data Captures. The relay maintains four captures of 300 records each. The capture frequency is 1 Hz and the data collected is defined in the following two tables.

Table 5-33: HI-Z SPECIFIC DATA

#	NAME	DESCRIPTION
0	EadCounts	Total number of EAD counts for the phase
1	ArcConfidence	ArcConfidence for the phase
2	AccumArcConf	Accumulated ArcConfidence for the phase
3	RmsCurrent	The 2-cycle RMS current for the phase
4	HighROC	Flag indicating a high rate of change was detected
5	IOC	Flag indicating an instantaneous 2-cycle overcurrent was detected
6	LossOfLoad	Flag indicating a loss of load was detected
7	EadZeroed	Flag indicating that this phase's EAD table was cleared
8	HighZArmed	Flag indicating that this phase is armed for a high-Z detection
9	VoltageDip	Flag indicating that a voltage dip was detected on this phase
10	HighEad	Flag indicating that a high arc confidence occurred on this phase
11	ArcBurst	Flag indicating that an arc burst was identified on this phase
12	VDisturbanceCc	Cycle-to-cycle voltage disturbance
13	VDisturbanceAbs	Absolute voltage disturbance
14	HarmonicRestraint	Harmonic Restraint

Table 5-34: HI-Z CAPTURE DATA

#	NAME	DESCRIPTION
1	StatusMask	Bit-mask of the algorithm state (16 bits) BIT_ARCING BIT_DOWNED_COND BIT_ARC_TREND BIT_PHASE_A
		BIT_PHASE_B BIT_PHASE_C BIT_PHASE_N BIT_IOC_A
		BIT_IOC_B BIT_IOC_C BIT_IOC_N BIT_LOL_A
		BIT_LOL_B BIT_LOL_C BIT_I_DISTURBANCE BIT_V_DISTURBANCE
2	AlgorithmState	Present value of the High-Z output state machine: Normal = 0, Coordination Timeout = 1, Armed = 2, Arcing = 5, Downed Conductor = 9
3	EadZeroedFlag	Flag indicating the EAD table was cleared
4	SpectralFlag	Flag indicating the Spectral algorithm has found a match
5	ThreePhaseFlag	Flag indicating a three phase event was detected
6	PhaseInfo[4]	Phase specific information for the three phase currents and the neutral (see table below)

5 SETTINGS 5.7 CONTROL ELEMENTS

The algorithm is in "Normal" state when it detects no abnormal activity on the power system. While in the "Normal" state, any one of several power system events (a high output of the Expert Arc Detector, a significant loss of load, or a Hi-Z overcurrent) cause the algorithm to move to the "Coordination Timeout" state, where it remains for the time specified by the **oc PROTECTION COORD TIMEOUT** setting. Following this interval, the algorithm moves into its "Armed" state. The criteria for detecting arcing or a downed conductor are:

- 1. the Expert Arc Detector Algorithm's output reaches a high level enough times, and
- 2. its high level was last reached when the algorithm's state was "Armed".

The "Arcing Sensitivity" setting determines what level constitutes a "high" output from the Expert Arc Detector Algorithm, and the number that constitutes what "enough times" means. If these criteria are met, the algorithm temporarily moves to either the "Arcing" state or the "Downed Conductor" state, the difference being determined by whether or not there was a significant, precipitous loss of load (as determined by the LOSS OF LOAD THRESHOLD user setting) or a Hi-Z overcurrent (as determined by the PHASE OC MIN PICKUP and NEUTRAL OC MIN PICKUP user settings). If either of these caused the algorithm to move from its "Normal" state to its "Coordination Timeout" state, then the algorithm moves to the "Downed Conductor" state temporarily. Otherwise, it temporarily moves to the "Arcing" state. After pulsing either of these outputs, the algorithm's state returns to "Normal". Also, if two minutes pass without high levels from the Expert Arc Detector Algorithm while the algorithm is in its Armed state, then it moves from the "Armed" state directly back to the "Normal" state.

Two FlexLogic operands, HI-Z ARMED and HI-Z DISARMED, are created to represent the armed state of the Hi-Z element. The HI-Z ARMED operand is on when the algorithm is in the armed state, whereas the HI-Z DISARMED operand is on when the algorithm is not in the armed state. When the algorithm is armed, this also includes the arcing and downed conductor states. When the algorithm is disarmed, this also includes the normal and coordination timeout states (as defined by Modbus format F187 as described in *Appendix B*).

The Hi-Z settings are described below:

- HI-Z SOURCE: Selects the source for the RMS currents and voltages used in Hi-Z algorithms. The source should
 include currents from the 8F/8G CT module and appropriate voltages. If the source does not include voltages, Voltage
 Supervision is disabled.
- HI-Z ARCING SENSITIVITY: This setting establishes the belief-in-arcing confidence level at which the Hi-Z element
 will recognize arcing and the number of times the algorithm must conform its belief in arcing before it produces an output. The range is 1 to 10, where 10 is the most sensitive and 1 is the least sensitive setting.
 - A higher setting would be suitable for a very quiet, well-behaved power system. An initial setting of 5 is suggested if the user has no previous experience with the Hi-Z element.
- HI-Z ARCING DET SOE RESET TIME: An ARCING DETECTED event is created upon the detection of arcing by the
 expert arc detector algorithm. This setting defines the amount of time to hold creation of any new arcing detected
 events. Any subsequent arcing detection during this time will re-start the hold timer. An ARCING DETECTED DPO event
 is generated upon the expiration of this reset time. The state of the expert arc detector algorithm is unaffected by this
 timer. The HI-Z ARC DETECTED DPO operand is set to "On" when the ARCING DETECTED DPO event is created, and
 remains on until an ARCING DETECTED event is created.
- HI-Z PHASE EVENT COUNT: Specifies how many individual belief-in-arcing indications for a phase current must be
 counted in a specified time period before it is determined that an arcing-suspected event exists. These belief-in-arcing
 indications are detected by arc detection algorithms (energy and randomness) for a specific set of non-fundamental
 frequency component energies. This setting affects only the Hi-Z Arcing Suspected outputs.
- HI-Z GROUND EVENT COUNT: Specifies how many individual belief-in-arcing indications for a ground/neutral current
 must be counted in a specified time period before it is determined that an arcing-suspected event exists. These beliefin-arcing indications are detected by arc detection algorithms (energy and randomness) for a specific set of non-fundamental frequency component energies. This setting affects only the Hi-Z Arcing Suspected outputs.
- HI-Z EVENT COUNT TIME: Specifies the time (in minutes) over which the relay monitors long-term, sporadic, arcing
 events for determination of an arcing-suspected event. This setting affects only the Hi-Z Arcing Suspected outputs.
- HI-Z OC PROTECTION COORD TIMEOUT: This setting coordinates between the Hi-Z element and conventional feeder overcurrent protection. A downed conductor or an arcing, intact conductor will not be indicated before the expiration of this timeout, which begins when the Hi-Z element detects a trigger condition (i.e. loss of load, high rate of change, overcurrent, breaker open, or high belief-in-arcing confidence). Note that this is a minimum operating time; the actual operating time will depend on the fault characteristics and will likely be significantly longer than this setting.

This value should be such that the conventional feeder overcurrent protection is given an opportunity to operate before the timeout expires. It is recommended that this timeout value not exceed 30 seconds, because arcing fault current often diminishes as the fault progresses, making the fault more difficult to detect with increasing time. After the timeout has expired, at least one additional arc burst must occur in order for the Hi-Z element to proceed with its analysis.

- HI-Z PHASE OC MIN PICKUP: Phase overcurrent minimum pickup indicates the level at which the Hi-Z element considers a phase current to be an overcurrent condition. The Hi-Z detection algorithms will ignore all data as long as an overcurrent condition exists on the system, because it is assumed that conventional feeder overcurrent protection will clear an overcurrent fault. It is recommended that this setting is above the maximum load current.
- HI-Z NEUTRAL OC MIN PICKUP: Neutral overcurrent minimum pickup indicates the level at which the Hi-Z element
 considers a neutral current to be an overcurrent condition. The Hi-Z detection algorithms will ignore all data as long as
 an overcurrent condition exists on the system, because it is assumed that conventional feeder overcurrent protection
 will clear an overcurrent fault. It is recommended that this setting is above the maximum 3lo (residual) current due to
 unbalanced loading.
- HI-Z PHASE RATE OF CHANGE: Establishes a threshold for determining when a high rate-of-change event occurs on a phase RMS current. An extremely high rate of change is not characteristic of most high impedance faults; it is more indicative of a low impedance fault or of the inrush of breaker closing. The inrush current produces substantial variations in the harmonics used by the high impedance algorithms. Therefore these algorithms ignore all data for several seconds following a high rate-of-change event that exceeds this setting.
 - The RMS currents in the Hi-Z algorithms are calculated over a two-cycle time window. The rate-of-change is calculated as the difference between two consecutive two-cycle RMS readings. The recommended setting is 150 A per two-cycle interval. *The setting is given in primary amperes*.
- HI-Z NEUTRAL RATE OF CHANGE: Establishes a threshold for determining when a high rate-of-change event occurs
 on a neutral RMS current. An extremely high rate of change is not characteristic of most high impedance faults; it is
 more indicative of a breaker closing, causing associated inrush. The inrush current produces substantial variations in
 the harmonics used by the high impedance algorithms. Therefore, these algorithms ignore all data for several seconds
 following a high rate-of-change event exceeding this setting.
 - The RMS currents in the Hi-Z algorithms are calculated over a two-cycle time window. The rate-of-change is calculated as the difference between two consecutive two-cycle RMS readings. The recommended setting is 150 A per two-cycle interval. *The setting is given in primary amperes*.
- HI-Z LOSS OF LOAD THRESHOLD: Establishes the loss of load level used as an indication of a downed conductor. A
 Loss of Load flag is set if the Hi-Z algorithms detect a percentage drop in phase current between two successive twocycle RMS values that equals or exceeds the Loss of Load Threshold. The amount the phase current must decrease
 between successive two-cycle RMS values is based on this setting times the recent average phase current level. The
 range is 5 to 100%; 5% being the most sensitive.
- HI-Z 3-PHASE EVENT THRESHOLD: Establishes the level at which the Hi-Z element characterizes a sudden three-phase current increase as a three-phase event. The Hi-Z detection algorithms ignore the data generated by a large three-phase event. The recommended setting is 25 A (primary).
- HI-Z VOLTAGE SUPV THRESHOLD: In the event that a fault simultaneously occurs on two adjacent feeders (line voltage from the same bus), the drop in line voltage will cause a subsequent drop in load current. This function will block the Loss of Load flag from being set while the voltage is depressed. Thus, if the voltage level drops by a percentage greater than this threshold in successive two-cycle RMS samples, the Loss of Load flag will be blocked. If the setting is "0", the voltage supervision function will be disabled.
- **HI-Z VOLTAGE SUPV DELAY**: This setting adds time delay to the voltage supervision function. Specifically, the Loss of Load flag will continue to be blocked for the number of cycles specified by this setting.
- HI-Z EVEN HARMONIC RESTRAINT: This setting determines the level of the even harmonic at which the setting of
 the overcurrent flags is inhibited. The even harmonic content is evaluated on each phase current as a percentage of
 that phase's RMS current. The intent is to inhibit the setting of the overcurrent flags if the overcurrent is simply a surge
 caused by cold-load pickup or other inrush event.

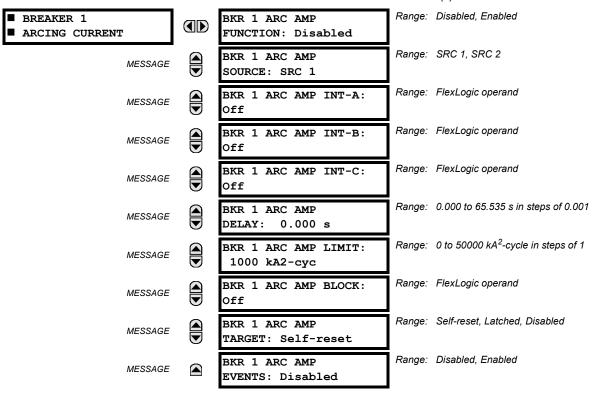

IMPORTANT NOTE REGARDING INSTALLATION: The F60 Hi-Z algorithm is adaptive in nature. The algorithm's internal thresholds gradually adapt to background "noise" on circuits with a moderate to high level of transient activity. For the first three to five days after installation (or after being out-of-service for a significant period), the F60 may identify some of this noise as arcing. This should be taken into account when responding to alarms during these type of operating periods.

Figure 5-120: HI-Z SCHEME LOGIC

c) BREAKER ARCING CURRENT

PATH: SETTINGS $\Rightarrow \emptyset$ CONTROL ELEMENTS $\Rightarrow \emptyset$ MONITORING ELEMENTS \Rightarrow BREAKER 1(2) ARCING CURRENT

There is one breaker arcing current element available per CT bank, with a minimum of two elements. This element calculates an estimate of the per-phase wear on the breaker contacts by measuring and integrating the current squared passing through the breaker contacts as an arc. These per-phase values are added to accumulated totals for each phase and compared to a programmed threshold value. When the threshold is exceeded in any phase, the relay can set an output operand to "1". The accumulated value for each phase can be displayed as an actual value.

The operation of the scheme is shown in the following logic diagram. The same output operand that is selected to operate the output relay used to trip the breaker, indicating a tripping sequence has begun, is used to initiate this feature. A time delay is introduced between initiation and the starting of integration to prevent integration of current flow through the breaker before the contacts have parted. This interval includes the operating time of the output relay, any other auxiliary relays and the breaker mechanism. For maximum measurement accuracy, the interval between change-of-state of the operand (from 0 to 1) and contact separation should be measured for the specific installation. Integration of the measured current continues for 100 ms, which is expected to include the total arcing period.

The feature is programmed to perform fault duration calculations. Fault duration is defined as a time between operation of the disturbance detector occurring before initiation of this feature, and reset of an internal low-set overcurrent function. Correction is implemented to account for a non-zero reset time of the overcurrent function.

Breaker arcing currents and fault duration values are available under the ACTUAL VALUES ⇔ RECORDS ⇔ MAINTENANCE ⇒ BREAKER 1(2) menus.

- **BKR 1 ARC AMP INT-A(C):** Select the same output operands that are configured to operate the output relays used to trip the breaker. In three-pole tripping applications, the same operand should be configured to initiate arcing current calculations for poles A, B and C of the breaker. In single-pole tripping applications, per-pole tripping operands should be configured to initiate the calculations for the poles that are actually tripped.
- **BKR 1 ARC AMP DELAY:** This setting is used to program the delay interval between the time the tripping sequence is initiated and the time the breaker contacts are expected to part, starting the integration of the measured current.
- BKR 1 ARC AMP LIMIT: Selects the threshold value above which the output operand is set.

5.7 CONTROL ELEMENTS

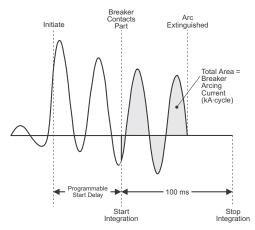


Figure 5-121: ARCING CURRENT MEASUREMENT

Figure 5-122: BREAKER ARCING CURRENT SCHEME LOGIC

d) BREAKER FLASHOVER

PATH: SETTINGS ⇒ U CONTROL ELEMENTS ⇒ U MONITORING ELEMENTS ⇒ BREAKER FLASHOVER 1(2)

■ BREAKER ■ FLASHOVER 1		BKR 1 FLSHOVR FUNCTION: Disabled	Range: Disabled, Enabled
MESSA	AGE	BKR 1 FLSHOVR SIDE 1 SRC: SRC 1	Range: SRC 1, SRC 2
MESSA	AGE	BKR 1 FLSHOVR SIDE 2 SRC: None	Range: None, SRC 1, SRC 2
MESSA	AGE 🔻	BKR 1 STATUS CLSD A: Off	Range: FlexLogic operand
MESSA	AGE 🔻	BKR 1 STATUS CLSD B: Off	Range: FlexLogic operand
MESSA	AGE 🔻	BKR 1 STATUS CLSD C: Off	Range: FlexLogic operand
MESSA	AGE 🖢	BKR 1 FLSHOVR V PKP: 0.850 pu	Range: 0.000 to 1.500 pu in steps of 0.001
MESSA	AGE 🙀	BKR 1 FLSHOVR DIFF V PKP: 1000 V	Range: 0 to 100000 V in steps of 1
MESSA	AGE 🙀	BKR 1 FLSHOVR AMP PKP: 0.600 pu	Range: 0.000 to 1.500 pu in steps of 0.001
MESSA	AGE 🔻	BKR 1 FLSHOVR PKP DELAY: 0.100 s	Range: 0.000 to 65.535 s in steps of 0.001
MESSA	AGE 🔻	BKR 1 FLSHOVR SPV A: Off	Range: FlexLogic operand
MESSA	AGE 🔻	BKR 1 FLSHOVR SPV B: Off	Range: FlexLogic operand
MESSA	AGE 🖢	BKR 1 FLSHOVR SPV C: Off	Range: FlexLogic operand
MESSA	AGE 🔻	BKR 1 FLSHOVR BLOCK: Off	Range: FlexLogic operand
MESSA	AGE 🖢	BKR 1 FLSHOVR TARGET: Self-reset	Range: Self-reset, Latched, Disabled
MESSA	AGE 📤	BKR 1 FLSHOVR EVENTS: Disabled	Range: Disabled, Enabled

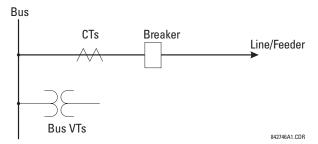
The detection of the breaker flashover is based on the following condition:

- 1. Breaker open,
- 2. Voltage difference drop, and
- 3. Measured flashover current through the breaker.

Furthermore, the scheme is applicable for cases where either one or two sets of three-phase voltages are available across the breaker.

THREE VT BREAKER FLASHOVER APPLICATION

When only one set of VTs is available across the breaker, the **BRK 1 FLSHOVR SIDE 2 SRC** setting should be "None". To detect an open breaker condition in this application, the scheme checks if the per-phase voltages were recovered (picked up), the status of the breaker is open (contact input indicating the breaker status is off), and no flashover current is flowing. A contact showing the breaker status must be provided to the relay. The voltage difference will not be considered as a condition for open breaker in this part of the logic.



Voltages must be present prior to flashover conditions. If the three VTs are placed after the breaker on the line (or feeder), and the downstream breaker is open, the measured voltage would be zero and the flashover element will not be initiated.

The flashover detection will reset if the current drops back to zero, the breaker closes, or the selected FlexLogic operand for supervision changes to high. Using supervision through the BRK 1 FLSHOVR SPV A, BRK 1 FLSHOVR SPV B, and BRK 1 FLSHOVR SPV C settings is recommended by selecting a trip operand that will not allow the flashover element to pickup prior to the trip.

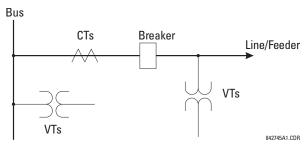
The flashover detection can be used for external alarm, re-tripping the breaker, or energizing the lockout relay.

Consider the following configuration:

The source 1 (SRC1) phase currents are feeder CTs and phase voltages are bus VTs, and Contact Input 1 is set as Breaker 52a contact. The conditions prior to flashover detection are:

- 1. 52a status = 0.
- 2. VAg, VBg, or VCg is greater than the pickup setting.
- 3. IA, IB, IC = 0; no current flows through the breaker.
- 4. $\triangle VA$ is greater than pickup (not applicable in this scheme).

The conditions at flashover detection are:


- 1. 52a status = 0.
- 2. IA, IB, or IC is greater than the pickup current flowing through the breaker.
- 3. $\triangle VA$ is greater than pickup (not applicable in this scheme).

SIX VT BREAKER FLASHOVER APPLICATION

The per-phase voltage difference approaches zero when the breaker is closed. The is well below any typical minimum pickup voltage. Select the level of the BRK 1 FLSHOVR DIFF V PKP setting to be less than the voltage difference measured across the breaker when the close or open breaker resistors are left in service. Prior to flashover, the voltage difference is larger than BRK 1 FLSHOVR DIFF V PKP. This applies to either the difference between two live voltages per phase or when the voltage from one side of the breaker has dropped to zero (line de-energized), at least one per-phase voltage is larger than the BRK 1 FLSHOVR V PKP setting, and no current flows through the breaker poles. During breaker flashover, the per-phase voltages from both sides of the breaker drops below the pickup value defined by the BRK 1 FLSHOVR V PKP setting, the voltage difference drops below the pickup setting, and flashover current is detected. These flashover conditions initiate Flex-Logic pickup operands and start the BRK 1 FLSHOVR PKP DELAY timer.

This application does not require detection of breaker status via a 52a contact, as it uses a voltage difference larger than the **BRK 1 FLSHOVR DIFF V PKP** setting. However, monitoring the breaker contact will ensure scheme stability.

Consider the following configuration:

The source 1 (SRC1) phase currents are CTs and phase voltages are bus VTs. The source 2 (SRC2) phase voltages are line VTs. Contact input 1 is set as the breaker 52a contact (optional).

The conditions prior to flashover detection are:

- 1. ΔVA is greater than pickup
- 2. IA, IB, IC = 0; no current flows through the breaker
- 3. 52a status = 0 (optional)

The conditions at flashover detection are:

- ∆VA is less than pickup
- 2. VAg, VBg, or VCg is lower than the pickup setting
- 3. IA, IB, or IC is greater than the pickup current flowing through the breaker
- 4. 52a status = 0 (optional)

The element is operational only when phase-to-ground voltages are connected to relay terminals. The flashover element will not operate if delta voltages are applied.

The breaker flashover settings are described below.

- BRK 1 FLSHOVR SIDE 1 SRC: This setting specifies a signal source used to provide three-phase voltages and three-phase currents from one side of the current breaker. The source selected as a setting and must be configured with breaker phase voltages and currents, even if only three (3) VTs are available across the breaker.
- BRK 1 FLSHOVR SIDE 2 SRC: This setting specifies a signal source used to provide another set of three phase voltages whenever six (6) VTs are available across the breaker.
- BRK 1 STATUS CLSD A to BRK 1 STATUS CLSD C: These settings specify FlexLogic operands to indicate the open status of the breaker. A separate FlexLogic operand can be selected to detect individual breaker pole status and provide flashover detection. The recommended setting is 52a breaker contact or another operand defining the breaker poles open status.
- BRK 1 FLSHOVR V PKP: This setting specifies a pickup level for the phase voltages from both sides of the breaker. If six VTs are available, opening the breaker leads to two possible combinations live voltages from only one side of the breaker, or live voltages from both sides of the breaker. Either case will set the scheme ready for flashover detection upon detection of voltage above the selected value. Set BRK FLSHOVR V PKP to 85 to 90% of the nominal voltage.
- BRK 1 FLSHOVR DIFF V PKP: This setting specifies a pickup level for the phase voltage difference when two VTs per
 phase are available across the breaker. The pickup voltage difference should be below the monitored voltage difference when close or open breaker resistors are left in service. The setting is selected as primary volts difference
 between the sources.
- BRK 1 FLSHOVR AMP PKP: This setting specifies the normal load current which can flow through the breaker. Depending on the flashover protection application, the flashover current can vary from levels of the charging current when the line is de-energized (all line breakers open), to well above the maximum line (feeder) load (line/feeder connected to load).
- BRK 1 FLSHOVR SPV A to BRK 1 FLSHOVR SPV C: These settings specify FlexLogic operands (per breaker pole)
 that supervise the operation of the element per phase. Supervision can be provided by operation of other protection

5 SETTINGS 5.7 CONTROL ELEMENTS

elements, breaker failure, and close and trip commands. A six-cycle time delay applies after the selected FlexLogic operand resets.

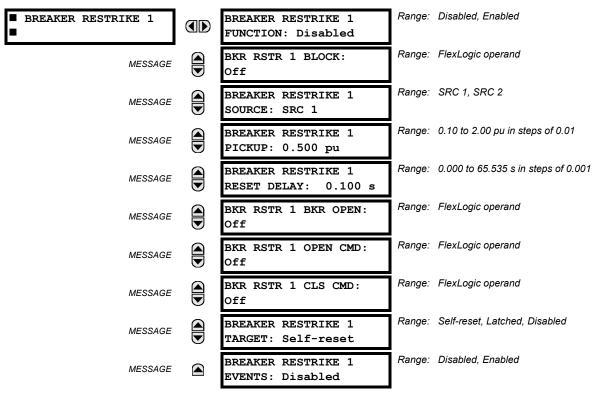

• BRK FLSHOVR PKP DELAY: This setting specifies the time delay to operate after a pickup condition is detected.

Figure 5-123: BREAKER FLASHOVER SCHEME LOGIC

e) BREAKER RESTRIKE

PATH: SETTINGS ⇒ ♣ CONTROL ELEMENTS ⇒ ♣ MONITORING ELEMENTS ⇒ ♣ BREAKER RESTRIKE 1

One breaker restrike element is provided in the F60.

According to IEEE standard C37.100: *IEEE Standard Definitions for Power Switchgear*, restrike is defined as "a resumption of current between the contacts of a switching device during an opening operation after an interval of zero current of 1/4 cycle at normal frequency or longer".

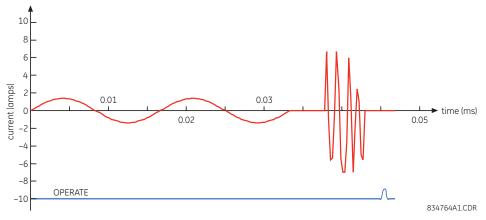


Figure 5-124: TYPICAL RESTRIKE WAVEFORM AND DETECTION FLAG

The breaker restrike algorithm responds to a successful interruption of the phase current following a declaration of capacitor bank offline as per the breaker pole indication. If a high-frequency current with a magnitude greater than the threshold is resumed at least ¼ of a cycle later than the phase current interruption, then a breaker restrike condition is declared in the corresponding phase and the BRK RESTRIKE 1 OP operand is asserted for a short period of time. The user can add counters and other logic to facilitate the decision making process as to the appropriate actions upon detecting a single restrike or a series of consecutive restrikes.

A restrike event (FlexLogic operand) is declared if all of the following hold:

5 SETTINGS 5.7 CONTROL ELEMENTS

- The current is initially interrupted.
- · The breaker status is open.
- An elevated high frequency current condition occurs and the current subsequently drops out again.

The algorithm is illustrated in the state machine diagram shown below.

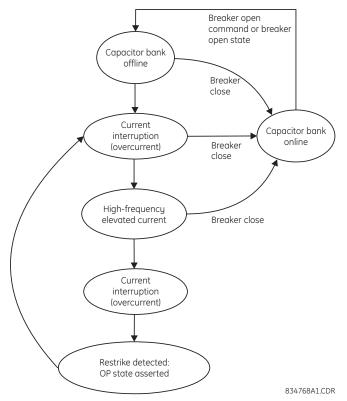


Figure 5-125: ALGORITHM ILLUSTRATION - STATE MACHINE TO DETECT RESTRIKE

In this way, a distinction is made between a self-extinguishing restrike and permanent breaker failure condition. The latter can be detected by the breaker failure function or a regular instantaneous overcurrent element. Also, a fast succession of restrikes will be picked up by breaker failure or instantaneous overcurrent protection.

The following settings are available for each element.

- BREAKER RESTRIKE 1 FUNCTION: This setting enable and disables operation of the breaker restrike detection element.
- BRK RSTR 1 BLOCK: This setting is used to block operation of the breaker restrike detection element.
- BREAKER RESTRIKE 1 SOURCE: This setting selects the source of the current for this element. This source must have a valid CT bank assigned.
- BREAKER RESTRIKE 1 PICKUP: This setting specifies the pickup level of the overcurrent detector in per-unit values
 of CT nominal current.
- BREAKER RESTRIKE 1 RESET DELAY: This setting specifies the reset delay for this element. When set to "0 ms", then FlexLogic operand will be picked up for only 1/8th of the power cycle.
- **BRK RSTR 1 BRK OPEN**: This setting assigns a FlexLogic operand indicating the open position of the breaker. It must be logic "1" when breaker is open.
- **BRK RSTR 1 OPEN CMD**: This setting assigns a FlexLogic operand indicating a breaker open command. It must be logic "1" when breaker is opened, either manually or from protection logic.
- BRK RSTR 1 CLS CMD: This setting assigns a FlexLogic operand indicating a breaker close command. It must be logic "1" when breaker is closed.

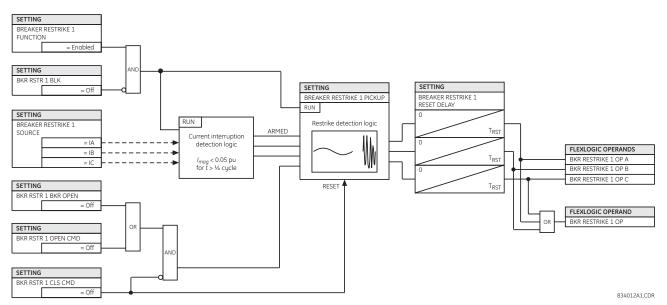
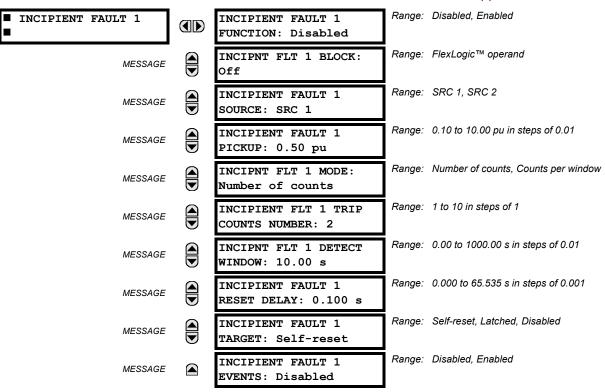



Figure 5-126: BREAKER RESTRIKE SCHEME LOGIC

f) INCIPIENT FAULT DETECTOR

PATH: SETTINGS $\Rightarrow \emptyset$ CONTROL ELEMENTS $\Rightarrow \emptyset$ MONITORING ELEMENTS $\Rightarrow \emptyset$ INCIPIENT FAULT 1(2)

There are two incipient cable fault detection elements in the relay.

Before a permanent cable fault occurs, there are usually signs of degrading insulation manifesting itself as a short, mostly half-cycle spikes asserting at the phase voltage peak. Due to shortness of such spikes, they are not usually detected by the instantaneous protection of the feeder, which operates on the RMS or fundamental component of the phase current with a relatively high pickup.

5 SETTINGS 5.7 CONTROL ELEMENTS

The number of detected incipient faults in each phase is counted and available in the ACTUAL VALUES ⇒ STATUS ⇒ ♣ INCIPIENT FAULT menus. The counters can be reset with the COMMANDS ⇒ ♣ CLEAR RECORDS ⇒ ♣ CLEAR INCIPENT FAULT COUNTERS command.

Changes to any of the incipient cable fault detector settings resets of the number of the incipient faults detected to zero.

To provide a clear timing indication when the incipient fault occurred, the incipient fault event is time-stamped with the time the fault actually occurred. However, the FlexLogic™ operand is asserted four cycles later, when the incipient fault pattern is confirmed and therefore detected.

The following figure illustrates a recorded field case of an incipient phase B fault. The top portion of the figure shows the raw A, B and C currents. The bottom portion shows the neutral current (blue) and reveals the fault period from under the load and the superimposed phase B current (red). The superimposed current shows two fault current blips as the data slides through the two-cycle memory window. During the actual fault, the neutral current and the superimposed phase B currents closely correspond, confirming the incipient fault hypothesis and identifying the affected phase.

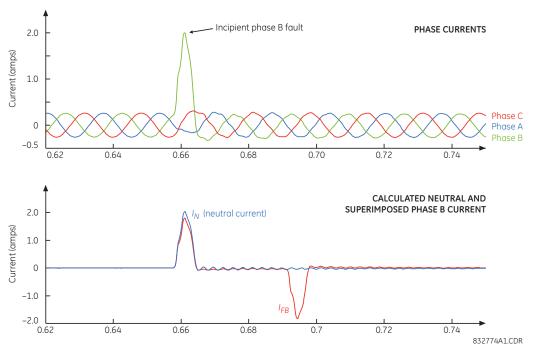


Figure 5-127: ILLUSTRATION OF THE INCIPIENT FAULT DETECTOR ALGORITHM

The following settings are available for each incipient cable fault detector.

- INCIPIENT FAULT 1 FUNCTION: This setting enable and disables operation of the incipient fault detection element.
- **INCIPNT FLT 1 BLOCK**: This setting is used to block operation of the incipient cable fault detector element. Assertion of the FlexLogic[™] operand assigned to this setting block operation.
- **INCIPIENT FAULT 1 SOURCE**: This setting selects a current source for the incipient cable fault detector element. This source must be assigned a valid CT bank.
- INCIPIENT FAULT 1 PICKUP: This setting specifies pickup level of the overcurrent detector in per-unit values of the CT nominal current.
- INCIPNT FLT 1 MODE: There are two modes of operation available for the incipient cable fault detector element. In
 the "Number of counts" mode, a trip will be initiated only after the selected number of faults is detected. In the "Counts
 per window" mode, a trip will be initiated only after the selected number of faults is detected within the time specified by
 the INCIPNT FLT 1 DETECT WINDOW setting.
- INCIPIENT FLT 1 TRIP COUNTS NUMBER: This setting selects the number of faults required to initiate a trip.
- INCIPNT FLT 1 DETECT WINDOW: This setting specifies a time window for "Counts per window" mode of operation.

5.7 CONTROL ELEMENTS 5 SETTINGS

INCIPIENT FAULT 1 RESET DELAY: This setting specifies a reset time for the output after the trip is initiated.

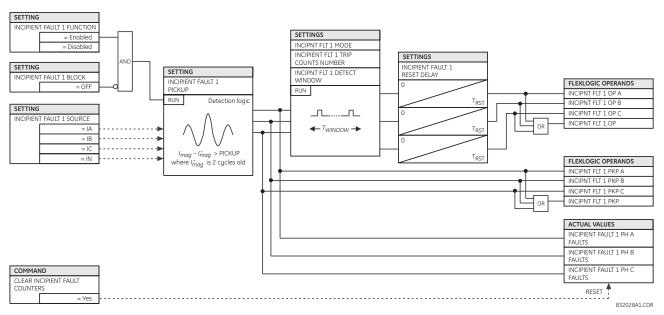
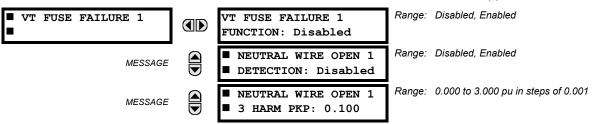



Figure 5-128: INCIPIENT CABLE FAULT DETECTOR SCHEME LOGIC

g) VT FUSE FAILURE

PATH: SETTINGS ⇒ \$\Partial CONTROL ELEMENTS ⇒ \$\Partial MONITORING ELEMENTS ⇒ \$\Partial VT FUSE FAILURE 1(2)

Every signal source includes a fuse failure scheme.

The VT fuse failure detector can be used to raise an alarm and/or block elements that may operate incorrectly for a full or partial loss of AC potential caused by one or more blown fuses. Some elements that might be blocked (via the BLOCK input) are distance, voltage restrained overcurrent, and directional current.

There are two classes of fuse failure that occur:

- · Class A: loss of one or two phases.
- · Class B: loss of all three phases.

Different means of detection are required for each class. An indication of class A failures is a significant level of negative-sequence voltage, whereas an indication of class B failures is when positive sequence current is present and there is an insignificant amount of positive sequence voltage. Also rapid decrease in the phase voltages magnitude from a healthy voltage level without disturbance in current can indicate a VT fuse fail conditions. These noted indications of fuse failure can also be present when faults are present on the system, so a means of detecting faults and inhibiting fuse failure declarations during these events is provided.

Once the fuse failure condition is declared, it is sealed-in until the cause that generated it disappears.

An additional condition is introduced to inhibit a fuse failure declaration when the monitored circuit is de-energized; positive-sequence voltage and current are both below threshold levels.

The VT FUSE FAILURE 1 FUNCTION setting enables and disables the fuse failure feature for each source.

5 SETTINGS 5.7 CONTROL ELEMENTS

The VT NEU WIRE OPEN 1 FUNCTION setting enables and disables the VT neutral wire open detection function. When the VT is connected in Delta, do not enabled this function because there is no neutral wire for Delta connected VT.

The VT NEU WIRE OPEN 1 3 HRAM PKP setting specifies the pickup level of 3rd harmonic of 3V0 signal for the VT NEU WIRE OPEN detection logic to pick up.

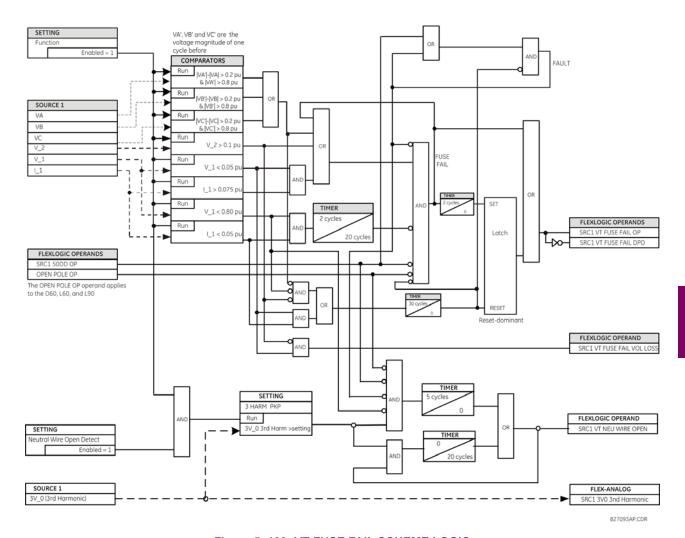
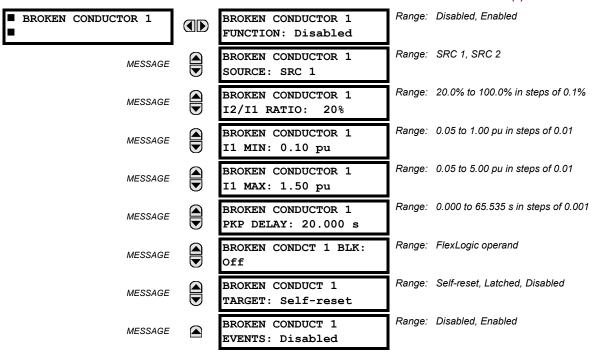



Figure 5-129: VT FUSE FAIL SCHEME LOGIC

Base voltage for this element is PHASE VT SECONDARY setting in the case of WYE VTs and (PHASE VT SECONDARY)/ $\sqrt{3}$ in case of DELTA VTs.

h) BROKEN CONDUCTOR DETECTION

PATH: SETTINGS ⇒ ⊕ CONTROL ELEMENTS ⇒ ⊕ MONITORING ELEMENTS ⇒ ⊕ BROKEN CONDUCTOR 1(2)

Two broken conductor detection elements are provided.

The broken conductor function will detect a transmission line broken conductor condition or a single-pole breaker malfunction condition through checking the phase current input signals and the I_2 / I_1 ratio. The intention of this function is to detect a single-phase broken conductor only. As such two-phase or three-phase broken conductors cannot be detected.

To distinguish between single-phase disappearance and system disturbance in all three phases (such as load change, switching, etc.), the broken conductor element monitors the change in all three phase currents at the present instance and at four cycles previous. It also monitors changes in the I_2/I_1 ratio, I_1 minimum, and I_1 maximum.

The broken conductor function should not be used to respond to fault transients and single-pole tripping/reclosing conditions. Therefore, the time delay should be programmed to a sufficient length to ensure coordination with the breaker dead time of the recloser function.

- BROKEN CONDUCTOR 1 FUNCTION: This setting enables and disables the broken conductor function.
- BROKEN CONDUCTOR 1 SOURCE: This setting selects a signal source used to provide three-phase current inputs to this function.
- BROKEN CONDUCTOR 1 I2/I1 RATIO: This setting specifies the ratio of negative-sequence current to positive-sequence current. When one phase conductor is broken, the I_2 / I_1 ratio with a balanced remaining two phases is 50%. So normally this setting should be set below 50% (for example, to 30%).
- BROKEN CONDUCTOR 1 I1 MIN: This setting specifies the minimum positive-sequence current supervision level. Ensure this setting is programmed to a sufficient level to prevent I_2 / I_1 from erratic pickup due to a low I_1 signal. However, this setting should not be set too high, since the broken conductor condition cannot be detected under light load conditions when I_1 is less than the value specified by this setting.
- BROKEN CONDUCTOR 1 I1 MAX: This setting specifies the maximum I_1 level allowed for the broken conductor function to operate. When I_1 exceeds this setting, this it is considered a fault. This broken conductor function should not respond to any fault conditions, so normally this setting is programmed to less than the maximum load current.
- **BROKEN CONDUCTOR 1 PKP DELAY**: This setting specifies the pickup time delay for this function to operate after assertion of the broken conductor pickup FlexLogic operand.

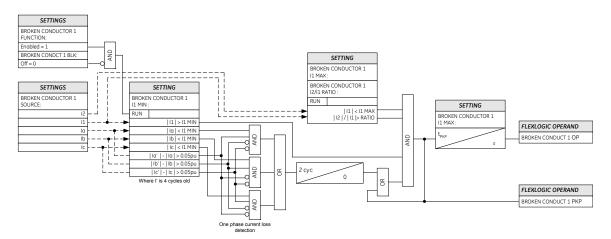
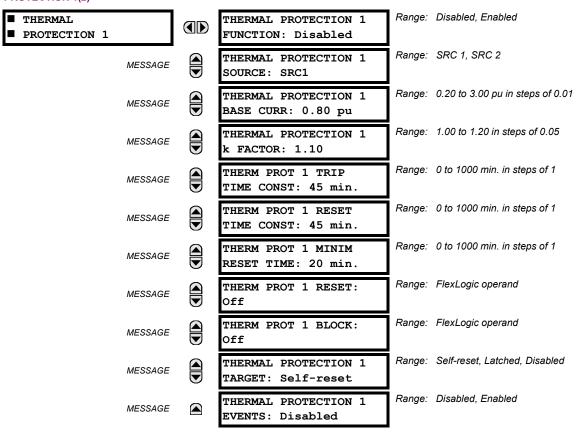



Figure 5-130: BROKEN CONDUCTOR DETECTION LOGIC

i) THERMAL OVERLOAD PROTECTION

PATH: SETTINGS $\Rightarrow \oplus$ CONTROL ELEMENTS $\Rightarrow \oplus$ MONITORING ELEMENTS $\Rightarrow \oplus$ THERMAL OVERLOAD PROTECTION $\Rightarrow \oplus$ THERMAL PROTECTION 1(2)

The thermal overload protection element corresponds to the IEC 255-8 standard and is used to detect thermal overload conditions in protected power system elements. Choosing an appropriate time constant element can be used to protect different elements of the power system. The cold curve characteristic is applied when the previous averaged load current over the last 5 cycles is less than 10% of the base current. If this current is greater or equal than 10% than the base current, then the hot curve characteristic is applied.

The IEC255-8 cold curve is defined as follows:

$$t_{op} = \tau_{op} \times \ln \left(\frac{I^2}{I^2 - (kI_B)^2} \right)$$
 (EQ 5.26)

The IEC255-8 hot curve is defined as follows:

$$t_{op} = \tau_{op} \times \ln \left(\frac{I^2 - I_p^2}{I^2 - (kI_p)^2} \right)$$
 (EQ 5.27)

In the above equations,

- t_{op} = time to operate
- τ_{op} = thermal protection trip time constant
- I = measured overload RMS current
- I_p = measured load RMS current before overload occurs
- k= IEC 255-8 k-factor applied to I_B , defining maximum permissible current above nominal current
- I_B = protected element base (nominal) current

The reset time of the thermal overload protection element is also time delayed using following formula:

$$t_{rst} = \tau_{rst} \times \ln \left(\frac{(kI_B)^2}{|I^2 - (kI_B)^2|} \right) + T_{min}$$
 (EQ 5.28)

In the above equation,

- τ_{rst} = thermal protection trip time constant
- T_{min} is a minimum reset time setting

Figure 5-131: IEC 255-8 SAMPLE OPERATE AND RESET CURVES

The thermal overload protection element estimates accumulated thermal energy E using the following equations calculated each power cycle. When current is greater than the pickup level, $I_n > k \times I_B$, element starts increasing the thermal energy:

$$E_n = E_{n-1} + \frac{\Delta t}{t_{op(ln)}}$$
 (EQ 5.29)

When current is less than the dropout level, $I_n > 0.97 \times k \times I_B$, the element starts decreasing the thermal energy:

$$E_n = E_{n-1} - \frac{\Delta t}{t_{rst(In)}}$$
 (EQ 5.30)

In the above equations,

- Δt is the power cycle duration
- *n* is the power cycle index
- $t_{op(In)}$ is the trip time calculated at index n as per the IEC255-8 cold curve or hot curve equations
- $t_{rst(In)}$ is the reset time calculated at index n as per the reset time equation
- I_n is the measured overload RMS current at index n

- E_n is the accumulated energy at index n
- E_{n-1} is the accumulated energy at index n − 1

The thermal overload protection element removes the THERMAL PROT 1 OP output operand when E < 0.05. In case of emergency, the thermal memory and THERMAL PROT 1 OP output operand can be reset using **THERM PROT 1 RESET** setting. All calculations are performed per phase. If the accumulated energy reaches value 1 in any phase, the thermal overload protection element operates and only resets when energy is less than 0.05 in all three phases.

Table 5-35: TYPICAL TIME CONSTANTS

PROTECTED EQUIPMENT	TIME CONSTANT	MINIMUM RESET TIME
Capacitor bank	10 minutes	30 minutes
Overhead line	10 minutes	20 minutes
Air-core reactor	40 minutes	30 minutes
Busbar	60 minutes	20 minutes
Underground cable	20 to 60 minutes	60 minutes

The logic for the thermal overload protection element is shown below.

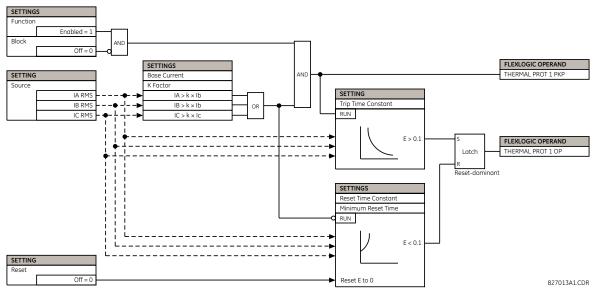
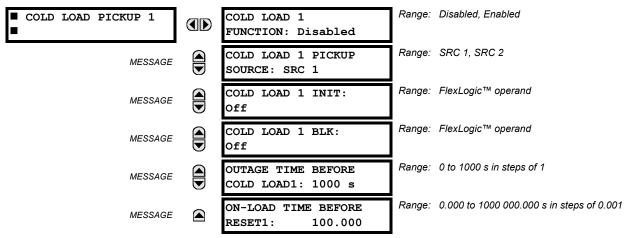



Figure 5–132: THERMAL OVERLOAD PROTECTION SCHEME LOGIC

5.7.13 COLD LOAD PICKUP

PATH: SETTINGS ⇒ \$\Partial\$ CONTROL ELEMENTS ⇒ \$\Partial\$ COLD LOAD PICKUP ⇒ COLD LOAD PICKUP 1(2)

There are two (2) identical Cold Load Pickup features available, numbered 1 and 2.

This feature can be used to change protection element settings when (by changing to another settings group) a cold load condition is expected to occur. A cold load condition can be caused by a prolonged outage of the load, by opening of the circuit breaker, or by a loss of supply even if the breaker remains closed. Upon the return of the source, the circuit will experience inrush current into connected transformers, accelerating currents into motors, and simultaneous demand from many other loads because the normal load diversity has been lost. During the cold load condition, the current level can be above the pickup setting of some protection elements, so this feature can be used to prevent the tripping that would otherwise be caused by the normal settings.

Without historical data on a particular feeder, some utilities assume an initial cold load current of about 500% of normal load, decaying to 300% after 1 second, 200% after 2 seconds, and 150% after 3 seconds.

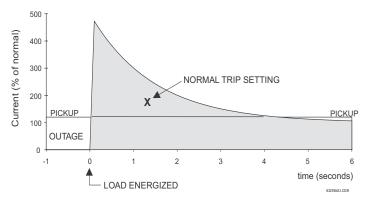


Figure 5-133: TYPICAL COLD LOAD PICKUP CHARACTERISTIC

There are two methods of initiating the operation of this feature.

The first initiation method is intended to automatically respond to a loss of the source to the feeder, by detecting that all phase currents have declined to zero for some time. When zero current on all phases has been detected, a timer is started. This timer is set to an interval after which it is expected the normal load diversity will have been lost, so setting groups are not changed for short duration outages. After the delay interval, the output operand is set.

The second initiation method is intended to automatically respond to an event that will set an operand, such as an operator-initiated virtual input. This second method of initiation sets the output operand immediately.

Both initiating inputs can be inhibited by a blocking input. Once cold load pickup is in operation, the output operand will remain set until at least one phase of the load has returned to a level above 2% of CT nominal for the interval programmed by the **ON-LOAD TIME BEFORE RESET** setting has expired. The reset delay interval is intended to be set to a period until the feeder load has decayed to normal levels, after which other features may be used to switch setting groups.

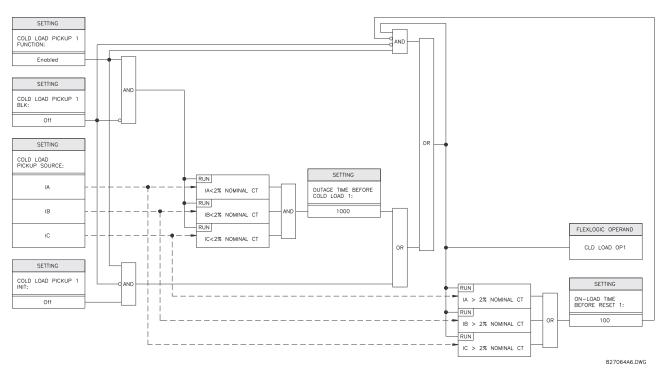
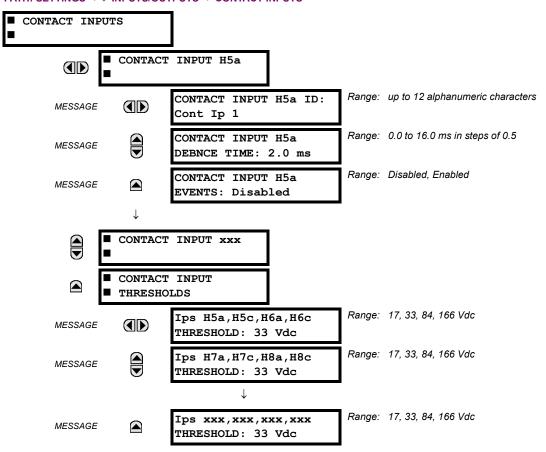



Figure 5-134: COLD LOAD PICKUP SCHEME LOGIC

5.8.1 CONTACT INPUTS

The contact inputs menu contains configuration settings for each contact input as well as voltage thresholds for each group of four contact inputs. Upon startup, the relay processor determines (from an assessment of the installed modules) which contact inputs are available and then display settings for only those inputs.

An alphanumeric ID may be assigned to a contact input for diagnostic, setting, and event recording purposes. The CONTACT IP X On" (Logic 1) FlexLogic operand corresponds to contact input "X" being closed, while CONTACT IP X Off corresponds to contact input "X" being open. The **CONTACT INPUT DEBNCE TIME** defines the time required for the contact to overcome 'contact bouncing' conditions. As this time differs for different contact types and manufacturers, set it as a maximum contact debounce time (per manufacturer specifications) plus some margin to ensure proper operation. If **CONTACT INPUT EVENTS** is set to "Enabled", every change in the contact input state will trigger an event.

A raw status is scanned for all Contact Inputs synchronously at the constant rate of 0.5 ms as shown in the figure below. The DC input voltage is compared to a user-settable threshold. A new contact input state must be maintained for a user-settable debounce time in order for the F60 to validate the new contact state. In the figure below, the debounce time is set at 2.5 ms; thus the 6th sample in a row validates the change of state (mark no. 1 in the diagram). Once validated (debounced), the contact input asserts a corresponding FlexLogic operand and logs an event as per user setting.

A time stamp of the first sample in the sequence that validates the new state is used when logging the change of the contact input into the Event Recorder (mark no. 2 in the diagram).

Protection and control elements, as well as FlexLogic equations and timers, are executed eight times in a power system cycle. The protection pass duration is controlled by the frequency tracking mechanism. The FlexLogic operand reflecting the debounced state of the contact is updated at the protection pass following the validation (marks no. 3 and 4 on the figure below). The update is performed at the beginning of the protection pass so all protection and control functions, as well as FlexLogic equations, are fed with the updated states of the contact inputs.

5.8 INPUTS/OUTPUTS 5 SETTINGS

The FlexLogic operand response time to the contact input change is equal to the debounce time setting plus up to one protection pass (variable and depending on system frequency if frequency tracking enabled). If the change of state occurs just after a protection pass, the recognition is delayed until the subsequent protection pass; that is, by the entire duration of the protection pass. If the change occurs just prior to a protection pass, the state is recognized immediately. Statistically a delay of half the protection pass is expected. Owing to the 0.5 ms scan rate, the time resolution for the input contact is below 1msec.

For example, 8 protection passes per cycle on a 60 Hz system correspond to a protection pass every 2.1 ms. With a contact debounce time setting of 3.0 ms, the FlexLogic operand-assert time limits are: 3.0 + 0.0 = 3.0 ms and 3.0 + 2.1 = 5.1 ms. These time limits depend on how soon the protection pass runs after the debouncing time.

Regardless of the contact debounce time setting, the contact input event is time-stamped with a 1 μ s accuracy using the time of the first scan corresponding to the new state (mark no. 2 below). Therefore, the time stamp reflects a change in the DC voltage across the contact input terminals that was not accidental as it was subsequently validated using the debounce timer. Keep in mind that the associated FlexLogic operand is asserted/de-asserted later, after validating the change.

The debounce algorithm is symmetrical: the same procedure and debounce time are used to filter the LOW-HIGH (marks no.1, 2, 3, and 4 in the figure below) and HIGH-LOW (marks no. 5, 6, 7, and 8 below) transitions.

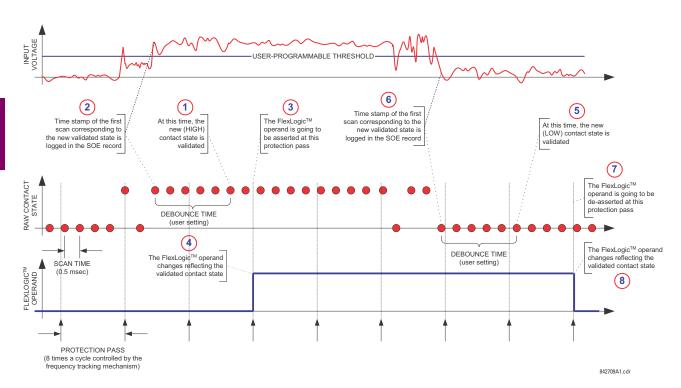
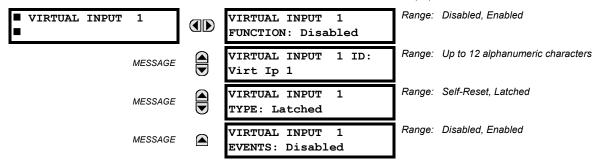


Figure 5-135: INPUT CONTACT DEBOUNCING MECHANISM AND TIME-STAMPING SAMPLE TIMING

Contact inputs are isolated in groups of four to allow connection of wet contacts from different voltage sources for each group. The **CONTACT INPUT THRESHOLDS** determine the minimum voltage required to detect a closed contact input. This value should be selected according to the following criteria: 17 for 24 V sources, 33 for 48 V sources, 84 for 110 to 125 V sources and 166 for 250 V sources.


For example, to use contact input H5a as a status input from the breaker 52b contact to seal-in the trip relay and record it in the Event Records menu, make the following settings changes:

CONTACT INPUT H5A ID: "Breaker Closed (52b)"
CONTACT INPUT H5A EVENTS: "Enabled"

Note that the 52b contact is closed when the breaker is open and open when the breaker is closed.

5.8.2 VIRTUAL INPUTS

PATH: SETTINGS ⇔ \$\Partial\$ INPUTS/OUTPUTS \$\Partial\$ VIRTUAL INPUT \$\Partial\$ VIRTUAL INPUT 1(64)

There are 64 virtual inputs that can be individually programmed to respond to input signals from the keypad (via the COMMANDS menu) and communications protocols. All virtual input operands are defaulted to "Off" (logic 0) unless the appropriate input signal is received.

If the **VIRTUAL INPUT x FUNCTION** is to "Disabled", the input will be forced to off (logic 0) regardless of any attempt to alter the input. If set to "Enabled", the input operates as shown on the logic diagram and generates output FlexLogic operands in response to received input signals and the applied settings.

There are two types of operation: self-reset and latched. If **VIRTUAL INPUT x TYPE** is "Self-Reset", when the input signal transits from off to on, the output operand will be set to on for only one evaluation of the FlexLogic equations and then return to off. If set to "Latched", the virtual input sets the state of the output operand to the same state as the most recent received input.

The self-reset operating mode generates the output operand for a single evaluation of the FlexLogic equations. If the operand is to be used anywhere other than internally in a FlexLogic equation, it will likely have to be lengthened in time. A FlexLogic timer with a delayed reset can perform this function.

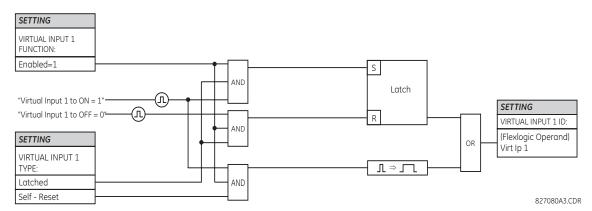
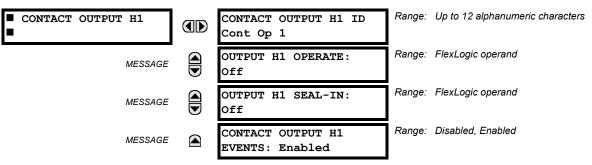



Figure 5-136: VIRTUAL INPUTS SCHEME LOGIC

5.8.3 CONTACT OUTPUTS

a) DIGITAL OUTPUTS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS ⇒ \$\Partial\$ CONTACT OUTPUT H1

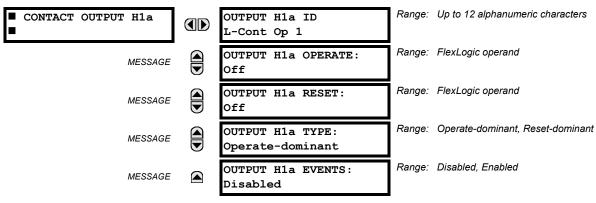
Upon startup of the relay, the main processor will determine from an assessment of the modules installed in the chassis which contact outputs are available and present the settings for only these outputs.

An ID may be assigned to each contact output. The signal that can **OPERATE** a contact output may be any FlexLogic operand (virtual output, element state, contact input, or virtual input). An additional FlexLogic operand may be used to **SEAL-IN** the relay. Any change of state of a contact output can be logged as an Event if programmed to do so.

For example, the trip circuit current is monitored by providing a current threshold detector in series with some Form-A contacts (see the trip circuit example in the *Digital Elements* section). The monitor sets a flag (see the specifications for Form-A). The name of the FlexLogic operand set by the monitor, consists of the output relay designation, followed by the name of the flag; for example, CONT OP 1 ION.

In most breaker control circuits, the trip coil is connected in series with a breaker auxiliary contact used to interrupt current flow after the breaker has tripped, to prevent damage to the less robust initiating contact. This can be done by monitoring an auxiliary contact on the breaker which opens when the breaker has tripped, but this scheme is subject to incorrect operation caused by differences in timing between breaker auxiliary contact change-of-state and interruption of current in the trip circuit. The most dependable protection of the initiating contact is provided by directly measuring current in the tripping circuit, and using this parameter to control resetting of the initiating relay. This scheme is often called *trip seal-in*.

This can be realized in the F60 using the CONT OP 1 ION FlexLogic operand to seal-in the contact output as follows:


CONTACT OUTPUT H1 ID: "Cont Op 1"

OUTPUT H1 OPERATE: any suitable FlexLogic operand

OUTPUT H1 SEAL-IN: "Cont Op 1 IOn"
CONTACT OUTPUT H1 EVENTS: "Enabled"

b) LATCHING OUTPUTS

PATH: SETTINGS $\Rightarrow \mathbb{Q}$ INPUTS/OUTPUTS $\Rightarrow \mathbb{Q}$ CONTACT OUTPUTS \Rightarrow CONTACT OUTPUT H1a

5 SETTINGS 5.8 INPUTS/OUTPUTS

The F60 latching output contacts are mechanically bi-stable and controlled by two separate (open and close) coils. As such they retain their position even if the relay is not powered up. The relay recognizes all latching output contact cards and populates the setting menu accordingly. On power up, the relay reads positions of the latching contacts from the hardware before executing any other functions of the relay (such as protection and control features or FlexLogic).

The latching output modules, either as a part of the relay or as individual modules, are shipped from the factory with all latching contacts opened. It is highly recommended to double-check the programming and positions of the latching contacts when replacing a module.

Since the relay asserts the output contact and reads back its position, it is possible to incorporate self-monitoring capabilities for the latching outputs. If any latching outputs exhibits a discrepancy, the **LATCHING OUTPUT ERROR** self-test error is declared. The error is signaled by the LATCHING OUT ERROR FlexLogic operand, event, and target message.

- OUTPUT H1a OPERATE: This setting specifies a FlexLogic operand to operate the 'close coil' of the contact. The
 relay will seal-in this input to safely close the contact. Once the contact is closed and the RESET input is logic 0 (off),
 any activity of the OPERATE input, such as subsequent chattering, will not have any effect. With both the OPERATE and
 RESET inputs active (logic 1), the response of the latching contact is specified by the OUTPUT H1A TYPE setting.
- **OUTPUT H1a RESET**: This setting specifies a FlexLogic operand to operate the 'trip coil' of the contact. The relay will seal-in this input to safely open the contact. Once the contact is opened and the **OPERATE** input is logic 0 (off), any activity of the **RESET** input, such as subsequent chattering, will not have any effect. With both the **OPERATE** and **RESET** inputs active (logic 1), the response of the latching contact is specified by the **OUTPUT H1A TYPE** setting.
- OUTPUT H1a TYPE: This setting specifies the contact response under conflicting control inputs; that is, when both the
 OPERATE and RESET signals are applied. With both control inputs applied simultaneously, the contact will close if set to
 "Operate-dominant" and will open if set to "Reset-dominant".

Application Example 1:

A latching output contact H1a is to be controlled from two user-programmable pushbuttons (buttons number 1 and 2). The following settings should be applied.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUTS ⇒ ♣ CONTACT OUT-PUTS ⇒ CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "PUSHBUTTON 1 ON"
OUTPUT H1a RESET: "PUSHBUTTON 2 ON"

Program the pushbuttons by making the following changes in the PRODUCT SETUP ⇒ ⊕ USER-PROGRAMMABLE PUSHBUTTONS ⇒ ⊕ USER PUSHBUTTON 1 and USER PUSHBUTTON 2 menus:

PUSHBUTTON 1 FUNCTION: "Self-reset"
PUSHBUTTON 2 FUNCTION: "Self-reset"
PUSHBTN 1 DROP-OUT TIME: "0.00 s"
PUSHBTN 2 DROP-OUT TIME: "0.00 s"

Application Example 2:

A relay, having two latching contacts H1a and H1c, is to be programmed. The H1a contact is to be a Type-a contact, while the H1c contact is to be a Type-b contact (Type-a means closed after exercising the operate input; Type-b means closed after exercising the reset input). The relay is to be controlled from virtual outputs: VO1 to operate and VO2 to reset.

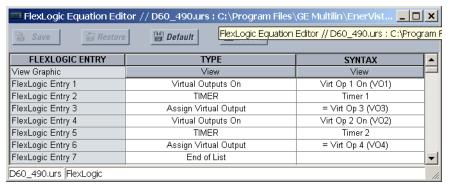
Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUTS ⇒ ♣ CONTACT OUT-PUTS ⇒ CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"

OUTPUT H1a RESET: "VO2"

OUTPUT H1c RESET: "VO1"

OUTPUT H1c RESET: "VO1"


Since the two physical contacts in this example are mechanically separated and have individual control inputs, they will not operate at exactly the same time. A discrepancy in the range of a fraction of a maximum operating time may occur. Therefore, a pair of contacts programmed to be a multi-contact relay will not guarantee any specific sequence of operation (such as make before break). If required, the sequence of operation must be programmed explicitly by delaying some of the control inputs as shown in the next application example.

Application Example 3:

A make before break functionality must be added to the preceding example. An overlap of 20 ms is required to implement this functionality as described below:

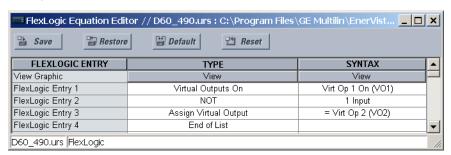
5.8 INPUTS/OUTPUTS 5 SETTINGS

Write the following FlexLogic equation (EnerVista UR Setup example shown):

Both timers (Timer 1 and Timer 2) should be set to 20 ms pickup and 0 ms dropout.

Program the Latching Outputs by making the following changes in the SETTINGS ⇒ ♣ INPUTS/OUTPUTS ⇒ ♣ CONTACT OUTPUT H1a and CONTACT OUTPUT H1c menus (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"

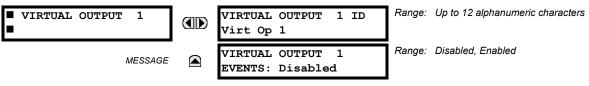

OUTPUT H1a RESET: "VO4"

OUTPUT H1a RESET: "VO3"

Application Example 4:

A latching contact H1a is to be controlled from a single virtual output VO1. The contact should stay closed as long as VO1 is high, and should stay opened when VO1 is low. Program the relay as follows.

Write the following FlexLogic equation (EnerVista UR Setup example shown):



Program the Latching Outputs by making the following changes in the SETTINGS ⇒ \$\Pi\$ INPUTS/OUTPUTS ⇒ \$\Pi\$ CONTACT OUT-PUTS ⇒ CONTACT OUTPUT H1a menu (assuming an H4L module):

OUTPUT H1a OPERATE: "VO1"
OUTPUT H1a RESET: "VO2"

5.8.4 VIRTUAL OUTPUTS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ VIRTUAL OUTPUTS \Rightarrow VIRTUAL OUTPUT 1(96)

There are 96 virtual outputs that may be assigned via FlexLogic. If not assigned, the output will be forced to 'OFF' (Logic 0). An ID may be assigned to each virtual output. Virtual outputs are resolved in each pass through the evaluation of the Flex-Logic equations. Any change of state of a virtual output can be logged as an event if programmed to do so.

For example, if Virtual Output 1 is the trip signal from FlexLogic and the trip relay is used to signal events, the settings would be programmed as follows:

5 SETTINGS 5.8 INPUTS/OUTPUTS

VIRTUAL OUTPUT 1 ID: "Trip"
VIRTUAL OUTPUT 1 EVENTS: "Disabled"

5.8.5 REMOTE DEVICES

a) REMOTE INPUTS/OUTPUTS OVERVIEW

Remote inputs and outputs provide a means of exchanging digital state information between Ethernet-networked devices. The IEC 61850 GSSE (Generic Substation State Event) and GOOSE (Generic Object Oriented Substation Event) standards are used.

The sharing of digital point state information between GSSE/GOOSE equipped relays is essentially an extension to Flex-Logic, allowing distributed FlexLogic by making operands available to/from devices on a common communications network. In addition to digital point states, GSSE/GOOSE messages identify the originator of the message and provide other information required by the communication specification. All devices listen to network messages and capture data only from messages that have originated in selected devices.

IEC 61850 GSSE messages are compatible with UCA GOOSE messages and contain a fixed set of digital points. IEC 61850 GOOSE messages can, in general, contain any configurable data items. When used by the remote input/output feature, IEC 61850 GOOSE messages contain the same data as GSSE messages.

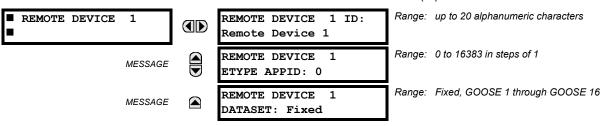
Both GSSE and GOOSE messages are designed to be short, reliable, and high priority. GOOSE messages have additional advantages over GSSE messages due to their support of VLAN (virtual LAN) and Ethernet priority tagging functionality. The GSSE message structure contains space for 128 bit pairs representing digital point state information. The IEC 61850 specification provides 32 "DNA" bit pairs that represent the state of two pre-defined events and 30 user-defined events. All remaining bit pairs are "UserSt" bit pairs, which are status bits representing user-definable events. The F60 implementation provides 32 of the 96 available UserSt bit pairs.

The IEC 61850 specification includes features that are used to cope with the loss of communication between transmitting and receiving devices. Each transmitting device will send a GSSE/GOOSE message upon a successful power-up, when the state of any included point changes, or after a specified interval (the *default update* time) if a change-of-state has not occurred. The transmitting device also sends a 'hold time' which is set greater than four times the programmed default time required by the receiving device.

Receiving devices are constantly monitoring the communications network for messages they require, as recognized by the identification of the originating device carried in the message. Messages received from remote devices include the message *time allowed to live*. The receiving relay sets a timer assigned to the originating device to this time interval, and if it has not received another message from this device at time-out, the remote device is declared to be non-communicating, so it will use the programmed default state for all points from that specific remote device. If a message is received from a remote device before the *time allowed to live* expires, all points for that device are updated to the states contained in the message and the hold timer is restarted. The status of a remote device, where "Offline" indicates non-communicating, can be displayed.

The remote input/output facility provides for 32 remote inputs and 64 remote outputs.

b) LOCAL DEVICES: ID OF DEVICE FOR TRANSMITTING GSSE MESSAGES


In a F60 relay, the device ID that represents the IEC 61850 GOOSE application ID (GoID) name string sent as part of each GOOSE message is programmed in the SETTINGS ⇒ PRODUCT SETUP ⇒ ⊕ COMMUNICATIONS ⇒ ⊕ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ TRANSMISSION ⇒ ⊕ FIXED GOOSE ⇒ ⊕ GOOSE ID Setting.

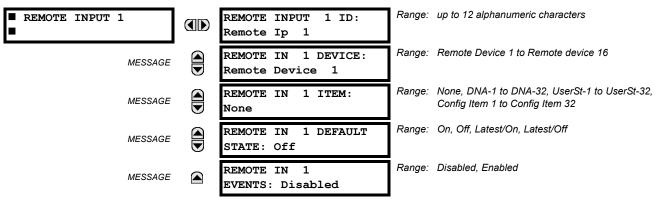
Likewise, the device ID that represents the IEC 61850 GSSE application ID name string sent as part of each GSSE message is programmed in the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ COMMUNICATIONS $\Rightarrow \emptyset$ IEC 61850 PROTOCOL \Rightarrow GSSE/GOOSE CONFIGURATION \Rightarrow TRANSMISSION $\Rightarrow \emptyset$ GSSE $\Rightarrow \emptyset$ GSSE ID setting.

In F60 releases previous to 5.0x, these name strings were represented by the RELAY NAME setting.

5.8 INPUTS/OUTPUTS 5 SETTINGS

c) REMOTE DEVICES: ID OF DEVICE FOR RECEIVING GSSE/GOOSE MESSAGES

Remote devices are available for setting purposes. A receiving relay must be programmed to capture messages from only those originating remote devices of interest. This setting is used to select specific remote devices by entering (bottom row) the exact identification (ID) assigned to those devices.


The **REMOTE DEVICE 1 ETYPE APPID** setting is only used with GOOSE messages; they are not applicable to GSSE messages. This setting identifies the Ethernet application identification in the GOOSE message. It should match the corresponding settings on the sending device.

The **REMOTE DEVICE 1 DATASET** setting provides for the choice of the F60 fixed (DNA/UserSt) dataset (that is, containing DNA and UserSt bit pairs), or one of the configurable datasets.

Note that the dataset for the received data items must be made up of existing items in an existing logical node. For this reason, logical node GGIO3 is instantiated to hold the incoming data items. GGIO3 is not necessary to make use of the received data. The remote input data item mapping takes care of the mapping of the inputs to remote input FlexLogic operands. However, GGIO3 data can be read by IEC 61850 clients.

5.8.6 REMOTE INPUTS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ REMOTE INPUTS \Rightarrow REMOTE INPUT 1(32)

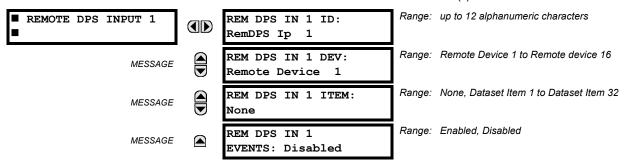
Remote Inputs that create FlexLogic operands at the receiving relay are extracted from GSSE/GOOSE messages originating in remote devices. Each remote input can be selected from a list consisting of: DNA-1 through DNA-32, UserSt-1 through UserSt-32, and Dataset Item 1 through Dataset Item 32. The function of DNA inputs is defined in the IEC 61850 specification and is presented in the IEC 61850 DNA Assignments table in the *Remote Outputs* section. The function of UserSt inputs is defined by the user selection of the FlexLogic operand whose state is represented in the GSSE/GOOSE message. A user must program a DNA point from the appropriate FlexLogic operand.

Remote input 1 must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This programming is performed via the three settings shown above.

The **REMOTE INPUT 1 ID** setting allows the user to assign descriptive text to the remote input. The **REMOTE IN 1 DEVICE** setting selects the remote device which originates the required signal, as previously assigned to the remote device via the setting **REMOTE DEVICE (16) ID** (see the *Remote Devices* section). The **REMOTE IN 1 ITEM** setting selects the specific bits of the GSSE/GOOSE message required.

The **REMOTE IN 1 DEFAULT STATE** setting selects the logic state for this point if the local relay has just completed startup or the remote device sending the point is declared to be non-communicating. The following choices are available:

5 SETTINGS 5.8 INPUTS/OUTPUTS


- Setting REMOTE IN 1 DEFAULT STATE to "On" value defaults the input to logic 1.
- Setting REMOTE IN 1 DEFAULT STATE to "Off" value defaults the input to logic 0.
- Setting **REMOTE IN 1 DEFAULT STATE** to "Latest/On" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to logic 1. When communication resumes, the input becomes fully operational.
- Setting **REMOTE IN 1 DEFAULT STATE** to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to logic 0. When communication resumes, the input becomes fully operational.

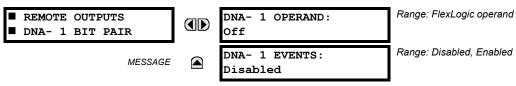
For additional information on GSSE/GOOSE messaging, see the Remote Devices section in this chapter.

5.8.7 REMOTE DOUBLE-POINT STATUS INPUTS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Rightarrow\$ REMOTE DPS INPUTS \$\Rightarrow\$ REMOTE DPS INPUT 1(5)

Remote double-point status inputs are extracted from GOOSE messages originating in the remote device. Each remote double point status input must be programmed to replicate the logic state of a specific signal from a specific remote device for local use. This functionality is accomplished with the five remote double-point status input settings.

- REM DPS IN 1 ID: This setting assigns descriptive text to the remote double-point status input.
- REM DPS IN 1 DEV: This setting selects a remote device ID to indicate the origin of a GOOSE message. The range is selected from the remote device IDs specified in the Remote Devices section.
- REM DPS IN 1 ITEM: This setting specifies the required bits of the GOOSE message.


The configurable GOOSE dataset items must be changed to accept a double-point status item from a GOOSE dataset (changes are made in the SETTINGS $\Rightarrow \emptyset$ COMMUNICATION $\Rightarrow \emptyset$ IEC 61850 PROTOCOL $\Rightarrow \emptyset$ GSSE/GOOSE CONFIGURATION $\Rightarrow \emptyset$ RECEPTION $\Rightarrow \emptyset$ CONFIGURABLE GOOSE \Rightarrow CONFIGURABLE GOOSE 1(16) \Rightarrow CONFIG GSE 1 DATASET ITEMS menus). Dataset items configured to receive any of "GGIO3.ST.IndPos1.stV" to "GGIO3.ST.IndPos5.stV" will accept double-point status information that will be decoded by the remote double-point status inputs configured to this dataset item.

The remote double point status is recovered from the received IEC 61850 dataset and is available as through the RemDPS Ip 1 BAD, RemDPS Ip 1 INTERM, RemDPS Ip 1 OFF, and RemDPS Ip 1 ON FlexLogic operands. These operands can then be used in breaker or disconnect control schemes.

5.8.8 REMOTE OUTPUTS

a) DNA BIT PAIRS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ REMOTE OUTPUTS DNA BIT PAIRS \Rightarrow REMOTE OUTPUTS DNA- 1(32) BIT PAIR

5.8 INPUTS/OUTPUTS 5 SETTINGS

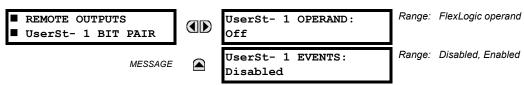

Remote outputs (1 to 32) are FlexLogic operands inserted into GSSE/GOOSE messages that are transmitted to remote devices on a LAN. Each digital point in the message must be programmed to carry the state of a specific FlexLogic operand. The above operand setting represents a specific DNA function (as shown in the following table) to be transmitted.

Table 5-36: IEC 61850 DNA ASSIGNMENTS

DNA	IEC 61850 DEFINITION	FLEXLOGIC OPERAND
1	Test	IEC 61850 TEST MODE
2	ConfRev	IEC 61850 CONF REV

b) USERST BIT PAIRS

PATH: SETTINGS ⇒ \$\Partial\$ INPUTS/OUTPUTS \$\Rightarrow\$ REMOTE OUTPUTS UserSt BIT PAIRS \$\Rightarrow\$ REMOTE OUTPUTS UserSt-1(32) BIT PAIR

Remote outputs 1 to 32 originate as GSSE/GOOSE messages to be transmitted to remote devices. Each digital point in the message must be programmed to carry the state of a specific FlexLogic operand. The setting above is used to select the operand which represents a specific UserSt function (as selected by the user) to be transmitted.

For more information on GSSE/GOOSE messaging, see the Remote Inputs/Outputs Overview in the *Remote Devices* section.

5.8.9 RESETTING

Some events can be programmed to latch the faceplate LED event indicators and the target message on the display. Once set, the latching mechanism will hold all of the latched indicators or messages in the set state after the initiating condition has cleared until a RESET command is received to return these latches (not including FlexLogic latches) to the reset state. The RESET command can be sent from the faceplate Reset button, a remote device via a communications channel, or any programmed operand.

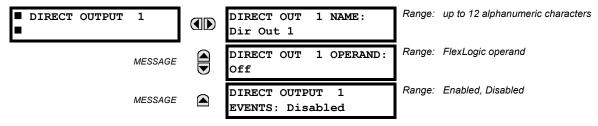
When the RESET command is received by the relay, two FlexLogic operands are created. These operands, which are stored as events, reset the latches if the initiating condition has cleared. The three sources of RESET commands each create the RESET OP FlexLogic operand. Each individual source of a RESET command also creates its individual operand RESET OP (PUSHBUTTON), RESET OP (COMMS) or RESET OP (OPERAND) to identify the source of the command. The setting shown above selects the operand that will create the RESET OP (OPERAND) operand.

5.8.10 DIRECT INPUTS AND OUTPUTS

a) DIRECT INPUTS

These settings specify how the direct input information is processed. The **DIRECT INPUT 1 NAME** setting allows the user to assign a descriptive name to the direct input. The **DIRECT INPUT 1 DEVICE ID** represents the source of direct input 1. The specified direct input is driven by the device identified here.

The **DIRECT INPUT 1 BIT NUMBER** is the bit number to extract the state for direct input 1. Direct Input 1 is driven by the bit identified as **DIRECT INPUT 1 BIT NUMBER**. This corresponds to the direct output number of the sending device.


The **DIRECT INPUT 1 DEFAULT STATE** represents the state of the direct input when the associated direct device is offline. The following choices are available:

- Setting DIRECT INPUT 1 DEFAULT STATE to "On" value defaults the input to Logic 1.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Off" value defaults the input to Logic 0.
- Setting DIRECT INPUT 1 DEFAULT STATE to "Latest/On" freezes the input in case of lost communications. If the latest
 state is not known, such as after relay power-up but before the first communication exchange, the input will default to
 Logic 1. When communication resumes, the input becomes fully operational.
- Setting **DIRECT INPUT 1 DEFAULT STATE** to "Latest/Off" freezes the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, the input will default to Logic 0. When communication resumes, the input becomes fully operational.

b) DIRECT OUTPUTS

PATH: SETTINGS

□ □ INPUTS/OUTPUTS □ □ DIRECT OUTPUTS □ DIRECT OUTPUT 1(32)

The **DIRECT OUT 1 NAME** setting allows the user to assign a descriptive name to the direct output. The **DIR OUT 1 OPERAND** is the FlexLogic operand that determines the state of this direct output.

c) APPLICATION EXAMPLES

The examples introduced in the earlier *Direct Inputs and Outputs* section (part of the *Product Setup* section) are continued below to illustrate usage of the direct inputs and outputs.

5.8 INPUTS/OUTPUTS 5 SETTINGS

EXAMPLE 1: EXTENDING INPUT/OUTPUT CAPABILITIES OF A F60 RELAY

Consider an application that requires additional quantities of digital inputs or output contacts or lines of programmable logic that exceed the capabilities of a single UR-series chassis. The problem is solved by adding an extra UR-series IED, such as the C30, to satisfy the additional inputs/outputs and programmable logic requirements. The two IEDs are connected via single-channel digital communication cards as shown below.

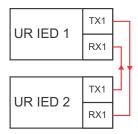


Figure 5-137: INPUT AND OUTPUT EXTENSION VIA DIRECT INPUTS AND OUTPUTS

Assume contact input 1 from UR IED 2 is to be used by UR IED 1. The following settings should be applied (Direct Input 5 and bit number 12 are used, as an example):

UR IED 1: DIRECT INPUT 5 DEVICE ID = "2" UR IED 2: DIRECT OUT 12 OPERAND = "Cont Ip 1 On"
DIRECT INPUT 5 BIT NUMBER = "12"

The Cont Ip 1 On operand of UR IED 2 is now available in UR IED 1 as DIRECT INPUT 5 ON.

EXAMPLE 2: INTERLOCKING BUSBAR PROTECTION

A simple interlocking busbar protection scheme can be accomplished by sending a blocking signal from downstream devices, say 2, 3 and 4, to the upstream device that monitors a single incomer of the busbar, as shown in the figure below.

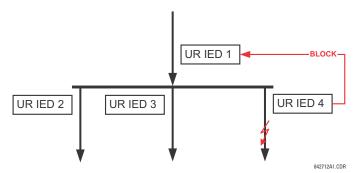


Figure 5-138: SAMPLE INTERLOCKING BUSBAR PROTECTION SCHEME

Assume that Phase Instantaneous Overcurrent 1 is used by Devices 2, 3, and 4 to block Device 1. If not blocked, Device 1 would trip the bus upon detecting a fault and applying a short coordination time delay.

The following settings should be applied (assume Bit 3 is used by all 3 devices to send the blocking signal and Direct Inputs 7, 8, and 9 are used by the receiving device to monitor the three blocking signals):

UR IED 2: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"

UR IED 3: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"

UR IED 4: DIRECT OUT 3 OPERAND: "PHASE IOC1 OP"

UR IED 1: DIRECT INPUT 7 DEVICE ID: "2"
DIRECT INPUT 7 BIT NUMBER: "3"

DIRECT INPUT 7 DEFAULT STATE: select "On" for security, select "Off" for dependability

DIRECT INPUT 8 DEVICE ID: "3"
DIRECT INPUT 8 BIT NUMBER: "3"

DIRECT INPUT 8 DEFAULT STATE: select "On" for security, select "Off" for dependability

5 SETTINGS 5.8 INPUTS/OUTPUTS

DIRECT INPUT 9 DEVICE ID: "4"
DIRECT INPUT 9 BIT NUMBER: "3"

DIRECT INPUT 9 DEFAULT STATE: select "On" for security, select "Off" for dependability

Now the three blocking signals are available in UR IED 1 as DIRECT INPUT 7 ON, DIRECT INPUT 8 ON, and DIRECT INPUT 9 ON. Upon losing communications or a device, the scheme is inclined to block (if any default state is set to "On"), or to trip the bus on any overcurrent condition (all default states set to "Off").

EXAMPLE 2: PILOT-AIDED SCHEMES

Consider a three-terminal line protection application shown in the figure below.

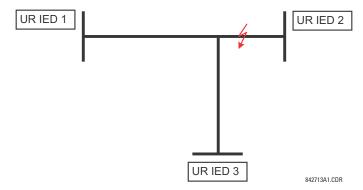


Figure 5-139: THREE-TERMINAL LINE APPLICATION

Assume the Hybrid Permissive Overreaching Transfer Trip (Hybrid POTT) scheme is applied using the architecture shown below. The scheme output operand HYB POTT TX1 is used to key the permission.

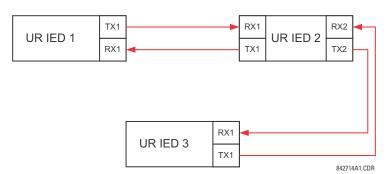


Figure 5-140: SINGLE-CHANNEL OPEN-LOOP CONFIGURATION

In the above architecture, Devices 1 and 3 do not communicate directly. Therefore, Device 2 must act as a 'bridge'. The following settings should be applied:

UR IED 1: DIRECT OUT 2 OPERAND: "HYB POTT TX1"

DIRECT INPUT 5 DEVICE ID: "2"

DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)

DIRECT INPUT 6 DEVICE ID: "2"

DIRECT INPUT 6 BIT NUMBER: "4" (effectively, this is a message from IED 3)

UR IED 3: DIRECT OUT 2 OPERAND: "HYB POTT TX1"

DIRECT INPUT 5 DEVICE ID: "2"

DIRECT INPUT 5 BIT NUMBER: "2" (this is a message from IED 2)

DIRECT INPUT 6 DEVICE ID: "2"

DIRECT INPUT 6 BIT NUMBER: "3" (effectively, this is a message from IED 1)

UR IED 2: DIRECT INPUT 5 DEVICE ID: "1"

DIRECT INPUT 5 BIT NUMBER: "2" DIRECT INPUT 6 DEVICE ID: "3" DIRECT INPUT 6 BIT NUMBER: "2"

5.8 INPUTS/OUTPUTS 5 SETTINGS

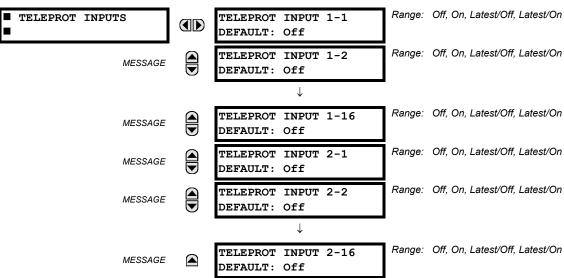
DIRECT OUT 2 OPERAND: "HYB POTT TX1"

DIRECT OUT 3 OPERAND: "DIRECT INPUT 5" (forward a message from 1 to 3) **DIRECT OUT 4 OPERAND:** "DIRECT INPUT 6" (forward a message from 3 to 1)

Signal flow between the three IEDs is shown in the figure below:

Figure 5-141: SIGNAL FLOW FOR DIRECT INPUT AND OUTPUT - EXAMPLE 3

In three-terminal applications, both the remote terminals must grant permission to trip. Therefore, at each terminal, direct inputs 5 and 6 should be ANDed in FlexLogic and the resulting operand configured as the permission to trip (HYB POTT RX1 setting).

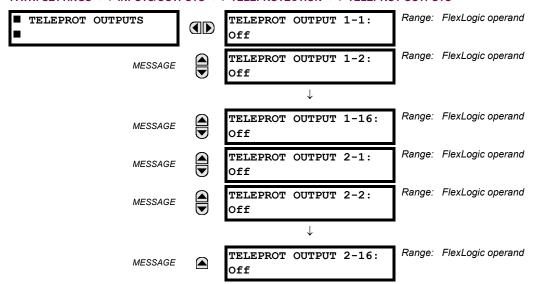

5.8.11 TELEPROTECTION INPUTS AND OUTPUTS

a) OVERVIEW

The relay provides sixteen teleprotection inputs on communications channel 1 (numbered 1-1 through 1-16) and sixteen teleprotection inputs on communications channel 2 (on two-terminals two-channel and three-terminal systems only, numbered 2-1 through 2-16). The remote relay connected to channels 1 and 2 of the local relay is programmed by assigning FlexLogic operands to be sent via the selected communications channel. This allows the user to create distributed protection and control schemes via dedicated communications channels. Some examples are directional comparison pilot schemes and direct transfer tripping. It should be noted that failures of communications channels will affect teleprotection functionality. The teleprotection function must be enabled to utilize the inputs.

b) TELEPROTECTION INPUTS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ TELEPROTECTION \Rightarrow TELEPROT INPUTS


5 SETTINGS 5.8 INPUTS/OUTPUTS

Setting the **TELEPROT INPUT** ~ **DEFAULT** setting to "On" defaults the input to logic 1 when the channel fails. A value of "Off" defaults the input to logic 0 when the channel fails.

The "Latest/On" and "Latest/Off" values freeze the input in case of lost communications. If the latest state is not known, such as after relay power-up but before the first communication exchange, then the input defaults to logic 1 for "Latest/On" and logic 0 for "Latest/Off".

c) TELEPROTECTION OUTPUTS

PATH: SETTINGS ⇒ ♣ INPUTS/OUTPUTS ⇒ ♣ TELEPROTECTION ⇒ ♣ TELEPROT OUTPUTS

As the following figure demonstrates, processing of the teleprotection inputs/outputs is dependent on the number of communication channels and terminals. On two-terminal two-channel systems, they are processed continuously on each channel and mapped separately per channel. Therefore, to achieve redundancy, the user must assign the same operand on both channels (teleprotection outputs at the sending end or corresponding teleprotection inputs at the receiving end). On three-terminal two-channel systems, redundancy is achieved by programming signal re-transmittal in the case of channel failure between any pair of relays.

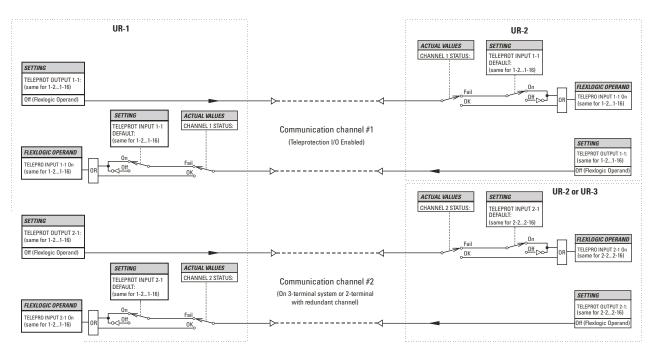
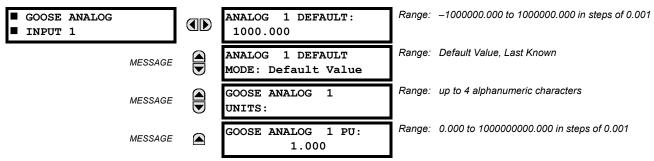



Figure 5-142: TELEPROTECTION INPUT/OUTPUT PROCESSING

842750A2.CDR

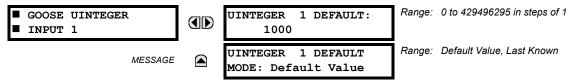
5.8.12 IEC 61850 GOOSE ANALOGS

PATH: SETTINGS ⇒ ♣ INPUTS/OUTPUTS ⇒ ♣ IEC 61850 GOOSE ANALOGS ⇒ ♣ GOOSE ANALOG INPUT 1(32)

The IEC 61850 GOOSE analog inputs feature allows the transmission of analog values between any two UR-series devices. The following settings are available for each GOOSE analog input.

- ANALOG 1 DEFAULT: This setting specifies the value of the GOOSE analog input when the sending device is offline
 and the ANALOG 1 DEFAULT MODE is set to "Default Value". This setting is stored as an IEEE 754 / IEC 60559 floating
 point number. Because of the large range of this setting, not all possible values can be stored. Some values may be
 rounded to the closest possible floating point number.
- ANALOG 1 DEFAULT MODE: When the sending device is offline and this setting is "Last Known", the value of the GOOSE analog input remains at the last received value. When the sending device is offline and this setting value is "Default Value", then the value of the GOOSE analog input is defined by the ANALOG 1 DEFAULT setting.
- GOOSE ANALOG 1 UNITS: This setting specifies a four-character alphanumeric string that can is used in the actual values display of the corresponding GOOSE analog input value.
- GOOSE ANALOG 1 PU: This setting specifies the per-unit base factor when using the GOOSE analog input FlexAnalog values in other F60 features, such as FlexElements. The base factor is applied to the GOOSE analog input FlexAnalog quantity to normalize it to a per-unit quantity. The base units are described in the following table.

5 SETTINGS 5.8 INPUTS/OUTPUTS

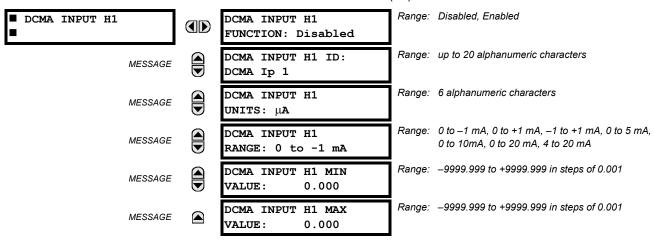

Table 5-37: GOOSE ANALOG INPUT BASE UNITS

ELEMENT	BASE UNITS
BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	BASE = 2000 kA 2 × cycle
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and –IN inputs.
FREQUENCY	f _{BASE} = 1 Hz
FREQUENCY RATE OF CHANGE	df/dt _{BASE} = 1 Hz/s
PHASE ANGLE	φ _{BASE} = 360 degrees (see the UR angle referencing convention)
POWER FACTOR	PF _{BASE} = 1.00
RTDs	BASE = 100°C
SENSITIVE DIR POWER (Sns Dir Power)	P_{BASE} = maximum value of 3 × V_{BASE} × I_{BASE} for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s).
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs
SOURCE ENERGY (Positive and Negative Watthours, Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and –IN inputs
SOURCE THD & HARMONICS	BASE = 1%
SOURCE VOLTAGE	V _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs
SYNCHROCHECK (Max Delta Volts)	V _{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs

The GOOSE analog input FlexAnalog values are available for use in other F60 functions that use FlexAnalog values.

5.8.13 IEC 61850 GOOSE INTEGERS

PATH: SETTINGS $\Rightarrow \emptyset$ INPUTS/OUTPUTS $\Rightarrow \emptyset$ IEC 61850 GOOSE UINTEGERS $\Rightarrow \emptyset$ GOOSE UINTEGER INPUT 1(16)


The IEC 61850 GOOSE uinteger inputs feature allows the transmission of FlexInteger values between any two UR-series devices. The following settings are available for each GOOSE uinteger input.

- **UINTEGER 1 DEFAULT**: This setting specifies the value of the GOOSE uinteger input when the sending device is offline and the **UINTEGER 1 DEFAULT MODE** is set to "Default Value". This setting is stored as a 32-bit unsigned integer number.
- **UINTEGER 1 DEFAULT MODE**: When the sending device is offline and this setting is "Last Known", the value of the GOOSE uinteger input remains at the last received value. When the sending device is offline and this setting value is "Default Value", then the value of the GOOSE uinteger input is defined by the **UINTEGER 1 DEFAULT** setting.

The GOOSE integer input FlexInteger values are available for use in other F60 functions that use FlexInteger values.

5.9.1 DCMA INPUTS

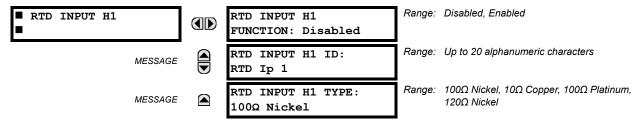
PATH: SETTINGS ⇒ \$\Partial\$ TRANSDUCER I/O \$\Partial\$ DCMA INPUTS \$\Rightarrow\$ DCMA INPUT H1(W8)

Hardware and software is provided to receive signals from external transducers and convert these signals into a digital format for use as required. The relay will accept inputs in the range of –1 to +20 mA DC, suitable for use with most common transducer output ranges; all inputs are assumed to be linear over the complete range. Specific hardware details are contained in chapter 3.

Before the dcmA input signal can be used, the value of the signal measured by the relay must be converted to the range and quantity of the external transducer primary input parameter, such as DC voltage or temperature. The relay simplifies this process by internally scaling the output from the external transducer and displaying the actual primary parameter.

dcmA input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.


Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5F transducer module installed in slot H.

The function of the channel may be either "Enabled" or "Disabled". If "Disabled", no actual values are created for the channel. An alphanumeric "ID" is assigned to each channel; this ID will be included in the channel actual value, along with the programmed units associated with the parameter measured by the transducer, such as volts, °C, megawatts, etc. This ID is also used to reference the channel as the input parameter to features designed to measure this type of parameter. The **DCMA INPUT H1 RANGE** setting specifies the mA DC range of the transducer connected to the input channel.

The DCMA INPUT H1 MIN VALUE and DCMA INPUT H1 MAX VALUE settings are used to program the span of the transducer in primary units. For example, a temperature transducer might have a span from 0 to 250°C; in this case the DCMA INPUT H1 MIN VALUE value is "0" and the DCMA INPUT H1 MAX VALUE value is "250". Another example would be a watts transducer with a span from –20 to +180 MW; in this case the DCMA INPUT H1 MIN VALUE value would be "–20" and the DCMA INPUT H1 MAX VALUE value "180". Intermediate values between the min and max values are scaled linearly.

5.9.2 RTD INPUTS

Hardware and software is provided to receive signals from external resistance temperature detectors and convert these signals into a digital format for use as required. These channels are intended to be connected to any of the RTD types in common use. Specific hardware details are contained in chapter 3.

RTD input channels are arranged in a manner similar to CT and VT channels. The user configures individual channels with the settings shown here.

The channels are arranged in sub-modules of two channels, numbered from 1 through 8 from top to bottom. On power-up, the relay will automatically generate configuration settings for every channel, based on the order code, in the same general manner that is used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number. The relay generates an actual value for each available input channel.

Settings are automatically generated for every channel available in the specific relay as shown above for the first channel of a type 5C transducer module installed in the first available slot.

The function of the channel may be either "Enabled" or "Disabled". If "Disabled", there will not be an actual value created for the channel. An alphanumeric ID is assigned to the channel; this ID will be included in the channel actual values. It is also used to reference the channel as the input parameter to features designed to measure this type of parameter. Selecting the type of RTD connected to the channel configures the channel.

Actions based on RTD overtemperature, such as trips or alarms, are done in conjunction with the FlexElements feature. In FlexElements, the operate level is scaled to a base of 100°C. For example, a trip level of 150°C is achieved by setting the operate level at 1.5 pu. FlexElement operands are available to FlexLogic for further interlocking or to operate an output contact directly.

Refer to the following table for reference temperature values for each RTD type.

Table 5-38: RTD TEMPERATURE VS. RESISTANCE

TEMPERATURE		RESISTANCE (IN OHMS)					
°C	°F	100 Ω PT (DIN 43760)	120 Ω NI	100 Ω NI	10 Ω CU		
-50	– 58	80.31	86.17	71.81	7.10		
-40	-40	84.27	92.76	77.30	7.49		
-30	-22	88.22	99.41	82.84	7.88		
-20	-4	92.16	106.15	88.45	8.26		
-10	14	96.09	113.00	94.17	8.65		
0	32	100.00	120.00	100.00	9.04		
10	50	103.90	127.17	105.97	9.42		
20	68	107.79	134.52	112.10	9.81		
30	86	111.67	142.06	118.38	10.19		
40	104	115.54	149.79	124.82	10.58		
50	122	119.39	157.74	131.45	10.97		
60	140	123.24	165.90	55.90 138.25			
70	158	127.07	174.25 145.20		11.74		
80	176	130.89	182.84 152.37		12.12		
90	194	134.70	191.64	159.70	12.51		
100	212	138.50	200.64	167.20	12.90		
110	230	142.29	209.85	174.87	13.28		
120	248	146.06	219.29	182.75	13.67		
130	266	149.82	228.96 190.80		14.06		
140	284	153.58	238.85	199.04	14.44		
150	302	157.32	248.95 207.45		14.83		
160	320	161.04	259.30 216.08		15.22		
170	338	164.76	269.91 224.92		15.61		
180	356	168.47	280.77 233.97		16.00		
190	374	172.46	291.96	243.30	16.39		
200	392	175.84	303.46	252.88	16.78		
210	410	179.51	315.31	262.76	17.17		
220	428	183.17	327.54	272.94	17.56		
230	446	186.82	340.14	283.45	17.95		
240	464	190.45	353.14	294.28	18.34		
250	482	194.08	366.53	305.44	18.73		

5.9.3 DCMA OUTPUTS

PATH: SETTINGS ⇒ \$\Partial\$ TRANSDUCER I/O ⇒ \$\Partial\$ DCMA OUTPUTS ⇒ DCMA OUTPUT H1(W8)

Hardware and software is provided to generate dcmA signals that allow interfacing with external equipment. Specific hardware details are contained in chapter 3. The dcmA output channels are arranged in a manner similar to transducer input or CT and VT channels. The user configures individual channels with the settings shown below.

The channels are arranged in sub-modules of two channels, numbered 1 through 8 from top to bottom. On power-up, the relay automatically generates configuration settings for every channel, based on the order code, in the same manner used for CTs and VTs. Each channel is assigned a slot letter followed by the row number, 1 through 8 inclusive, which is used as the channel number.

Both the output range and a signal driving a given output are user-programmable via the following settings menu (an example for channel M5 is shown).

The relay checks the driving signal (x in equations below) for the minimum and maximum limits, and subsequently rescales so the limits defined as **MIN VAL** and **MAX VAL** match the output range of the hardware defined as **RANGE**. The following equation is applied:

$$I_{out} = \begin{cases} I_{min} & \text{if } x < \text{MIN VAL} \\ I_{max} & \text{if } x > \text{MAX VAL} \\ k(x - \text{MIN VAL}) + I_{min} & \text{otherwise} \end{cases}$$
 (EQ 5.31)

where: x is a driving signal specified by the **SOURCE** setting I_{min} and I_{max} are defined by the **RANGE** setting k is a scaling constant calculated as:

$$k = \frac{I_{max} - I_{min}}{\text{MAX VAL} - \text{MIN VAL}}$$
 (EQ 5.32)

The feature is intentionally inhibited if the MAX VAL and MIN VAL settings are entered incorrectly, e.g. when MAX VAL – MIN VAL < 0.1 pu. The resulting characteristic is illustrated in the following figure.

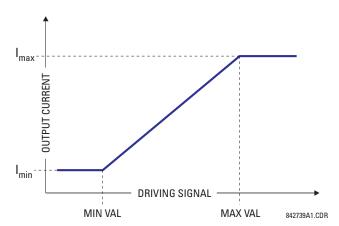


Figure 5-143: DCMA OUTPUT CHARACTERISTIC

The dcmA output settings are described below.

- DCMA OUTPUT H1 SOURCE: This setting specifies an internal analog value to drive the analog output. Actual values
 (FlexAnalog parameters) such as power, current amplitude, voltage amplitude, power factor, etc. can be configured as
 sources driving dcmA outputs. Refer to Appendix A for a complete list of FlexAnalog parameters.
- **DCMA OUTPUT H1 RANGE**: This setting allows selection of the output range. Each dcmA channel may be set independently to work with different ranges. The three most commonly used output ranges are available.
- **DCMA OUTPUT H1 MIN VAL**: This setting allows setting the minimum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current. The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement base units.
- **DCMA OUTPUT H1 MAX VAL**: This setting allows setting the maximum limit for the signal that drives the output. This setting is used to control the mapping between an internal analog value and the output current. The setting is entered in per-unit values. The base units are defined in the same manner as the FlexElement base units.

The **DCMA OUTPUT H1 MIN VAL** and **DCMA OUTPUT H1 MAX VAL** settings are ignored for power factor base units (i.e. if the **DCMA OUTPUT H1 SOURCE** is set to FlexAnalog value based on power factor measurement).

Three application examples are described below.

EXAMPLE: POWER MONITORING

A three phase active power on a 13.8 kV system measured via UR-series relay source 1 is to be monitored by the dcmA H1 output of the range of –1 to 1 mA. The following settings are applied on the relay: CT ratio = 1200:5, VT secondary 115, VT connection is delta, and VT ratio = 120. The nominal current is 800 A primary and the nominal power factor is 0.90. The power is to be monitored in both importing and exporting directions and allow for 20% overload compared to the nominal.

The nominal three-phase power is:

$$P = \sqrt{3} \times 13.8 \text{ kV} \times 0.8 \text{ kA} \times 0.9 = 17.21 \text{ MW}$$
 (EQ 5.33)

The three-phase power with 20% overload margin is:

$$P_{max} = 1.2 \times 17.21 \text{ MW} = 20.65 \text{ MW}$$
 (EQ 5.34)

The base unit for power (refer to the FlexElements section in this chapter for additional details) is:

$$P_{RASF} = 115 \text{ V} \times 120 \times 1.2 \text{ kA} = 16.56 \text{ MW}$$
 (EQ 5.35)

The minimum and maximum power values to be monitored (in pu) are:

minimum power =
$$\frac{-20.65 \text{ MW}}{16.56 \text{ MW}} = -1.247 \text{ pu}$$
, maximum power = $\frac{20.65 \text{ MW}}{16.56 \text{ MW}} = 1.247 \text{ pu}$ (EQ 5.36)

The following settings should be entered:

DCMA OUTPUT H1 SOURCE: "SRC 1 P"
DCMA OUTPUT H1 RANGE: "-1 to 1 mA"
DCMA OUTPUT H1 MIN VAL: "-1.247 pu"
DCMA OUTPUT H1 MAX VAL: "1.247 pu"

With the above settings, the output will represent the power with the scale of 1 mA per 20.65 MW. The worst-case error for this application can be calculated by superimposing the following two sources of error:

- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (1 (-1)) \times 20.65$ MW = ± 0.207 MW
- ±1% of reading error for the active power at power factor of 0.9

For example at the reading of 20 MW, the worst-case error is 0.01 × 20 MW + 0.207 MW = 0.407 MW.

EXAMPLE: CURRENT MONITORING

5-290

The phase A current (true RMS value) is to be monitored via the H2 current output working with the range from 4 to 20 mA. The CT ratio is 5000:5 and the maximum load current is 4200 A. The current should be monitored from 0 A upwards, allowing for 50% overload.

The phase current with the 50% overload margin is:

$$I_{max} = 1.5 \times 4.2 \text{ kA} = 6.3 \text{ kA}$$
 (EQ 5.37)

The base unit for current (refer to the FlexElements section in this chapter for additional details) is:

$$I_{BASF} = 5 \text{ kA} \tag{EQ 5.38}$$

The minimum and maximum power values to be monitored (in pu) are:

minimum current =
$$\frac{0 \text{ kA}}{5 \text{ kA}} = 0 \text{ pu}$$
, maximum current = $\frac{6.3 \text{ kA}}{5 \text{ kA}} = 1.26 \text{ pu}$ (EQ 5.39)

The following settings should be entered:

DCMA OUTPUT H2 SOURCE: "SRC 1 Ia RMS"
DCMA OUTPUT H2 RANGE: "4 to 20 mA"
DCMA OUTPUT H2 MIN VAL: "0.000 pu"
DCMA OUTPUT H2 MAX VAL: "1.260 pu"

The worst-case error for this application could be calculated by superimposing the following two sources of error:

- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (20-4) \times 6.3$ kA = ± 0.504 kA
- ±0.25% of reading or ±0.1% of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal

For example, at the reading of 4.2 kA, the worst-case error is $max(0.0025 \times 4.2 \text{ kA}, 0.001 \times 5 \text{ kA}) + 0.504 \text{ kA} = 0.515 \text{ kA}$.

EXAMPLE: VOLTAGE MONITORING

A positive-sequence voltage on a 400 kV system measured via source 2 is to be monitored by the dcmA H3 output with a range of 0 to 1 mA. The VT secondary setting is 66.4 V, the VT ratio setting is 6024, and the VT connection setting is "Delta". The voltage should be monitored in the range from 70% to 110% of nominal.

The minimum and maximum positive-sequence voltages to be monitored are:

$$V_{min} = 0.7 \times \frac{400 \text{ kV}}{\sqrt{3}} = 161.66 \text{ kV}, \quad V_{max} = 1.1 \times \frac{400 \text{ kV}}{\sqrt{3}} = 254.03 \text{ kV}$$
 (EQ 5.40)

The base unit for voltage (refer to the FlexElements section in this chapter for additional details) is:

$$V_{BASE} = 0.0664 \text{ kV} \times 6024 = 400 \text{ kV}$$
 (EQ 5.41)

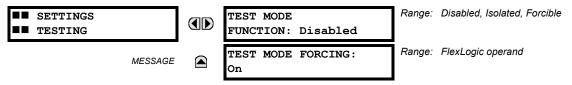
The minimum and maximum voltage values to be monitored (in pu) are:

minimum voltage =
$$\frac{161.66 \text{ kV}}{400 \text{ kV}} = 0.404 \text{ pu}$$
, maximum voltage = $\frac{254.03 \text{ kV}}{400 \text{ kV}} = 0.635 \text{ pu}$ (EQ 5.42)

The following settings should be entered:

DCMA OUTPUT H3 SOURCE: "SRC 2 V_1 mag"
DCMA OUTPUT H3 RANGE: "0 to 1 mA"
DCMA OUTPUT H3 MIN VAL: "0.404 pu"
DCMA OUTPUT H3 MAX VAL: "0.635 pu"

The limit settings differ from the expected 0.7 pu and 1.1 pu because the relay calculates the positive-sequence quantities scaled to the phase-to-ground voltages, even if the VTs are connected in "Delta" (see the *Metering Conventions* section in chapter 6), while at the same time the VT nominal voltage is 1 pu for the settings. Consequently the settings required in this example differ from naturally expected by the factor of $\sqrt{3}$.


The worst-case error for this application could be calculated by superimposing the following two sources of error:

- $\pm 0.5\%$ of the full scale for the analog output module, or $\pm 0.005 \times (1-0) \times 254.03$ kV = ± 1.27 kV
- ±0.5% of reading

For example, under nominal conditions, the positive-sequence reads 230.94 kV and the worst-case error is $0.005 \times 230.94 \text{ kV} + 1.27 \text{ kV} = 2.42 \text{ kV}$.

5.10.1 TEST MODE

The F60 provides a test facility to verify the functionality of contact inputs and outputs, some communication channels and the phasor measurement unit (where applicable), using simulated conditions. The test mode is indicated on the relay face-plate by a Test Mode LED indicator.

The test mode may be in any of three states: disabled, isolated, or forcible.

In the "Disabled" mode, F60 operation is normal and all test features are disabled.

In the "Isolated" mode, the F60 is prevented from performing certain control actions, including tripping via contact outputs. All relay contact outputs, including latching outputs, are disabled. Channel tests and phasor measurement unit tests remain usable on applicable UR-series models.

In the "Forcible" mode, the operand selected by the **TEST MODE FORCING** setting controls the relay inputs and outputs. If the test mode is forcible, and the operand assigned to the **TEST MODE FORCING** setting is "Off", the F60 inputs and outputs operate normally. If the test mode is forcible, and the operand assigned to the **TEST MODE FORCING** setting is "On", the F60 contact inputs and outputs are forced to the values specified in the following sections. Forcing may be controlled by manually changing the operand selected by the **TEST MODE FORCING** setting between on and off, or by selecting a user-programmable pushbutton, contact input, or communication-based input operand. Channel tests and phasor measurement unit tests remain usable on applicable UR-series models.

Communications based inputs and outputs remain fully operational in test mode. If a control action is programmed using direct inputs and outputs or remote inputs and outputs, then the test procedure must take this into account.

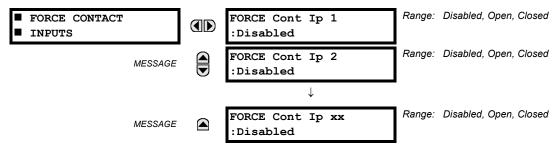
When in "Forcible" mode, the operand selected by the **TEST MODE FORCING** setting dictates further response of the F60 to testing conditions. To force contact inputs and outputs through relay settings, set **TEST MODE FORCING** to "On". To force contact inputs and outputs through a user-programmable condition, such as FlexLogic operand (pushbutton, digital input, communication-based input, or a combination of these), set **TEST MODE FORCING** to the desired operand. The contact input or output is forced when the selected operand assumes a logic 1 state.

The F60 remains fully operational in test mode, allowing for various testing procedures. In particular, the protection and control elements, FlexLogic, and communication-based inputs and outputs function normally.

The only difference between the normal operation and the test mode is the behavior of the input and output contacts. The contact inputs can be forced to report as open or closed or remain fully operational, whereas the contact outputs can be forced to open, close, freeze, or remain fully operational. The response of the digital input and output contacts to the test mode is programmed individually for each input and output using the force contact inputs and force contact outputs test functions described in the following sections.

The test mode state is indicated on the relay faceplate by a combination of the Test Mode LED indicator, the In-Service LED indicator, and by the critical fail relay, as shown in the following table.

5.10 TESTING

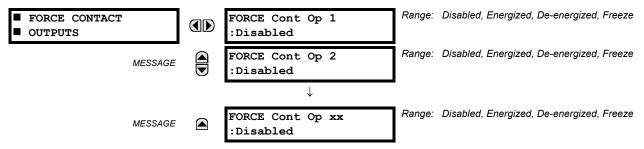

Table 5-39: TEST MODE OPERATION

TEST MODE FUNCTION	TEST MODE FORCING OPERAND	IN-SERVICE LED	TEST MODE LED	CRITICAL FAIL RELAY	INPUT AND OUTPUT BEHAVIOR
Disabled	No effect	Unaffected	Off	Unaffected	Contact outputs and inputs are under normal operation. Channel tests and PMU tests not operational (where applicable).
Isolated	No effect	Off	On	De- energized	Contact outputs are disabled and contact inputs are operational. Channel tests and PMU tests are also operational (where applicable).
Forcible	On (logic 1)	Off	Flashing	De- energized	Contact inputs and outputs are controlled by the force contact input and force contact output functions. Channel tests and PMU tests are operational (where applicable).
	Off (logic 0)	Off	Flashing	De- energized	Contact outputs and inputs are under normal operation. Channel tests and PMU tests are also operational (where applicable).

The **TEST MODE FUNCTION** setting can only be changed by a direct user command. Following a restart, power up, settings upload, or firmware upgrade, the test mode will remain at the last programmed value. This allows a F60 that has been placed in isolated mode to remain isolated during testing and maintenance activities. On restart, the **TEST MODE FORCING** setting and the force contact input and force contact output settings all revert to their default states.

5.10.2 FORCE CONTACT INPUTS

PATH: SETTINGS ⇔ U TESTING ⇒ U FORCE CONTACT INPUTS


The relay digital inputs (contact inputs) could be pre-programmed to respond to the test mode in the following ways:

- If set to "Disabled", the input remains fully operational. It is controlled by the voltage across its input terminals and can be turned on and off by external circuitry. This value should be selected if a given input must be operational during the test. This includes, for example, an input initiating the test, or being a part of a user pre-programmed test sequence.
- If set to "Open", the input is forced to report as opened (Logic 0) for the entire duration of the test mode regardless of the voltage across the input terminals.
- If set to "Closed", the input is forced to report as closed (Logic 1) for the entire duration of the test mode regardless of the voltage across the input terminals.

The force contact inputs feature provides a method of performing checks on the function of all contact inputs. Once enabled, the relay is placed into test mode, allowing this feature to override the normal function of contact inputs. The Test Mode LED will be on, indicating that the relay is in test mode. The state of each contact input may be programmed as "Disabled", "Open", or "Closed". All contact input operations return to normal when all settings for this feature are disabled.

5.10.3 FORCE CONTACT OUTPUTS

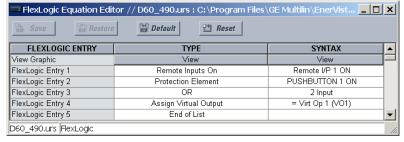
The relay contact outputs can be pre-programmed to respond to the test mode.

If set to "Disabled", the contact output remains fully operational. If operates when its control operand is logic 1 and will resets when its control operand is logic 0. If set to "Energized", the output will close and remain closed for the entire duration of the test mode, regardless of the status of the operand configured to control the output contact. If set to "De-energized", the output will open and remain opened for the entire duration of the test mode regardless of the status of the operand configured to control the output contact. If set to "Freeze", the output retains its position from before entering the test mode, regardless of the status of the operand configured to control the output contact.

These settings are applied two ways. First, external circuits may be tested by energizing or de-energizing contacts. Second, by controlling the output contact state, relay logic may be tested and undesirable effects on external circuits avoided.

Example 1: Initiating test mode through user-programmable pushbutton 1

For example, the test mode can be initiated from user-programmable pushbutton 1. The pushbutton will be programmed as "Latched" (pushbutton pressed to initiate the test, and pressed again to terminate the test). During the test, digital input 1 should remain operational, digital inputs 2 and 3 should open, and digital input 4 should close. Also, contact output 1 should freeze, contact output 2 should open, contact output 3 should close, and contact output 4 should remain fully operational. The required settings are shown below.


To enable user-programmable pushbutton 1 to initiate the test mode, make the following changes in the **SETTINGS** ⇒ **TESTING**

Make the following changes to configure the contact inputs and outputs. In the SETTINGS ⇒ ♣ TESTING ⇒ ♣ FORCE CONTACT INPUTS and FORCE CONTACT OUTPUTS menus, set:

FORCE Cont Ip 1: "Disabled", FORCE Cont Ip 2: "Open", FORCE Cont Ip 3: "Open", and FORCE Cont Ip 4: "Closed" FORCE Cont Op 1: "Freeze", FORCE Cont Op 2: "De-energized", FORCE Cont Op 3: "Energized", and FORCE Cont Op 4: "Disabled"

Example 2: Initiating a test from user-programmable pushbutton 1 or through remote input 1

In this example, the test can be initiated locally from user-programmable pushbutton 1 or remotely through remote input 1. Both the pushbutton and the remote input will be programmed as "Latched". Write the following FlexLogic equation:

Set the user-programmable pushbutton as latching by changing SETTINGS ⇒ PRODUCT SETUP ⇒ USER-PROGRAMMABLE PUSHBUTTONS ⇒ USER PUSHBUTTON 1 ⇒ PUSHBUTTON 1 FUNCTION to "Latched". To enable either pushbutton 1 or remote input 1 to initiate the Test mode, make the following changes in the SETTINGS ⇒ USER PUSHBUTTON 1 ⇒ PUSHBUTTON 1 FUNCTION to "Latched".

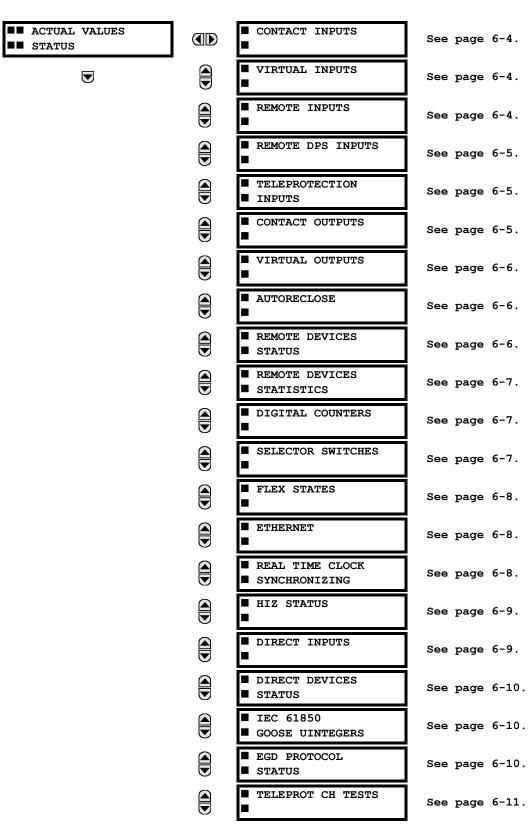
TEST MODE FUNCTION: "Enabled" and TEST MODE INITIATE: "VO1"

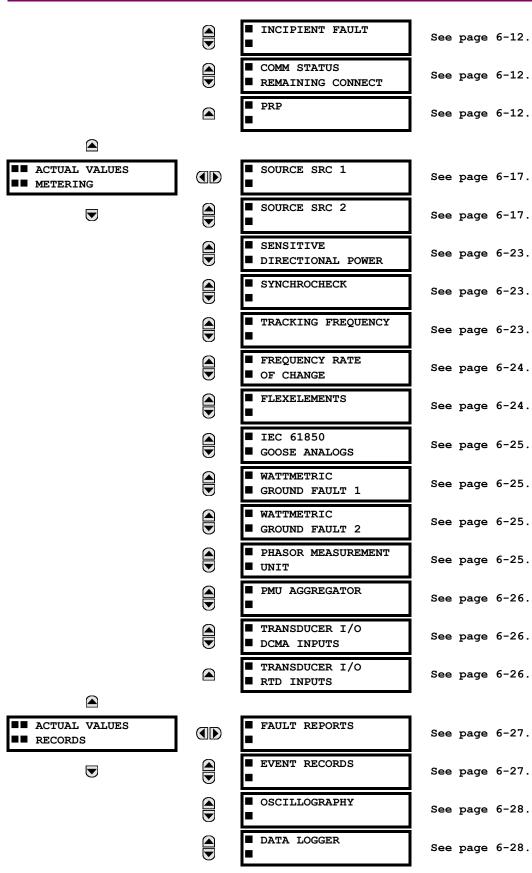
5.10.4 PHASOR MEASUREMENT UNIT TEST VALUES

PATH: SETTINGS ⇒ ⊕ TESTING ⇒ ⊕ PMU TEST VALUES ⇒ PMU 1 TEST VALUES

■ PMU 1 ■ TEST VALUES		PMU 1 TEST FUNCTION: Disabled	Range:	Enabled, Disabled
MESSA	GE 🙀	PMU 1 VA TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
MESSA	GE 🙀	PMU 1 VA TEST ANGLE: 0.00°	Range:	–180.00 to 180.00° in steps of 0.05
MESSA	GE 🙀	PMU 1 VB TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
MESSA	GE ₩	PMU 1 VB TEST ANGLE: -120.00°	Range:	-180.00 to 180.00° in steps of 0.05
MESSA	GE 🙀	PMU 1 VC TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
MESSA	GE ₩	PMU 1 VC TEST ANGLE: 120.00°	Range:	–180.00 to 180.00° in steps of 0.05
MESSA	GE 🖢	PMU 1 VX TEST MAGNITUDE: 500.00 kV	Range:	0.00 to 700.00 kV in steps of 0.01
MESSA	GE 🙀	PMU 1 VX TEST ANGLE: 0.00°	Range:	–180.00 to 180.00° in steps of 0.05
MESSA	GE ₩	PMU 1 IA TEST MAGNITUDE: 1.000 kA	Range:	0.000 to 9.999 kA in steps of 0.001
MESSA	GE 🖢	PMU 1 IA TEST ANGLE: -10.00°	Range:	-180.00 to 180.00° in steps of 0.05
MESSA	GE 🙀	PMU 1 IB TEST MAGNITUDE: 1.000 kA	Range:	0.000 to 9.999 kA in steps of 0.001
MESSA	GE ₩	PMU 1 IB TEST ANGLE: -130.00°	Range:	–180.00 to 180.00° in steps of 0.05
MESSA	GE 🙀	PMU 1 IC TEST MAGNITUDE: 1.000 kA	Range:	0.000 to 9.999 kA in steps of 0.001
MESSA	GE 🙀	PMU 1 IC TEST ANGLE: 110.00°	Range:	-180.00 to 180.00° in steps of 0.05
MESSA	GE 🙀	PMU 1 IG TEST MAGNITUDE: 0.000 kA	Range:	0.000 to 9.999 kA in steps of 0.001
MESSA	GE ₩	PMU 1 IG TEST ANGLE: 0.00°	Range:	-180.00 to 180.00° in steps of 0.05
MESSA	GE ₩	PMU 1 TEST FREQUENCY: 60.000 Hz	Range:	20.000 to 60.000 Hz in steps of 0.001
MESSA	GE 🛕	PMU 1 TEST df/dt: 0.000 Hz/s	Range:	-10.000 to 10.000 Hz/s in steps of 0.001

The relay must be in test mode to use the PMU test mode. That is, the **TESTING** \Rightarrow **TEST MODE FUNCTION** setting must be "Enabled" and the **TESTING** \Rightarrow \P **TEST MODE INITIATE** initiating signal must be "On".


5.10 TESTING 5 SETTINGS


During the PMU test mode, the physical channels (VA, VB, VC, VX, IA, IB, IC, and IG), frequency, and rate of change of frequency are substituted with user values, while the symmetrical components are calculated from the physical channels. The test values are not explicitly marked in the outgoing data frames. When required, it is recommended to use the user-programmable digital channels to signal the IEEE C37.118 client that test values are being sent in place of the real measurements.

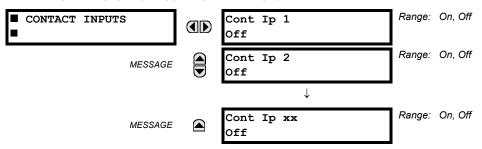
The UR Synchrophasor Implementation defines a test mode which sends a pre-defined set of Synchrophasors out over the communication channel when the test mode function setting is enabled. In test mode, the following actions take place:

- a. The Data Invalid / Test Mode bit (bit 15 in the STAT word) is set.
- b. The Sim bit in all output datasets is set.

6.1.1 ACTUAL VALUES MENU

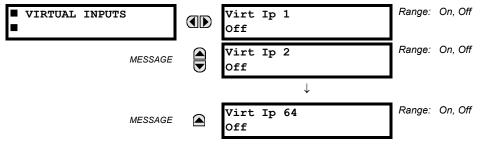
6.1 OVERVIEW

■ PMU See page 6-29. ■ RECORDS ■ MAINTENANCE See page 6-29. ■ HIZ RECORDS See page 6-30. ■■ ACTUAL VALUES ■ MODEL INFORMATION See page 6-31. ■■ PRODUCT INFO ■ FIRMWARE REVISIONS See page 6-31.


6 ACTUAL VALUES

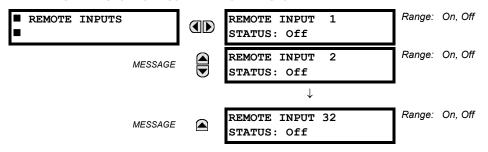
For status reporting, 'On' represents Logic 1 and 'Off' represents Logic 0.

6.2.1 CONTACT INPUTS



The present status of the contact inputs is shown here. The first line of a message display indicates the ID of the contact input. For example, 'Cont Ip 1' refers to the contact input in terms of the default name-array index. The second line of the display indicates the logic state of the contact input.

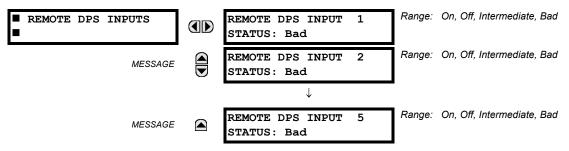
6.2.2 VIRTUAL INPUTS


PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\Pi\$ VIRTUAL INPUTS

The present status of the 64 virtual inputs is shown here. The first line of a message display indicates the ID of the virtual input. For example, 'Virt Ip 1' refers to the virtual input in terms of the default name. The second line of the display indicates the logic state of the virtual input.

6.2.3 REMOTE INPUTS

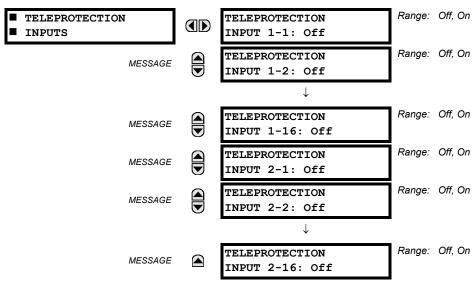
PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\partial \text{ REMOTE INPUTS}



The present state of the 32 remote inputs is shown here.

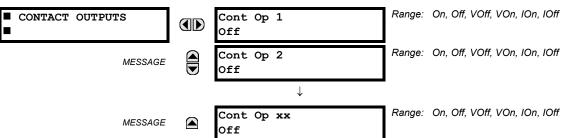
The state displayed will be that of the remote point unless the remote device has been established to be "Offline" in which case the value shown is the programmed default state for the remote input.

6.2.4 REMOTE DOUBLE-POINT STATUS INPUTS



The present state of the remote double-point status inputs is shown here. The actual values indicate if the remote double-point status inputs are in the on (close), off (open), intermediate, or bad state.

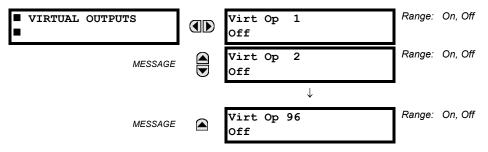
6.2.5 TELEPROTECTION INPUTS



The present state of teleprotection inputs from communication channels 1 and 2 are shown here. The state displayed will be that of corresponding remote output unless the channel is declared failed.

6.2.6 CONTACT OUTPUTS

PATH: ACTUAL VALUES \Rightarrow STATUS $\Rightarrow \emptyset$ CONTACT OUTPUTS

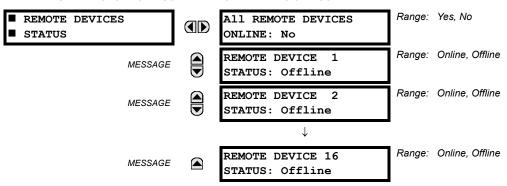

The present state of the contact outputs is shown here. The first line of a message display indicates the ID of the contact output. For example, 'Cont Op 1' refers to the contact output in terms of the default name-array index. The second line of the display indicates the logic state of the contact output.

For form-A contact outputs, the state of the voltage and current detectors is displayed as Off, VOff, IOff, On, IOn, and VOn. For form-C contact outputs, the state is displayed as Off or On.

6.2.7 VIRTUAL OUTPUTS

The present state of up to 96 virtual outputs is shown here. The first line of a message display indicates the ID of the virtual output. For example, 'Virt Op 1' refers to the virtual output in terms of the default name-array index. The second line of the display indicates the logic state of the virtual output, as calculated by the FlexLogic equation for that output.

6.2.8 AUTORECLOSE

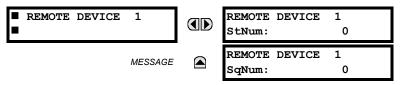


The automatic reclosure shot count is shown here.

6.2.9 REMOTE DEVICES

a) STATUS

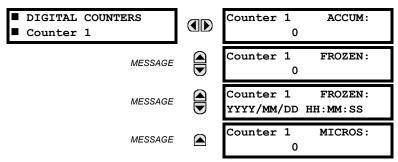
PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\mathcal{P}\$ REMOTE DEVICES STATUS



The present state of the programmed remote devices is shown here. The **ALL REMOTE DEVICES ONLINE** message indicates whether or not all programmed remote devices are online. If the corresponding state is "No", then at least one required remote device is not online.

6.2 STATUS 6.2 STATUS

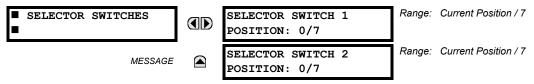
b) STATISTICS



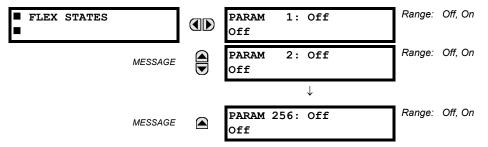
Statistical data (two types) for up to 16 programmed remote devices is shown here.

The **STNUM** number is obtained from the indicated remote device and increments whenever a change of state of at least one item occurs in the GSSE/GOOSE message. The **SQNUM** number is obtained from the indicated remote device and increments whenever a GSSE/GOOSE message, without a state change, is sent. When the GSSE/GOOSE message trasmits a state change, the **SQNUM** resets to 0. This number rolls over to zero when a count of 4,294,967,295 is incremented.

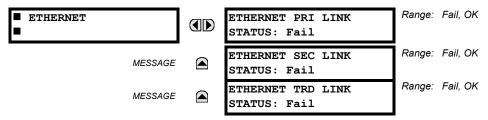
6.2.10 DIGITAL COUNTERS


PATH: ACTUAL VALUES ⇒ STATUS ⇒ Ū DIGITAL COUNTERS ⇒ DIGITAL COUNTERS Counter 1(8)

The present status of the eight digital counters is shown here. The status of each counter, with the user-defined counter name, includes the accumulated and frozen counts (the count units label will also appear). Also included, is the date and time stamp for the frozen count. The **COUNTER 1 MICROS** value refers to the microsecond portion of the time stamp.

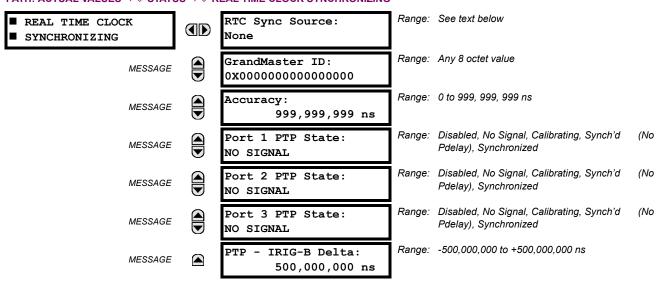

6.2.11 SELECTOR SWITCHES

The display shows both the current position and the full range. The current position only (an integer from 0 through 7) is the actual value.



There are 256 FlexStateTM bits available. The second line value indicates the state of the given FlexState bit.

6.2.13 ETHERNET



These values indicate the status of the first, second, and third Ethernet links.

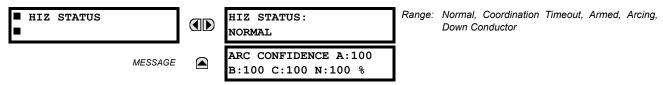
6.2.14 REAL TIME CLOCK SYNCHRONIZING

PATH: ACTUAL VALUES ⇒ \$\Partile{\Partile}\$ STATUS ⇒ \$\Partile{\Partile}\$ REAL TIME CLOCK SYNCHRONIZING

The RTC Sync Source actual value is the time synchronizing source the relay is using at present. Possible sources are: Port 1 PTP Clock, Port 2 PTP Clock, Port 3 PTP Clock, IRIG-B, SNTP, and None.

The Grandmaster ID is the grandmasterIdentity code being received from the present PTP grandmaster, if any. When the relay is not using any PTP grandmaster, this actual value is zero. The grandmasterIdentity code is specified by PTP to be globally unique, so one can always know which clock is grandmaster in a system with multiple grandmaster-capable clocks.

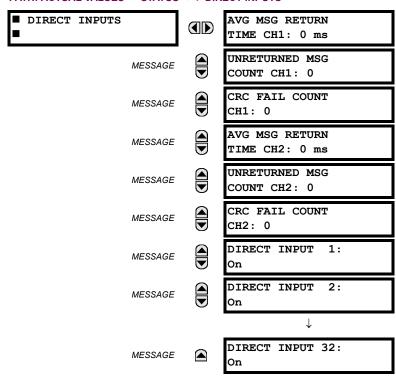
Accuracy is the estimated maximum time error at present in the RTC, considering the quality information imbedded in the received time signal. The value 999,999,999 indicates that the magnitude of the estimated error is one second or more, or that the error cannot be estimated.


PORT 1...3 PTP STATE is the present state of the port's PTP clock. The PTP clock state is:

- DISABLED is the port's function setting is Disabled,
- NO SIGNAL if enabled but no signal from an active master has been found and selected,
- CALIBRATING if an active master has been selected but lock is not at present established,
- · SYNCH'D (NO PDELAY) if the port is synchronized, but the peer delay mechanism is non-operational, and
- SYNCHRONIZED if synchronized.

PTP—IRIG-B DELTA is the time difference, measured in nanoseconds, between the fractional seconds portion of the time being received via PTP and that being received via IRIG-B. A positive value indicates that PTP time is fast compared to IRIG-B time.

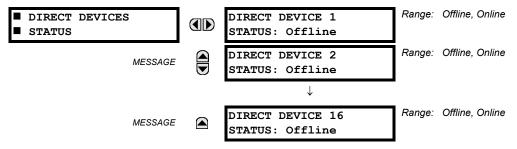
6.2.15 HI-Z STATUS



The current status of high-impedance fault detection element is displayed here. Refer to *Theory of operation* for information on element status determination. The arc fault detection confidence is also displayed.

6.2.16 DIRECT INPUTS

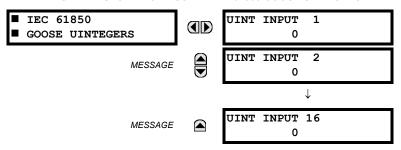
6.2 STATUS


The **AVERAGE MSG RETURN TIME** is the time taken for direct output messages to return to the sender in a direct input/output ring configuration (this value is not applicable for non-ring configurations). This is a rolling average calculated for the last ten messages. There are two return times for dual-channel communications modules.

The **UNRETURNED MSG COUNT** values (one per communications channel) count the direct output messages that do not make the trip around the communications ring. The **CRC FAIL COUNT** values (one per communications channel) count the direct output messages that have been received but fail the CRC check. High values for either of these counts may indicate on a problem with wiring, the communication channel, or one or more relays. The **UNRETURNED MSG COUNT** and **CRC FAIL COUNT** values can be cleared using the **CLEAR DIRECT I/O COUNTERS** command.

The DIRECT INPUT 1 to DIRECT INPUT (32) values represent the state of each direct input.

6.2.17 DIRECT DEVICES STATUS


PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\Pi\$ DIRECT DEVICES STATUS

These actual values represent the state of direct devices 1 through 16.

6.2.18 IEC 61850 GOOSE INTEGERS

PATH: ACTUAL VALUES ⇔ \$\Partial\$ STATUS \$\Rightarrow\$\$ IEC 61850 GOOSE UINTEGERS

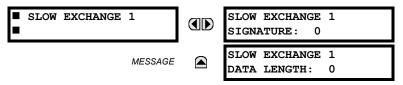
The F60 Feeder Protection System is provided with optional IEC 61850 communications capability. This feature is specified as a software option at the time of ordering. See the *Order Codes* section in chapter 2 for details.

The IEC 61850 GGIO5 integer input data points are displayed in this menu. The GGIO5 integer data values are received via IEC 61850 GOOSE messages sent from other devices.

6.2.19 EGD PROTOCOL STATUS

a) FAST EXCHANGE

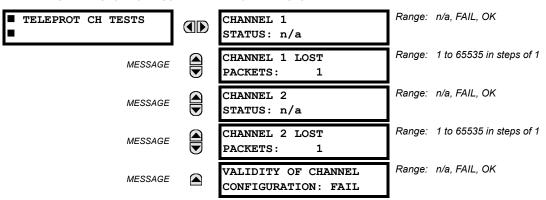
PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\Pi\$ EGD PROTOCOL STATUS ⇒ PRODUCER STATUS ⇒ FAST EXCHANGE 1


FAST EXCHANGE 1 SIGNATURE: 0 6.2 STATUS 6.2 STATUS

MESSAGE

FAST EXCHANGE 1 DATA LENGTH: 0

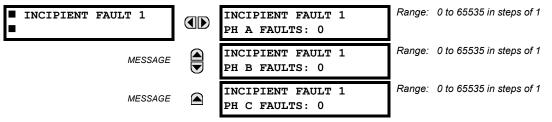
These values provide information that may be useful for debugging an EGD network. The EGD signature and packet size for the fast EGD exchange is displayed.


b) SLOW EXCHANGE

These values provide information that may be useful for debugging an EGD network. The EGD signature and packet size for the slow EGD exchanges are displayed.

6.2.20 TELEPROTECTION CHANNEL TESTS

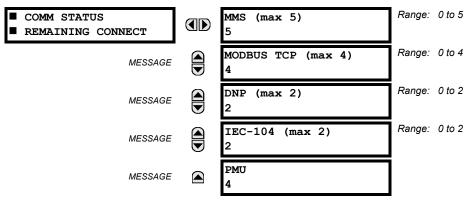
PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\frac{1}{2}\$ TELEPROT CH TESTS


The status information for two channels is shown here.

- CHANNEL 1 STATUS: This represents the receiver status of each channel. If the value is "OK", teleprotection is enabled and data is being received from the remote terminal; If the value is "FAIL", teleprotection enabled and data is not being received from the remote terminal. If "n/a", teleprotection is disabled.
- CHANNEL 1 LOST PACKETS: Data is transmitted to the remote terminals in data packets at a rate of two packets per cycle. The number of lost packets represents data packets lost in transmission; this count can be reset to 0 through the COMMANDS

 CLEAR RECORDS menu.
- VALIDITY OF CHANNEL CONFIGURATION: This value displays the current state of the communications channel
 identification check, and hence validity. If a remote relay ID does not match the programmed ID at the local relay, the
 "FAIL" message will be displayed. The "N/A" value appears if the local relay ID is set to a default value of "0", the channel is failed, or if the teleprotection inputs/outputs are not enabled.

6.2.21 INCIPIENT FAULT DETECTOR



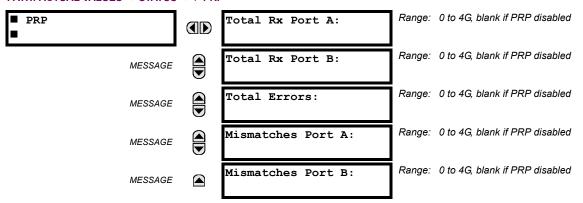
The number of detected incipient faults for each incipient fault element are displayed here for each phase. These values can be reset to zero with the COMMANDS ⇒ ♣ CLEAR RECORDS ⇒ ♣ CLEAR INCIPENT FAULT COUNTERS command.

6.2.22 REMAINING CONNECTION STATUS

PATH: ACTUAL VALUES ⇒ STATUS ⇒ \$\frac{1}{2}\$ COMM STATUS TCP REMAINING CONNECT

These values specify the remaining number of TCP connections still available for each protocol. Every time a connection is used, the remaining number of connections decrements. When released, the remaining number of connections increments. If no connection is made over the specific protocol, the number equals the maximum number available for the specific protocol.

For example, the maximum number of Modbus TCP connections is 4. Once an EnerVista session is opened on a computer connected to the UR over Ethernet, the Modbus TCP status shows 3. If the EnerVista application is closed, the Modbus TCP status shows 4.


Note that the maximum number of PMU TCP connections matches the number of aggregators.

6.2.23 PARALLEL REDUNDANCY PROTOCOL (PRP)

The Parallel Redundancy Protocol (PRP) defines a redundancy protocol for high availability in substation automation networks.

6 ACTUAL VALUES 6.2 STATUS

The F60 Feeder Protection System is provided with optional PRP capability. This feature is specified as a software option at the time of ordering. See the *Order Codes* section in chapter 2 for details.

TOTAL RECEIVED PORT A is a counter for total messages received (either from DANPs or from SANs) on Port A.

TOTAL RECEIVED PORT B is a counter for total messages received (either from DANPs or from SANs) on Port B.

TOTAL ERRORS is a counter for total messages received with an error (bad port code, frame length too short).

MISMATCHES PORT A is a counter for total messages received with an error on Port A (PRP frame, but port received through and LAN ID in the frame do not match).

MISMATCHES PORT B is a counter for total messages received with an error on Port B (PRP frame, but port received through and LAN ID in the frame do not match).

6.3.1 METERING CONVENTIONS

a) UR CONVENTION FOR MEASURING POWER AND ENERGY

The following figure illustrates the conventions established for use in UR-series relays.

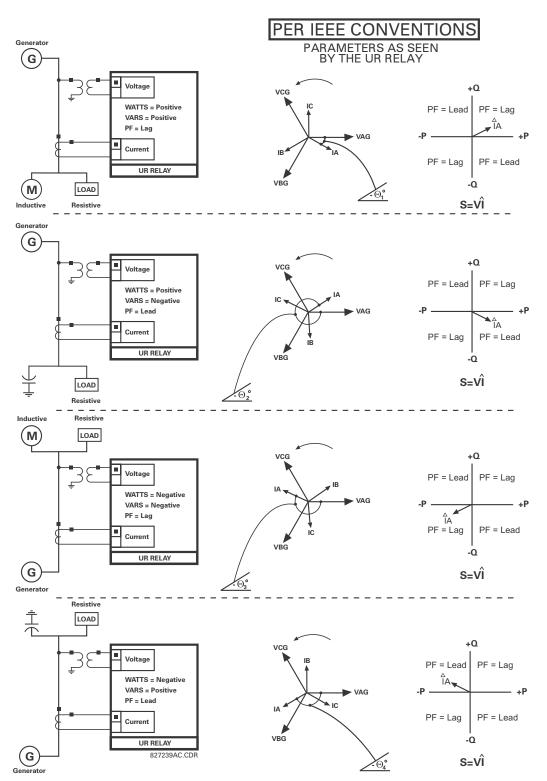


Figure 6-1: FLOW DIRECTION OF SIGNED VALUES FOR WATTS AND VARS

6.3 METERING

b) UR CONVENTION FOR MEASURING PHASE ANGLES

All phasors calculated by UR-series relays and used for protection, control and metering functions are rotating phasors that maintain the correct phase angle relationships with each other at all times.

For display and oscillography purposes, all phasor angles in a given relay are referred to an AC input channel pre-selected by the SETTINGS $\Rightarrow \mathbb{Q}$ SYSTEM SETUP $\Rightarrow \mathbb{Q}$ POWER SYSTEM $\Rightarrow \mathbb{Q}$ FREQUENCY AND PHASE REFERENCE setting. This setting defines a particular AC signal source to be used as the reference.

The relay will first determine if any "Phase VT" bank is indicated in the source. If it is, voltage channel VA of that bank is used as the angle reference. Otherwise, the relay determines if any "Aux VT" bank is indicated; if it is, the auxiliary voltage channel of that bank is used as the angle reference. If neither of the two conditions is satisfied, then two more steps of this hierarchical procedure to determine the reference signal include "Phase CT" bank and "Ground CT" bank.

If the AC signal pre-selected by the relay upon configuration is not measurable, the phase angles are not referenced. The phase angles are assigned as positive in the leading direction, and are presented as negative in the lagging direction, to more closely align with power system metering conventions. This is illustrated below.

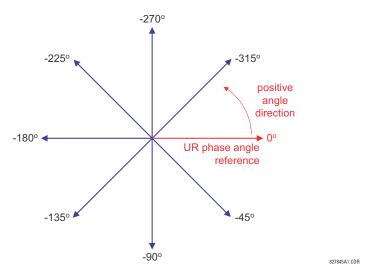


Figure 6-2: UR PHASE ANGLE MEASUREMENT CONVENTION

c) UR CONVENTION FOR SYMMETRICAL COMPONENTS

The UR-series of relays calculate voltage symmetrical components for the power system phase A line-to-neutral voltage, and symmetrical components of the currents for the power system phase A current. Owing to the above definition, phase angle relations between the symmetrical currents and voltages stay the same irrespective of the connection of instrument transformers. This is important for setting directional protection elements that use symmetrical voltages.

For display and oscillography purposes the phase angles of symmetrical components are referenced to a common reference as described in the previous sub-section.

WYE-CONNECTED INSTRUMENT TRANSFORMERS:

· ABC phase rotation:

$$\begin{aligned} &V_0 &= \frac{1}{3}(V_{AG} + V_{BG} + V_{CG}) \\ &V_1 &= \frac{1}{3}(V_{AG} + aV_{BG} + a^2V_{CG}) \\ &V_2 &= \frac{1}{3}(V_{AG} + a^2V_{BG} + aV_{CG}) \end{aligned}$$

ACB phase rotation:

$$V_{-0} = \frac{1}{3}(V_{AG} + V_{BG} + V_{CG})$$

$$V_{-1} = \frac{1}{3}(V_{AG} + a^{2}V_{BG} + aV_{CG})$$

$$V_{-2} = \frac{1}{3}(V_{AG} + aV_{BG} + a^{2}V_{CG})$$

The above equations apply to currents as well.

DELTA-CONNECTED INSTRUMENT TRANSFORMERS:

ABC phase rotation:

$$V_{0} = N/A$$

$$V_{1} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

$$V_{2} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

ACB phase rotation:

$$V_{0} = N/A$$

$$V_{1} = \frac{1 \angle 30^{\circ}}{3\sqrt{3}} (V_{AB} + a^{2}V_{BC} + aV_{CA})$$

$$V_{2} = \frac{1 \angle -30^{\circ}}{3\sqrt{3}} (V_{AB} + aV_{BC} + a^{2}V_{CA})$$

The zero-sequence voltage is not measurable under the Delta connection of instrument transformers and is defaulted to zero. The table below shows an example of symmetrical components calculations for the ABC phase rotation.

Table 6-1: SYMMETRICAL COMPONENTS CALCULATION EXAMPLE

SYSTEM VOLTAGES, SEC. V *						VT	RELAY INPUTS, SEC. V			SYMM. COMP, SEC. V		
V_{AG}	V _{BG}	V _{CG}	V _{AB}	V _{BC}	V _{CA}	CONN.	F5AC	F6AC	F7AC	V ₀	V ₁	V ₂
13.9 ∠0°	76.2 ∠–125°	79.7 ∠–250°	84.9 ∠–313°	138.3 ∠–97°	85.4 ∠–241°	WYE	13.9 ∠0°	76.2 ∠–125°	79.7 ∠–250°	19.5 ∠–192°	56.5 ∠–7°	23.3 ∠–187°
UNKNOWN (only V_1 and V_2 can be determined)			84.9 ∠0°	138.3 ∠–144°	85.4 ∠–288°	DELTA	84.9 ∠0°	138.3 ∠–144°	85.4 ∠–288°	N/A	56.5 ∠–54°	23.3 ∠–234°

* The power system voltages are phase-referenced – for simplicity – to VAG and VAB, respectively. This, however, is a relative matter. It is important to remember that the F60 displays are always referenced as specified under SETTINGS

⇒ ♣ SYSTEM SETUP ⇒ ♣ POWER SYSTEM ⇒ ♣ FREQUENCY AND PHASE REFERENCE.

The example above is illustrated in the following figure.

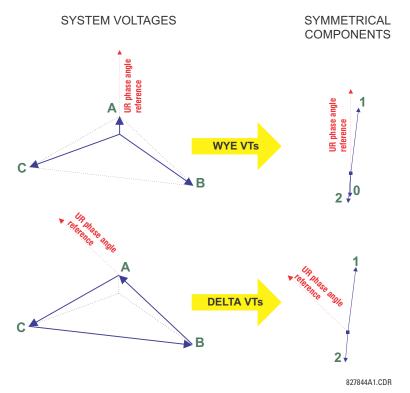
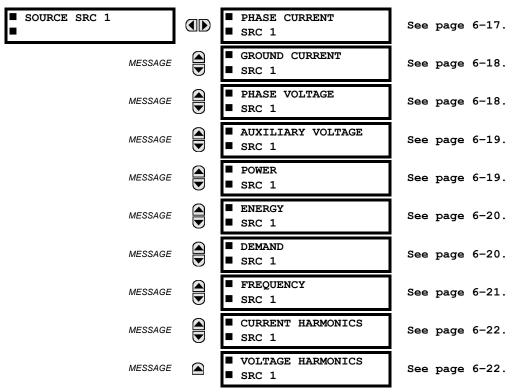
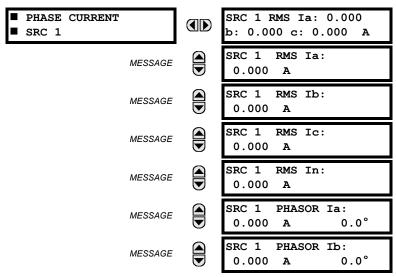
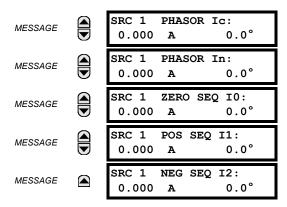



Figure 6-3: MEASUREMENT CONVENTION FOR SYMMETRICAL COMPONENTS

6.3.2 SOURCES

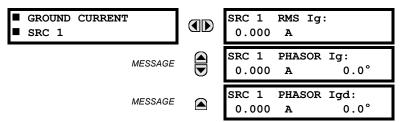
a) MAIN MENU

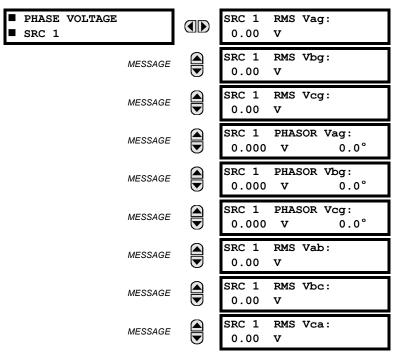



This menu displays the metered values available for each source.

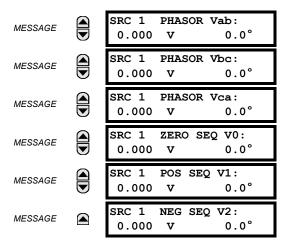
Metered values presented for each source depend on the phase and auxiliary VTs and phase and ground CTs assignments for this particular source. For example, if no phase VT is assigned to this source, then any voltage, energy, and power values will be unavailable.

b) PHASE CURRENT METERING


PATH: ACTUAL VALUES $\Rightarrow \emptyset$ METERING \Rightarrow SOURCE SRC 1 \Rightarrow PHASE CURRENT

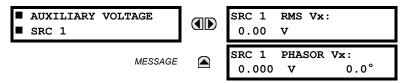

The metered phase current values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS ⇒ ♣ SYSTEM SETUP ⇒ ♣ SIGNAL SOURCES).

c) GROUND CURRENT METERING



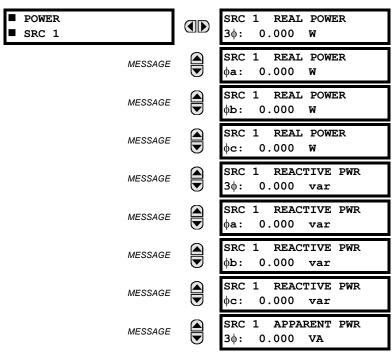
The metered ground current values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS ⇒ ♣ SYSTEM SETUP ⇒ ♣ SIGNAL SOURCES).

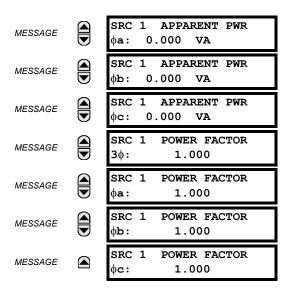
d) PHASE VOLTAGE METERING


6 ACTUAL VALUES 6.3 METERING

The metered phase voltage values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS ⇒ \$\Partilde{\Partial}\$ SYSTEM SETUP ⇒ \$\Partial SIGNAL SOURCES).

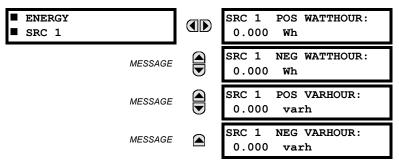
e) AUXILIARY VOLTAGE METERING


PATH: ACTUAL VALUES ⇒ \$\Pi\$ METERING \Rightarrow SOURCE SRC 1 \Rightarrow \Pi\$ AUXILIARY VOLTAGE

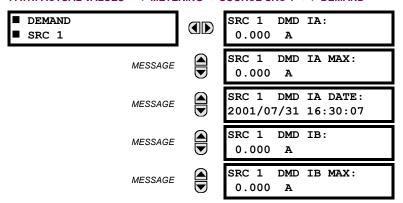


The metered auxiliary voltage values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** $\Rightarrow \P$ **SYSTEM SETUP** $\Rightarrow \P$ **SIGNAL SOURCES**).

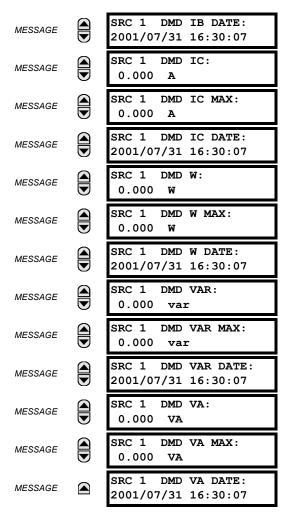
f) POWER METERING


PATH: ACTUAL VALUES ⇒ \$\Pi\$ METERING \$\Rightarrow\$ SOURCE SRC 1 \$\Rightarrow\$\$ POWER

The metered values for real, reactive, and apparent power, as well as power factor, are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS $\Rightarrow \P$ SYSTEM SETUP $\Rightarrow \P$ SIGNAL SOURCES).


g) ENERGY METERING

The metered values for real and reactive energy are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** $\Rightarrow \P$ **SYSTEM SETUP** $\Rightarrow \P$ **SIGNAL SOURCES**). Because energy values are accumulated, these values should be recorded and then reset immediately prior to changing CT or VT characteristics.


h) DEMAND METERING

PATH: ACTUAL VALUES ⇔ \$\Pi\$ METERING \$\Rightarrow\$ SOURCE SRC 1 \$\Rightarrow\$ DEMAND

6-20

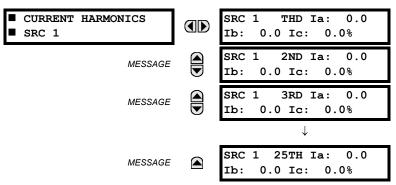
6.3 METERING

The metered values for current and power demand are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS \$\Rightarrow\$\Psi\$ SYSTEM SETUP \$\Rightarrow\$\Psi\$ SIGNAL SOURCES).

The relay measures (absolute values only) the source demand on each phase and average three phase demand for real, reactive, and apparent power. These parameters can be monitored to reduce supplier demand penalties or for statistical metering purposes. Demand calculations are based on the measurement type selected in the SETTINGS PRODUCT SETUP DEMAND menu. For each quantity, the relay displays the demand over the most recent demand time interval, the maximum demand since the last maximum demand reset, and the time and date stamp of this maximum demand value. Maximum demand quantities can be reset to zero with the CLEAR RECORDS COMMAND RECORDS command.

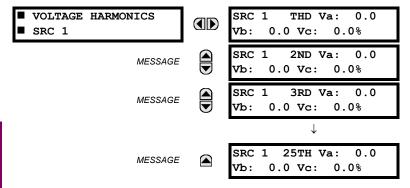
i) FREQUENCY METERING

PATH: ACTUAL VALUES ⇒ \$\Partial\$ METERING ⇒ SOURCE SRC 1 ⇒ \$\Partial\$ FREQUENCY



The metered frequency values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see SETTINGS $\Rightarrow \emptyset$ SYSTEM SETUP $\Rightarrow \emptyset$ SIGNAL SOURCES).

SOURCE FREQUENCY is measured via software-implemented zero-crossing detection of an AC signal. The signal is either a Clarke transformation of three-phase voltages or currents, auxiliary voltage, or ground current as per source configuration (see the **SYSTEM SETUP** $\Rightarrow \emptyset$ **POWER SYSTEM** settings). The signal used for frequency estimation is low-pass filtered. The final frequency measurement is passed through a validation filter that eliminates false readings due to signal distortions and transients.


j) CURRENT HARMONICS AND THD METERING

PATH: ACTUAL VALUES ⇒ \$\Partial\$ METERING ⇒ SOURCE SRC 1 ⇒ \$\Partial\$ CURRENT HARMONICS

The metered current harmonics values are displayed in this menu. The "SRC 1" text will be replaced by whatever name was programmed by the user for the associated source (see **SETTINGS** $\Rightarrow \emptyset$ **SYSTEM SETUP** $\Rightarrow \emptyset$ **SIGNAL SOURCES**). Current harmonics are measured for each source for the total harmonic distortion (THD) and 2nd to 25th harmonics per phase.

k) VOLTAGE HARMONICS AND THD METERING

The metered current harmonics values are displayed in this menu. The "SRC 1" text will be replaced by the programmed name for the associated source (see the SETTINGS ⇒ ♣ SYSTEM SETUP ⇒ ♣ SIGNAL SOURCES menu).

To extract the 2nd to 25th voltage harmonics, each harmonic is computed on a per-phase basis, where:

N = 64 is the number of samples per cycle

 $\omega_0 = 2\pi f$ is the angular frequency based on the system frequency (50 or 60 Hz)

k = 1, 2, ..., N - 1 is the index over one cycle for the Fast Fourier Transform (FFT)

m is the last sample number for the sliding window

h = 1, 2, ..., 25 is the harmonic number

The short-time Fourier transform is applied to the unfiltered signal:

$$F_{\text{real}}(m,h) = \frac{2}{N} \sum_{k} (f(m-k) \cdot \cos(h \cdot \omega_0 \cdot t(k)))$$

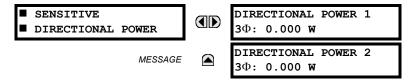
$$F_{\text{imag}}(m,h) = \frac{2}{N} \sum_{k} (f(m-k) \cdot \sin(h \cdot \omega_0 \cdot t(k)))$$

$$F_{\text{ampl}}(m,h) = \sqrt{F_{\text{real}}(m,h)^2 + F_{\text{imag}}(m,h)^2}$$
(EQ 6.1)

The harmonics are a percentage of the fundamental signal obtained as a ratio of harmonic amplitude to fundamental amplitude multiplied by 100%. The total harmonic distortion (THD) is the ratio of the total harmonic content to the fundamental:

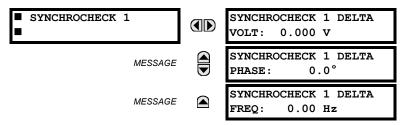
THD =
$$\sqrt{F_2^2 + F_3^2 + \dots + F_{25}^2}$$
 (EQ 6.2)

6 ACTUAL VALUES 6.3 METERING


Voltage harmonics are not available on F60 relays configured with the high-impedance fault detection (Hi-Z) feature.

Voltage harmonics are calculated only for Wye connected phase VTs. Ensure the SYSTEM SETUP ⇒ AC INPUTS ⇒ ↓ VOLTAGE BANK F5 ⇒ ↓ PHASE VT XX CONNECTION setting is "Wye" to enable voltage harmonics metering.

6.3.3 SENSITIVE DIRECTIONAL POWER


PATH: ACTUAL VALUES $\Rightarrow \mathbb{Q}$ METERING $\Rightarrow \mathbb{Q}$ SENSITIVE DIRECTIONAL POWER

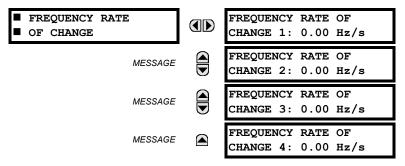
The effective operating quantities of the sensitive directional power elements are displayed here. The display may be useful to calibrate the feature by compensating the angular errors of the CTs and VTs with the use of the RCA and CALIBRATION settings.

6.3.4 SYNCHROCHECK

PATH: ACTUAL VALUES $\Rightarrow \mathbb{Q}$ METERING $\Rightarrow \mathbb{Q}$ SYNCHROCHECK \Rightarrow SYNCHROCHECK 1(2)

The actual values menu for synchrocheck 2 is identical to that of synchrocheck 1. If a synchrocheck function setting is "Disabled", the corresponding actual values menu item will not be displayed.

6.3.5 TRACKING FREQUENCY


PATH: ACTUAL VALUES $\Rightarrow \mathbb{Q}$ METERING $\Rightarrow \mathbb{Q}$ TRACKING FREQUENCY

The tracking frequency is displayed here. The frequency is tracked based on the selection of the reference source with the **FREQUENCY AND PHASE REFERENCE** setting in the **SETTINGS** $\Rightarrow \emptyset$ **SYSTEM SETUP** $\Rightarrow \emptyset$ **POWER SYSTEM** menu. See the *Power System* section of chapter 5 for details.

6.3.6 FREQUENCY RATE OF CHANGE

The metered frequency rate of change for the frequency rate of change elements is shown here.

6.3.7 FLEXELEMENTS

PATH: ACTUAL VALUES ⇒ \$\Pi\$ METERING ⇒ \$\Pi\$ FLEXELEMENTS ⇒ FLEXELEMENT 1(8)

FLEXELEMENT 1
Opsig: 0.000 pu

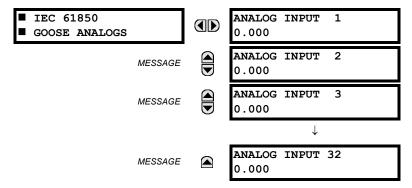

The operating signals for the FlexElements are displayed in pu values using the following definitions of the base units.

Table 6-2: FLEXELEMENT BASE UNITS

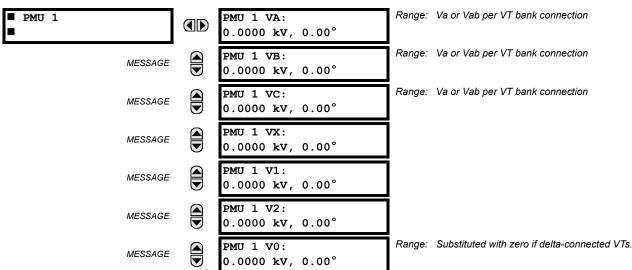
	,				
BREAKER ARCING AMPS (Brk X Arc Amp A, B, and C)	BASE = 2000 kA 2 × cycle				
dcmA	BASE = maximum value of the DCMA INPUT MAX setting for the two transducers configured under the +IN and –IN inputs.				
FREQUENCY	f_{BASE} = 1 Hz				
FREQUENCY RATE OF CHANGE	df/dt _{BASE} = 1 Hz/s				
PHASE ANGLE	φ _{BASE} = 360 degrees (see the UR angle referencing convention)				
POWER FACTOR	PF _{BASE} = 1.00				
RTDs	BASE = 100°C				
SENSITIVE DIR POWER (Sns Dir Power)	P_{BASE} = maximum value of 3 × V_{BASE} × I_{BASE} for the +IN and -IN inputs of the sources configured for the sensitive power directional element(s).				
SOURCE CURRENT	I _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs				
SOURCE ENERGY (Positive and Negative Watthours, Positive and Negative Varhours)	E _{BASE} = 10000 MWh or MVAh, respectively				
SOURCE POWER	P_{BASE} = maximum value of $V_{BASE} \times I_{BASE}$ for the +IN and -IN inputs				
SOURCE THD & HARMONICS	BASE = 1%				
SOURCE VOLTAGE	V _{BASE} = maximum nominal primary RMS value of the +IN and –IN inputs				
SYNCHROCHECK (Max Delta Volts)	V _{BASE} = maximum primary RMS value of all the sources related to the +IN and –IN inputs				

6.3.8 IEC 61580 GOOSE ANALOG VALUES

The F60 Feeder Protection System is provided with optional IEC 61850 communications capability. This feature is specified as a software option at the time of ordering. See the *Order Codes* section of chapter 2 for details.

The IEC 61850 GGIO3 analog input data points are displayed in this menu. The GGIO3 analog data values are received via IEC 61850 GOOSE messages sent from other devices.

6.3.9 WATTMETRIC GROUND FAULT





This menu displays the wattmetric zero-sequence directional element operating power values.

6.3.10 PHASOR MEASUREMENT UNIT

The above actual values are displayed without the corresponding time stamp as they become available per the recording rate setting. Also, the recording post-filtering setting is applied to these values.

6.3.11 PMU AGGREGATOR

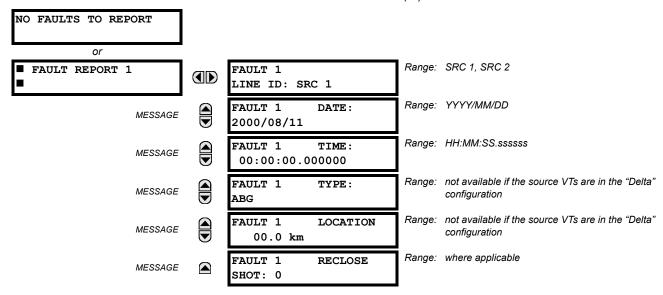
PATH: ACTUAL VALUES ⇒ ♣ METERING ⇒ ♣ PHASOR MEASUREMENT UNIT ⇒ PMU AGGREGATOR 1

Actual values for the IEC 61850-90-5 PDU size are provided. These values allow you to know the approximate Ethernet frame size for the data streams from each aggregator. This can help to estimate network loading. The PDU size shown in the displays does not include the Ethernet, UDP, or IP layers. PDU sizes approaching approximately 1500 bytes result in fragmented data frames, causing increased network traffic.

6.3.12 TRANSDUCER INPUTS AND OUTPUTS

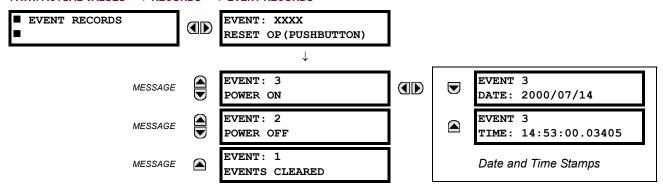
PATH: ACTUAL VALUES $\Rightarrow \emptyset$ METERING $\Rightarrow \emptyset$ TRANSDUCER I/O DCMA INPUTS \Rightarrow DCMA INPUT xx

Actual values for each dcmA input channel that is enabled are displayed with the top line as the programmed channel ID and the bottom line as the value followed by the programmed units.


PATH: ACTUAL VALUES $\Rightarrow \emptyset$ METERING $\Rightarrow \emptyset$ TRANSDUCER I/O RTD INPUTS \Rightarrow RTD INPUT xx

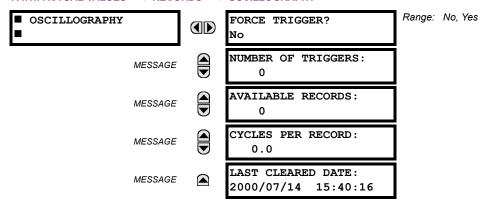
Actual values for each RTD input channel that is enabled are displayed with the top line as the programmed channel ID and the bottom line as the value.

6.4.1 FAULT REPORTS


PATH: ACTUAL VALUES ⇒ \$\frac{1}{2}\$ RECORDS \$\Rightarrow\$ FAULT REPORTS \$\Rightarrow\$ FAULT REPORT 1(15)

The latest 15 fault reports can be stored. The most recent fault location calculation (when applicable) is displayed in this menu, along with the date and time stamp of the event which triggered the calculation. See the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ FAULT REPORTS menu for assigning the source and trigger for fault calculations. Refer to the COMMANDS $\Rightarrow \emptyset$ CLEAR RECORDS menu for manual clearing of the fault reports and to the SETTINGS \Rightarrow PRODUCT SETUP $\Rightarrow \emptyset$ CLEAR RELAY RECORDS menu for automated clearing of the fault reports.

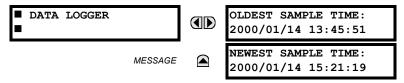
6.4.2 EVENT RECORDS



The event records menu shows the contextual data associated with up to the last 1024 events, listed in chronological order from most recent to oldest. If all 1024 event records have been filled, the oldest record will be removed as a new record is added. Each event record shows the event identifier/sequence number, cause, and date/time stamp associated with the event trigger. Refer to the **COMMANDS** \$\Pi\$ **CLEAR RECORDS** menu for clearing event records.

6.4.3 OSCILLOGRAPHY

PATH: ACTUAL VALUES ⇒ \$\Pi\$ RECORDS ⇒ \$\Pi\$ OSCILLOGRAPHY

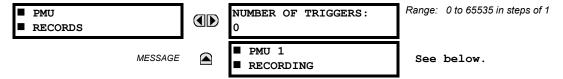


This menu allows the user to view the number of triggers involved and number of oscillography traces available. The **CYCLES PER RECORD** value is calculated to account for the fixed amount of data storage for oscillography. See the *Oscillography* section of chapter 5 for additional details.

A trigger can be forced here at any time by setting "Yes" to the **FORCE TRIGGER?** command. Refer to the **COMMANDS** ⇒ UCLEAR RECORDS menu for information on clearing the oscillography records.

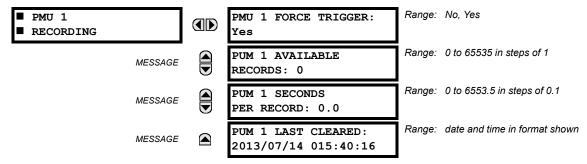
6.4.4 DATA LOGGER

PATH: ACTUAL VALUES $\Rightarrow \emptyset$ RECORDS $\Rightarrow \emptyset$ DATA LOGGER

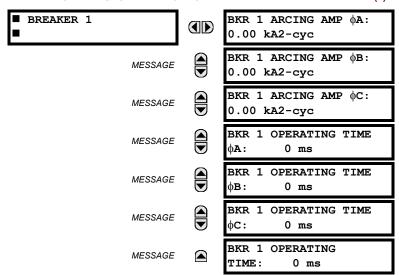


The **OLDEST SAMPLE TIME** represents the time at which the oldest available samples were taken. It will be static until the log gets full, at which time it will start counting at the defined sampling rate. The **NEWEST SAMPLE TIME** represents the time the most recent samples were taken. It counts up at the defined sampling rate. If the data logger channels are defined, then both values are static.

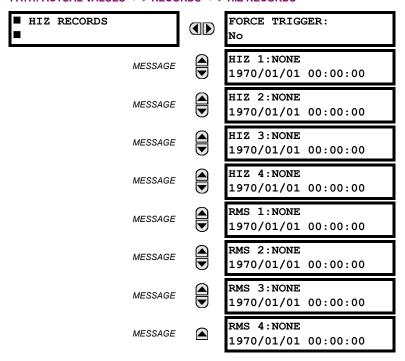
Refer to the **COMMANDS** ⇒ \$\partial\$ **CLEAR RECORDS** menu for clearing data logger records.


6.4.5 PHASOR MEASUREMENT UNIT RECORDS

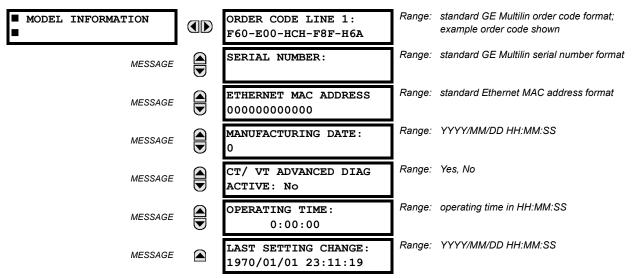
PATH: ACTUAL VALUES RECORDS PMU RECORDS


The number of triggers applicable to the phasor measurement unit recorder is indicated by the **NUMBER OF TRIGGERS** value. The status of the phasor measurement unit recorder is indicated as follows:

PATH: ACTUAL VALUES ⇒ RECORDS ⇒ PMU RECORDS ⇒ PMU 1 RECORDING

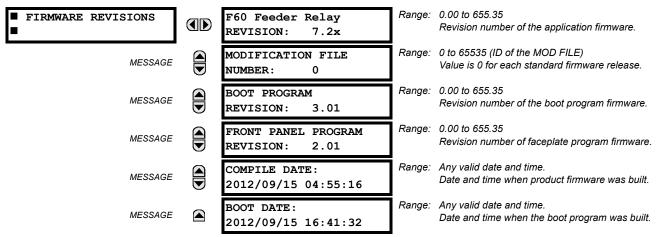

6.4.6 BREAKER MAINTENANCE

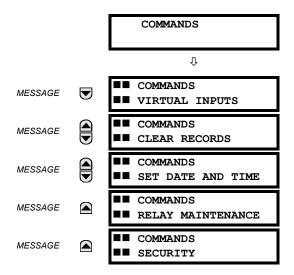
There is an identical menu for each of the breakers. The **BKR 1 ARCING AMP** values are in units of kA^2 -cycles. Refer to the **COMMANDS** $\Rightarrow \emptyset$ **CLEAR RECORDS** menu for clearing breaker arcing current records. The **BREAKER OPERATING TIME** is defined as the slowest operating time of breaker poles that were initiated to open.



Two types of high impedance fault detection element records are stored in non-volatile memory and available from this menu. If the element is triggered by a high impedance overcurrent condition, then the records are displayed in the **RMS 1** to **RMS 4** actual values. If the element is triggered by high impedance fault detection arcing algorithm, then the records are displayed in the **HIZ 1** to **HIZ 4** actual values. Refer to *High impedance fault detection* section in chapter 5 for more information.

6.5.1 MODEL INFORMATION

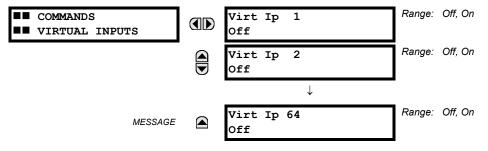



The order code, serial number, Ethernet MAC address, date and time of manufacture, and operating time are shown here.

6.5.2 FIRMWARE REVISIONS

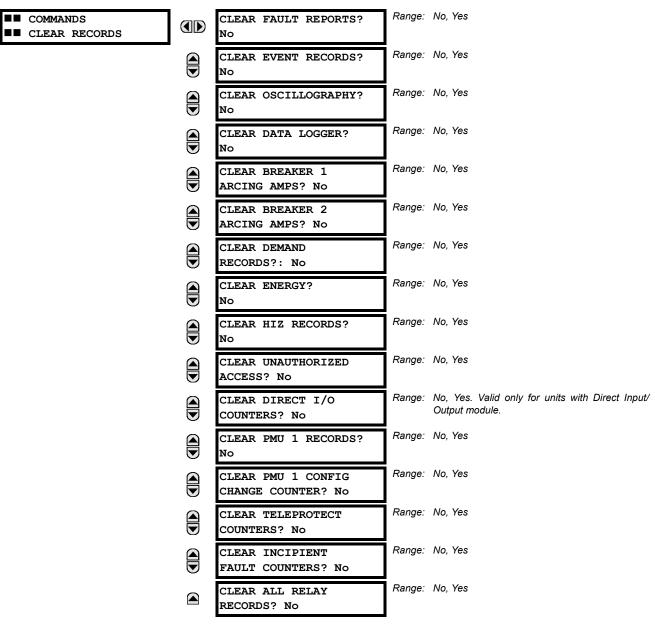
PATH: ACTUAL VALUES $\Rightarrow \mathbb{Q}$ PRODUCT INFO $\Rightarrow \mathbb{Q}$ FIRMWARE REVISIONS

The shown data is illustrative only. A modification file number of 0 indicates that, currently, no modifications have been installed.



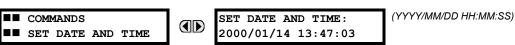
The commands menu contains relay directives intended for operations personnel. All commands can be protected from unauthorized access via the command password; see the *Security* section of chapter 5 for details. The following flash message appears after successfully command entry:

7.1.2 VIRTUAL INPUTS



The states of up to 64 virtual inputs are changed here. The first line of the display indicates the ID of the virtual input. The second line indicates the current or selected status of the virtual input. This status will be a state off (logic 0) or on (logic 1).

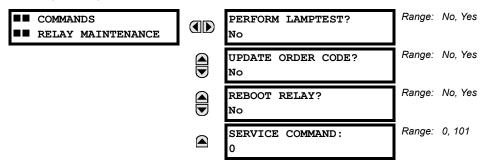
7.1.3 CLEAR RECORDS



This menu contains commands for clearing historical data such as the event records. Data is cleared by changing a command setting to "Yes" and pressing the ENTER key. After clearing data, the command setting automatically reverts to "No".

7.1.4 SET DATE AND TIME

PATH: COMMANDS $\Rightarrow \mathbb{Q}$ SET DATE AND TIME


The date and time can be entered on the faceplate keypad. The time setting is based on the 24-hour clock. The complete date, as a minimum, must be entered to allow execution of this command. The new time and date take effect when the ENTER key is pressed.

When the relay is synchronizing to an external time source such as PTP, IRIG-B, or SNTP, the manually entered time is over-written.

The timescale of the entered time is **local time**, including daylight savings time where and when applicable.

7.1.5 RELAY MAINTENANCE

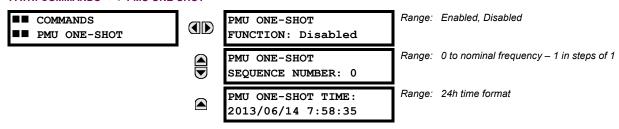
This menu contains commands for relay maintenance purposes. Commands for the lamp test and order code are activated by changing a command setting to "Yes" and pressing the ENTER key. The command setting will then automatically revert to "No". The service command is activated by entering a numerical code and pressing the ENTER key.

The **PERFORM LAMPTEST** command turns on all faceplate LEDs and display pixels for a short duration. The **UPDATE ORDER CODE** command causes the relay to scan the backplane for the hardware modules and update the order code to match. If an update occurs, the following message is shown.

UPDATING... PLEASE WAIT

There is no impact if there have been no changes to the hardware modules. When an update does not occur, the **ORDER CODE NOT UPDATED** message will be shown.

The **SERVICE COMMAND** is used to perform specific F60 service actions. Presently, there is only one service action available. Code "101" is used to clear factory diagnostic information stored in the non-volatile memory. If a code other than "101" is entered, the command will be ignored and no actions will be taken. Various self-checking diagnostics are performed in the background while the F60 is running, and diagnostic information is stored on the non-volatile memory from time to time based on the self-checking result. Although the diagnostic information is cleared before the F60 is shipped from the factory, the user may want to clear the diagnostic information for themselves under certain circumstances. For example, it may be desirable to clear diagnostic information after replacement of hardware. Once the diagnostic information is cleared, all self-checking variables are reset to their initial state and diagnostics will restart from scratch.


The REBOOT RELAY COMMAND reboots the relay so that changes to configuration settings can take effect. In most cases, if changes are made to the configuration settings these changes do not take effect unless the relay is rebooted.

With the CyberSentry option, the Administrator or Operator role can initiate the Reboot Relay command.

7.1.6 PHASOR MEASUREMENT UNIT ONE-SHOT

PATH: COMMANDS ⇒ \$\Pi\$ PMU ONE-SHOT

This feature allows pre-scheduling a PMU measurement at a specific point in time. This functionality can be used to test for accuracy of the PMU, and for manual collection of synchronized measurements through the system, as explained below.

When enabled, the function continuously compares the present time with the pre-set **PMU ONE-SHOT TIME**. When the two times match, the function compares the present sequence number of the measured synchrophasors with the pre-set **PMU ONE-SHOT SEQUENCE NUMBER**. When the two numbers match, the function freezes the synchrophasor actual values and the corresponding protocol data items for 30 seconds. This allows manual read-out of the synchrophasor values for the pre-set time and pre-set sequence number (via the faceplate display, supported communication protocols such as Modbus or DNP, and the EnerVista UR Setup software).

When freezing the actual values the function also asserts a PMU ONE-SHOT OP FlexLogic operand. This operand may be configured to drive an output contact and trigger an external measuring device such as a digital scope with the intent to verify the accuracy of the PMU under test.

With reference to the figure below, the PMU one-shot function (when enabled) controls three FlexLogic operands:

- The PMU ONE-SHOT EXPIRED operand indicates that the one-shot operation has been executed, and the present time
 is at least 30 seconds past the scheduled one-shot time.
- The PMU ONE-SHOT PENDING operand indicates that the one-shot operation is pending; that is, the present time is before the scheduled one-shot time.
- The PMU ONE-SHOT OP operand indicates the one-shot operation and remains asserted for 30 seconds afterwards.

When the function is disabled, all three operands are de-asserted. The one-shot function applies to all logical PMUs of a given F60 relay.

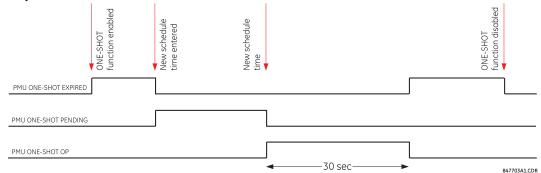


Figure 7-1: PMU ONE-SHOT FLEXLOGIC OPERANDS

TESTING ACCURACY OF THE PMU:

The one-shot feature can be used to test accuracy of the synchrophasor measurement. GPS-synchronized tests sets perform a similar function to PMUs: instead of measuring the phasor from physical signals with respect to the externally provided time reference, they produce the physical signals with respect to the externally provided time reference, given the desired phasor values. Therefore the GPS-synchronized test sets cannot be automatically assumed more accurate than the PMUs under test. This calls for a method to verify both the measuring device (PMU) and the source of signal (test set).

With reference to the figure below, the one-shot feature could be configured to trigger a high-accuracy scope to capture both the time reference signal (rising edge of the 1 pps signal of the IRIG-B time reference), and the measured waveform. The high-accuracy high-sampling rate record of the two signals captured by the scope can be processed using digital tools to verify the magnitude and phase angle with respect to the time reference signal. As both the time reference and the measured signals are raw inputs to the PMU under test, their independently captured record, processed using third-party software, is a good reference point for accuracy calculations. Such a record proves useful when discussing the test results, and should be retained as a part of the testing documentation.

Note that the PMU under such test does not have to be connected to a real GPS receiver as the accuracy is measured with respect to the timing reference provided to the PMU and not to the absolute UTC time. Therefore a simple IRIG-B generator could be used instead. Also, the test set does not have to support GPS synchronization. Any stable signal source can

be used. If both the PMU under test and the test set use the timing reference, they should be driven from the same IRIG-B signal: either the same GPS receiver or IRIG-B generator. Otherwise, the setpoints of the test set and the PMU measurements should not be compared as they are referenced to different time scales.

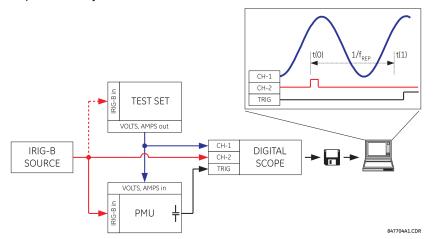
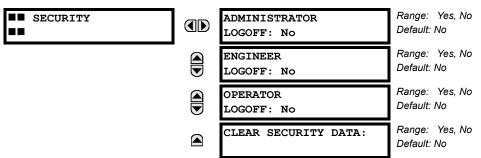



Figure 7–2: USING THE PMU ONE-SHOT FEATURE TO TEST SYNCHROPHASOR MEASUREMENT ACCURACY COLLECTING SYNCHRONIZED MEASUREMENTS *AD HOC*:

The one-shot feature can be used for ad hoc collection of synchronized measurements in the network. Two or more PMU can be pre-scheduled to freeze their measurements at the same time. When frozen the measurements could be collected using EnerVista UR Setup or a protocol client.

7.1.7 SECURITY

With the CyberSentry option, this setting is available to enable or disable the following commands:

- Administrator Logoff: Selecting 'Yes' allows the Supervisor to forcefully logoff an administrator session.
- Engineer Logoff: Selecting 'Yes' allows the Supervisor to forcefully logoff an engineer session.
- Operator Logoff: Selecting 'Yes' allows the Supervisor to forcefully logoff an operator session.
- Clear Security Data: Selecting 'Yes' allows the Supervisor to forcefully clear all the security logs and clears all the operands associated with the self-tests.

7.2.1 TARGETS MENU

The status of any active targets will be displayed in the targets menu. If no targets are active, the display will read **NO ACTIVE TARGETS**:

7.2.2 TARGET MESSAGES

When there are no active targets, the first target to become active will cause the display to immediately default to that message. If there are active targets and the user is navigating through other messages, and when the default message timer times out (i.e. the keypad has not been used for a determined period of time), the display will again default back to the target message.

The range of variables for the target messages is described below. Phase information will be included if applicable. If a target message status changes, the status with the highest priority will be displayed.

Table 7-1: TARGET MESSAGE PRIORITY STATUS

PRIORITY	ACTIVE STATUS	DESCRIPTION
1	OP	element operated and still picked up
2	PKP	element picked up and timed out
3	LATCHED	element had operated but has dropped out

If a self test error is detected, a message appears indicating the cause of the error. For example **UNIT NOT PROGRAMMED** indicates that the minimal relay settings have not been programmed.

7.2.3 RELAY SELF-TESTS

a) **DESCRIPTION**

The relay performs a number of self-test diagnostic checks to ensure device integrity. The two types of self-tests (major and minor) are listed in the tables below. When either type of self-test error occurs, the Trouble LED Indicator will turn on and a target message displayed. All errors record an event in the event recorder. Latched errors can be cleared by pressing the RESET key, providing the condition is no longer present.

Major self-test errors also result in the following:

- The critical fail relay on the power supply module is de-energized.
- All other output relays are de-energized and are prevented from further operation.
- · The faceplate In Service LED indicator is turned off.
- A RELAY OUT OF SERVICE event is recorded.

7

b) MAJOR SELF-TEST ERROR MESSAGES

The major self-test errors are outlined in this section.

MODULE FAILURE :
Contact Factory (xxx)

- Latched target message: Yes.
- Description of problem: Module hardware failure detected.
- How often the test is performed: Module dependent.
- What to do: Contact the factory and supply the failure code noted in the display. The "xxx" text identifies the failed module (for example, F8L).

INCOMPATIBLE H/W:
Contact Factory (xxx)

- Latched target message: Yes.
- Description of problem: One or more installed hardware modules is not compatible with the F60 order code.
- How often the test is performed: Module dependent.
- What to do: Contact the factory and supply the failure code noted in the display. The "xxx" text identifies the failed module (for example, F8L).

EQUIPMENT MISMATCH: with 2nd line detail

- Latched target message: No.
- Description of problem: The configuration of modules does not match the order code stored in the F60.
- How often the test is performed: On power up. Afterwards, the backplane is checked for missing cards every five seconds.
- What to do: Check all modules against the order code, ensure they are inserted properly, and cycle control power. If the problem persists, contact the factory.

FLEXLOGIC ERROR: with 2nd line detail

- Latched target message: No.
- Description of problem: A FlexLogic equation is incorrect.
- How often the test is performed: The test is event driven, performed whenever FlexLogic equations are modified.
- What to do: Finish all equation editing and use self tests to debug any errors.

UNIT NOT PROGRAMMED: Check Settings

- Latched target message: No.
- Description of problem: The PRODUCT SETUP ⇒ UNSTALLATION ⇒ RELAY SETTINGS setting indicates the F60 is not programmed.
- What to do: Program all settings and then set PRODUCT SETUP ⇒ Unistallation ⇒ RELAY SETTINGS to "Programmed".

c) MINOR SELF-TEST ERROR MESSAGES

Most of the minor self-test errors can be disabled. See the settings in the *User-programmable Self-tests* section in chapter 5

IEC 61850 DATA SET: LLN0 GOOSE# Error

- Latched target message: No.
- Description of problem: A data item in a configurable GOOSE data set is not supported by the F60 order code.
- How often the test is performed: On power up.
- What to do: Verify that all the items in the GOOSE data set are supported by the F60. The EnerVista UR Setup software will list the valid items. An IEC61850 client will also show which nodes are available for the F60.

IEC 61850 DATA SET: LLN0 BR# Error

- · Latched target message: No.
- Description of problem: A data item in a configurable report data set is not supported by the F60 order code.
- How often the test is performed: On power up.
- What to do: Verify that all the items in the configurable report data set are supported by the F60. The EnerVista UR Setup software will list the valid items. An IEC61850 client will also show which nodes are available for the F60.

MAINTENANCE ALERT: Replace Battery

- Latched target message: Yes.
- Description of problem: The battery is not functioning.
- How often the test is performed: The battery is monitored every five seconds. The error message displays after 60 seconds if the problem persists.
- What to do: Replace the battery as outlined in the Maintenance chapter.

MAINTENANCE ALERT: Direct I/O Ring Break

- Latched target message: No.
- Description of problem: Direct input and output settings are configured for a ring, but the connection is not in a ring.
- · How often the test is performed: Every second.
- What to do: Check direct input and output configuration and wiring.

MAINTENANCE ALERT: ENET PORT # OFFLINE

- Latched target message: No.
- Description of problem: The Ethernet connection has failed for the specified port.
- How often the test is performed: Every five seconds.
- What to do: Check the Ethernet port connection on the switch.

MAINTENANCE ALERT: **Bad IRIG-B Signal**

- · Latched target message: No.
- Description of problem: A bad IRIG-B input signal has been detected.
- How often the test is performed: Monitored whenever an IRIG-B signal is received.
- What to do: Ensure the following:
 - The IRIG-B cable is properly connected.
 - Proper cable functionality (that is, check for physical damage or perform a continuity test).
 - The IRIG-B receiver is functioning.
 - Check the input signal level (it may be less than specification).

If none of these apply, then contact the factory.

MAINTENANCE ALERT: **Bad PTP Signal**

- Latched target message: No.
- Description of problem: No PTP enabled port has good PTP signal input.
- How often the test is performed: Activated when no acceptable signal is being received.
- What to do: Ensure the following:
 - The Ethernet cable(s) are properly connected.
 - At least one PTP grandmaster-capable clock is functioning.
 - If strict PP is enabled, that entire network is PP compliant.
 - The network is delivering PTP messages to the relay.

MAINTENANCE ALERT: Port ## Failure

- Latched target message: No.
- Description of problem: An Ethernet connection has failed.
- How often the test is performed: Monitored every five seconds.
- What to do: Check Ethernet connections. Port 1 is the primary port and port 2 is the secondary port.

MAINTENANCE ALERT: SNTP Failure

- Latched target message: No.
- · Description of problem: The SNTP server is not responding.
- How often the test is performed: Every 10 to 60 seconds.
- What to do: Check that Ethernet cable(s) are properly connected. Check that configuration for the SNTP server corresponds to the actual server settings. Check connectivity to the server (ping the server IP address.

MAINTENANCE ALERT: 4L Discrepancy

- Latched target message: No.
- Description of problem: A discrepancy has been detected between the actual and desired state of a latching contact output of an installed type "4L" module.
- How often the test is performed: Upon initiation of a contact output state change.
- What to do: Verify the state of the output contact and contact the factory if the problem persists.

MAINTENANCE ALERT: GGIO Ind xxx oscill

- Latched target message: No.
- Description of problem: A data item in a configurable GOOSE data set is oscillating.
- How often the test is performed: Upon scanning of each configurable GOOSE data set.
- What to do: The "xxx" text denotes the data item that has been detected as oscillating. Evaluate all logic pertaining to
 this item.

DIRECT I/O FAILURE: COMM Path Incomplete

- Latched target message: No.
- Description of problem: A direct device is configured but not connected.
- How often the test is performed: Every second.
- What to do: Check direct input and output configuration and wiring.

REMOTE DEVICE FAIL: COMM Path Incomplete

- Latched target message: No.
- Description of problem: One or more GOOSE devices are not responding.
- How often the test is performed: Event driven. The test is performed when a device programmed to receive GOOSE messages stops receiving. This can be from 1 to 60 seconds, depending on GOOSE packets.
- What to do: Check GOOSE setup.

TEMP MONITOR: OVER TEMPERATURE

- · Latched target message: Yes.
- Description of problem: The ambient temperature is greater than the maximum operating temperature (+80°C).
- How often the test is performed: Every hour.
- What to do: Remove the F60 from service and install in a location that meets operating temperature standards.

UNEXPECTED RESTART: Press "RESET" key

- Latched target message: Yes.
- Description of problem: Abnormal restart from modules being removed or inserted while the F60 is powered-up, when there is an abnormal DC supply, or as a result of internal relay failure.
- How often the test is performed: Event driven.
- What to do: Contact the factory.

FIRST ETHERNET FAIL

SECOND ETHERNET FAIL

THIRD ETHERNET FAIL

- Latched target message: Yes.
- Description of problem: A link loss detection on an Ethernet port. The link loss is due to unplugging the cable or the switch port being down.
- How often the test is performed:
- What to do: Check the connection.

d) WRONG TRANSCEIVER MESSAGES

Description: The type of SFP does not match the CPU type.

T-type CPU = All ports support fiber SFPs only

Type: minor
Target: latched

Message: "WRONG TRANSCEIVER"

A webpage "SFP Transceiver Information" is provided. This page displays the type of the SFP in it. This data is to be used with the CPU type to know the cause of the problem.

e) SFP X MODULE FAIL MESSAGES

Description: A faulty SFP or unplugging the SFP would generate this self test.

Type: minor
Target: self reset

Message: SFP MODULE x FAIL

The webpage "SFP Transceiver Information" described in the previous section applies for this self test as well. The "SFP Module Fail" has higher priority and it suppresses the "Ethernet Fail" target message. The "SFP MODULE FAIL FUNCTION" setting enables/disables this self test. The target for this self test is priority-based, with the third one being the highest priority. For example, if all three SFP modules fail, then the third SFP target is activated. If the third SFP module failure resolves, then the second SFP target is activated.

HARDFIBER SELF-TEST ERROR MESSAGES

In addition to those provided by the standard UR-series devices, the UR devices implement HardFiber self-tests. These are listed below. Any abnormal diagnostic condition indicated by the LEDs or the critical failure relay also results in a self-test message, so troubleshooting is described here. For other relays, such at the B95^{Plus}, see that product's instruction manual.

Equipment Mismatch Major Self-Test

Description: The number or type of installed hardware modules does not match the order code stored in the CPU. The standard UR-series Equipment Mismatch self-test is extended to cover the possible presence of a Process Card.

Severity: Protection is not available and all contact outputs and shared outputs are de-asserted.

If this message appears, check all modules against the order code. Ensure they are inserted properly, and cycle the control power. If a module has intentionally been added or removed use the **Update Order Code** command to notify the relay that the current module configuration is correct.

Module Failure Major Self-Test

Description: UR-series device module hardware failure detected.

Severity: Protection is not available and all contact outputs and shared outputs are de-asserted.

If this message appears, contact the factory and supply the failure code noted in the display. Text in the message identifies the failed module (for example, H81). If operated on a Process Card failure, the Module Fail self-test seals-in (latches) till the UR-series device is restarted.

Process Bus Failure Major Self-test

Description: Mission critical data is not available via the process bus. An AC quantity is considered critical if both AC bank origins and the crosschecking settings are other than none. This self-test is also initiated by an AC input discrepancy being detected. See the description of the crosschecking setting in this manual for further information. In addition, this self-test can be initiated by user logic responding to loss of critical contact input/output or other data using the Process Bus Failure Operand user-programmable self-test setting. This setting is located in the Settings > Product Setup > User-Programmable Self Test menu.

Severity: Protection is not available and all contact outputs and shared outputs are de-asserted.

If this message appears, first rectify any Process Bus Trouble and Brick Trouble self-test errors. Check the actual value of the operand referenced by the **Process Bus Failure Operand** setting, and if "On", determine the cause and rectify.

Should the problem persist with the foregoing all clear, the cause must be an AC input discrepancy, which is typically the result of problems in the input signals to the Bricks, or faults in the Brick input conditioning hardware. If the error was annunciated the first time significant signal was encountered, suspect the former cause and check the copper connections external to the Brick. Where multiple UR-series devices have self-test errors, look for common causes.

To further isolate AC input discrepancy errors, put the relay in test-isolated mode, then one by one, temporally change an AC bank crosschecking setting to none, until the Process Bus Failure clears. Once the problem AC bank has been identified, the values from each of the two Bricks can be examined individually by temporarily mapping each to an AC bank with a single origin.

Process Bus Trouble Minor Self-Test

Description: Communications problems with one or more Bricks. The text of the message identifies the affected field units. This self-test is initiated by low received signal levels at either the Brick or Process Card end, and by the sustained failure to receive poll responses from the proper Brick.

Severity: This self-test error does not directly inhibit protection. However, the affected Brick inputs/outputs may not be available to the UR-series device.

If this message appears, check the field unit actual values. An indication of equipment mismatch means that messages are being received from a Brick, but there is a discrepancy between the settings and the actual Brick serial number, order code, and/or core number. Check that the correct core on the correct Brick is patched through to the correct Process Card port, and that the field unit settings are correct. An indication of communications loss means that no messages are being received. Check that the patching is correct, and that the Brick has power. If that is not the problem, use a professional optical fiber connector cleaning kit to clean both sides of all optical fiber connections from the Process Card through to the affected Brick. If the problem continues after cleaning, consult the factory.

Brick Trouble Minor Self-Test

Description: Brick internal self-testing has detected a trouble internal to the Brick.

Severity: This self-test error does not directly inhibit protection. However, some or all of the affected Brick inputs/outputs may not be available to the UR-series device.

If this message appears, check the Brick environment for over/under temperatures and the voltage of its power source. If the ambient temperature and supply voltage are within Brick specifications, consult the factory. Troubles resulting from a Brick output failing to respond to an output command can only be detected while the command is active, and so in this case the target is latched. A latched target can be unlatched by pressing the faceplate reset key if the command has ended, however the output may still be non-functional.

8.1.1 DESCRIPTION

The Hi-Z element accomplishes high-impedance fault detection using a variety of algorithms, all coordinated by an expert system. At the heart of the high-impedance fault-detection system is the identification of arcing on a feeder. If the Hi-Z element detects arcing, it then determines whether or not the arcing persists for a significant period of time. If it does, the Hi-Z element determines whether the persistent arcing is from a downed conductor or from an intact conductor and then generates an output to indicate either the detection of a downed conductor or the detection of arcing, respectively.

Distinction between an arcing intact conductor and an arcing downed conductor is determined by looking at patterns in the load current at the beginning of the fault. A downed conductor is indicated only when a precipitous loss of load or an overcurrent condition precedes arcing detection. Otherwise, the Hi-Z element assumes that the line is intact, even if arcing is present. In such a case, if the detected arcing can be classified as persistent, and an output contact is configured for 'arcing detected', the Hi-Z element will close that contact.

In some cases, arcing is determined to be present, but not persistent. For example, if it is caused by tree limb contact or insulator degradation, arcing will typically be present intermittently with relatively long periods of inactivity (e.g. minutes) interspersed. In such cases, arcing may be affected by such factors as the motion of a tree limb or the moisture and contamination on an insulator. Conditions such as these, characterized by a high number of brief occurrences of arcing over an extended period of time (e.g. from a fraction of an hour to one or two hours), lead the Hi-Z element to recognize and flag an "arcing suspected" event. None of these brief occurrences of arcing, if taken individually, are sufficient to indicate detection of a downed conductor or to set off an alarm indicating that persistent arcing has been detected. When considered cumulatively, however, they do indicate a need for attention. If an output contact is configured to indicate 'arcing suspected', the Hi-Z element recognition of such sporadic arcing will close that contact and appropriate actions can be taken.

If the Hi-Z element determines that a downed conductor exists, oscillography and fault data are captured. In addition, target messages and appropriate LEDs are activated on the relay faceplate.

The detection of a downed conductor or arcing condition is accomplished through the execution of the following algorithms:

- · Energy Algorithm
- · Randomness Algorithm
- Expert Arc Detector Algorithm
- · Load Event Detector Algorithm
- · Load Analysis Algorithm
- Load Extraction Algorithm
- · Arc Burst Pattern Analysis Algorithm
- Spectral Analysis Algorithm
- · Arcing-Suspected Identifier Algorithm
- Even Harmonic Restraint Algorithm
- Voltage Supervision Algorithm

8.1.2 ENERGY ALGORITHM

The Energy algorithm monitors a specific set of non-fundamental frequency component energies of phase and neutral current. After establishing an average value for a given component energy, the algorithm indicates arcing if it detects a sudden, sustained increase in the value of that component. The Hi-Z element runs the Energy algorithm on each of the following parameters for each phase current and for the neutral:

- even harmonics
- odd harmonics
- · non-harmonics

On a 60 Hz system, the non-harmonic component consists of a sum of the 30, 90, 150,..., 750 Hz components, while on a 50 Hz system, it consists of a sum of the 25, 75, 125,..., 625 Hz components. If the Energy Algorithm detects a sudden, sustained increase in one of these component energies, it reports this to the Expert Arc Detector algorithm, resets itself, and continues to monitor for another sudden increase.

8.1.3 RANDOMNESS ALGORITHM

The Randomness algorithm monitors the same set of component energies as the Energy algorithm. However, rather than checking for a sudden, sustained increase in the value of the monitored component energy, it looks for a sudden increase in a component followed by highly erratic behavior. This type of highly erratic behavior is indicative of many arcing faults. Just as with the Energy algorithm, if the Randomness algorithm detects a suspicious event in one of its monitored components, it reports it to the Expert Arc Detector algorithm, resets itself, and continues to monitor for another suspicious event.

8.1.4 EXPERT ARC DETECTOR ALGORITHM

The purpose of the Expert Arc Detector Algorithm is to assimilate the outputs of the basic arc detection algorithms into one "arcing confidence" level per phase. Note that there are actually 24 independent basic arc detection algorithms, since both the Energy Algorithm and the Randomness Algorithm are run for the even harmonics, odd harmonics, and non-harmonics for each phase current and for the neutral. The assimilation performed by the Expert Arc Detector Algorithm, then, is accomplished by counting the number of arcing indications determined by any one of the twenty-four algorithms over a short period of time (e.g. the last 30 seconds). Also taken into account is the number of different basic algorithms that indicate arcing.

In the Expert Arc Detector Algorithm, the arcing confidence level for each phase increases as the number of basic algorithms that indicate arcing (per phase) increases. It also increases with increasing numbers of indications from any one basic algorithm. These increases in confidence levels occur because multiple, consecutive indications from a given algorithm and indications from multiple independent algorithms are more indicative of the presence of arcing than a single algorithm giving a single indication.

8.1.5 SPECTRAL ANALYSIS ALGORITHM

The Spectral Analysis algorithm is the third and final confirmation algorithm performed only when a high impedance condition is suspected.

The Spectral Analysis algorithm receives five seconds of averaged non-harmonic residual current spectrum data and compares it to an ideal 1 / f curve. Depending on the result, three percent can be added to the arcing confidence level generated by the Expert Arc Detector Algorithm.

8.1.6 LOAD EVENT DETECTOR ALGORITHM

The Load Event Detector Algorithm examines, on a per-phase basis, one reading of RMS values per two-cycle interval for each phase current and the neutral. It then sets flags for each phase current and for the neutral based on the following events:

- · an overcurrent condition
- · a precipitous loss of load
- · a high rate-of-change
- · a significant three-phase event
- · a breaker open condition.

These flags are examined by the Load Analysis Algorithm. Their states contribute to that algorithm's differentiation between arcing downed conductors and arcing intact conductors, and inhibit the Expert Arc Detector Algorithm from indicating the need for an arcing alarm for a limited time following an overcurrent or breaker open condition.

Any of the above five flags will zero the Expert Arc Detector buffer, since the power system is in a state of change and the values being calculated for use by the Energy and Randomness algorithms are probably not valid.

An extremely high rate of change is not characteristic of most high impedance faults and is more indicative of a breaker closing, causing associated inrush. Since this type of inrush current causes substantial variations in the harmonics used by the high impedance algorithms, these algorithms ignore all data for several seconds following a high rate-of-change event that exceeds the associated rate-of-change threshold, in order to give the power system a chance to stabilize.

8.1.7 LOAD ANALYSIS ALGORITHM

The purpose of the Load Analysis algorithm is to differentiate between arcing downed conductors and arcing intact conductors by looking for a precipitous loss of load and/or an overcurrent disturbance at the beginning of an arcing episode. The presence of arcing on the system is determined based on the output of the Expert Arc Detector algorithm. If the Hi-Z element finds persistent arcing on the power system, the Load Analysis algorithm then considers the type of incident that initiated the arcing and classifies the arcing conductor as either downed or intact. Another function of the algorithm is to provide coordination between the Hi-Z element and the power system's conventional overcurrent protection by observing a timeout, via the HI-Z OC PROTECTION COORD TIMEOUT setting from the beginning of the arcing before giving an indication of arcing.

If the Load Analysis algorithm determines that a downed conductor or arcing exists, it attempts to determine the phase on which the high impedance fault condition exists. It does this in a hierarchical manner. First, if a significant loss of load triggered the Load Analysis algorithm, and if there was a significant loss on only one phase, that phase is identified. If there was not a single phase loss of load, and if an overcurrent condition on only one phase triggered the algorithm, that phase is identified. If both of these tests fail to identify the phase, the phase with a significantly higher confidence level (e.g. higher than the other two phases by at least 25%) is identified. Finally, if none of these tests provides phase identification, the result of the Arc Burst Pattern Analysis algorithm is checked. If that test fails, the phase is not identified.

8.1.8 LOAD EXTRACTION ALGORITHM

The Load Extraction Algorithm attempts to find a quiescent period during an arcing fault so that it can determine the background load current level in the neutral current. If it is successful in doing so, it then removes the load component from the total measured current, resulting in a signal which consists only of the fault component of the neutral current. This information is then provided as input to the Arc Burst Pattern Analysis Algorithm.

8.1.9 ARC BURST PATTERN ANALYSIS ALGORITHM

The Arc Burst Pattern Analysis algorithm attempts to provide faulted phase identification information based on a correlation between the fault component of the measured neutral current and the phase voltages. The phase identified will be the one whose phase voltage peak lines up with the neutral current burst. The fault component is received from the Load Extraction algorithm. The result of the analysis is checked by the Load Analysis algorithm if its other phase identification methods prove unsuccessful.

8.1.10 ARCING SUSPECTED ALGORITHM

The purpose of the Arcing Suspected Algorithm is to detect multiple, sporadic arcing events. If taken individually, such events are not sufficient to warrant an arcing alarm. When taken cumulatively, however, these events do warrant an alarm to system operators so that the cause of the recurrent arcing can be investigated.

8.1.11 OVERCURRENT DISTURBANCE MONITORING

This function is part of High Impedance Fault Detection and should not be confused with conventional overcurrent protection. The Hi-Z element monitors for an overcurrent condition on the feeder by establishing overcurrent thresholds for the phases and for the neutral and then checking for a single two-cycle RMS current that exceeds those thresholds. Oscillography and fault data are captured if it is determined that an overcurrent condition exists.

8.1.12 HI-Z EVEN HARMONIC RESTRAINT ALGORITHM

Every two-cycle interval the algorithm evaluates the even harmonic content of each phase current. The even harmonic content is evaluated as a percentage of the phase RMS current. If for any phase the percentage is greater than the HI-Z EVEN HARMONIC RESTRAINT setting, the algorithm will inhibit setting of the overcurrent flags. This is to prevent a cold-load pickup event from starting the Hi-Z logic sequence (which requires the overcurrent flag or the loss-of-load flag to be set at the beginning of an arcing event). The duration over which the algorithm inhibits the setting of the overcurrent flag(s) is from the time the even-harmonic level (as a percentage of RMS) increases above the threshold until one second after it falls back below the threshold.

8.1.13 HI-Z VOLTAGE SUPERVISION ALGORITHM

This algorithm was implemented to minimize the probability of a false Hi-Z indication due to bus voltage dips (e.g. from parallel feeder faults). A fault on a parallel line can cause voltage dips that will produce a decrease in the line load which can be mistaken by Hi-Z element as Loss of Load.

Every two cycle the voltage on each phase is checked against the HI-Z V SUPV THRESHOLD. If the voltage on any phase has dropped by a percentage greater then or equal to this setting, the Loss of Load flag will be blocked. The blocking is not done on a per- phase basis. If one phase voltage shows a dip, the block is applied for all phases. Also the High Impedance Oscillography will record that a voltage dip was experienced. The Oscillography record is phase specific.

Fault type determination is required for calculation of fault location – the algorithm uses the angle between the negative and positive sequence components of the relay currents. To improve accuracy and speed of operation, the fault components of the currents are used; that is, the pre-fault phasors are subtracted from the measured current phasors. In addition to the angle relationships, certain extra checks are performed on magnitudes of the negative and zero-sequence currents.

The single-ended fault location method assumes that the fault components of the currents supplied from the local (A) and remote (B) systems are in phase. The figure below shows an equivalent system for fault location.

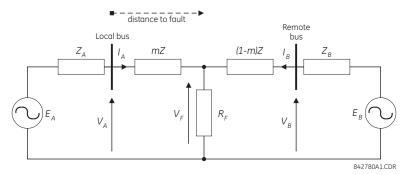


Figure 8-1: EQUIVALENT SYSTEM FOR FAULT LOCATION

The following equations hold true for this equivalent system.

$$V_A = m \cdot Z \cdot I_A + R_F \cdot (I_A + I_B)$$
 (EQ 8.1)

where: m = sought pu distance to fault, Z = positive sequence impedance of the line.

The currents from the local and remote systems can be parted between their fault (F) and pre-fault load (pre) components:

$$I_A = I_{AF} + I_{Apre} (EQ 8.2)$$

and neglecting shunt parameters of the line:

$$I_B = I_{BF} - I_{Apre} \tag{EQ 8.3}$$

Inserting the I_A and I_B equations into the V_A equation and solving for the fault resistance yields:

$$R_F = \frac{V_A - m \cdot Z \cdot I_A}{I_{AF} \cdot \left(1 + \frac{I_{BF}}{I_{AF}}\right)}$$
 (EQ 8.4)

Assuming the fault components of the currents, I_{AF} and I_{BF} are in phase, and observing that the fault resistance, as impedance, does not have any imaginary part gives:

$$\operatorname{Im}\left(\frac{V_A - m \cdot Z \cdot I_A}{I_{AF}}\right) = 0$$
 (EQ 8.5)

where: Im() represents the imaginary part of a complex number. Solving the above equation for the unknown m creates the following fault location algorithm:

$$m = \frac{\text{Im}(V_A \cdot I_{AF}^*)}{\text{Im}(Z \cdot I_A \cdot I_{AF}^*)}$$
 (EQ 8.6)

where * denotes the complex conjugate and $I_{AF} = I_A - I_{Apre}$.

Depending on the fault type, appropriate voltage and current signals are selected from the phase quantities before applying the two equations above (the superscripts denote phases, the subscripts denote stations).

For AG faults:

$$V_{A} = V_{A}^{A}, \quad I_{A} = I_{A}^{A} + K_{0} \cdot I_{0A}$$
 (EQ 8.7)

8

For BG faults:

$$V_A = V_A^B, \quad I_A = I_A^B + K_0 \cdot I_{0A}$$
 (EQ 8.8)

For CG faults:

$$V_A = V_A^C$$
, $I_A = I_A^{BC} + K_0 \cdot I_{0A}$ (EQ 8.9)

For AB and ABG faults:

$$V_A = V_A^A - V_A^B, \quad I_A = I_A^A - I_A^B$$
 (EQ 8.10)

For BC and BCG faults:

$$V_A = V_A^B - V_A^C$$
, $I_A = I_A^B - I_A^C$ (EQ 8.11)

For CA and CAG faults:

$$V_A = V_A^C - V_A^A, \quad I_A = I_A^C - I_A^A$$
 (EQ 8.12)

where K_0 is the zero sequence compensation factor (for the first six equations above)

For ABC faults, all three AB, BC, and CA loops are analyzed and the final result is selected based upon consistency of the results

The element calculates the distance to the fault (with m in miles or kilometers) and the phases involved in the fault.

The relay allows locating faults from delta-connected VTs. If the **FAULT REPORT 1 VT SUBSTITUTION** setting is set to "None", and the VTs are connected in wye, the fault location is performed based on the actual phase to ground voltages. If the VTs are connected in delta, fault location is suspended.

If the **FAULT REPORT 1 VT SUBSTITUTION** setting value is "V0" and the VTs are connected in a wye configuration, the fault location is performed based on the actual phase to ground voltages. If the VTs are connected in a delta configuration, fault location is performed based on the delta voltages and externally supplied neutral voltage:

$$V_{A} = \frac{1}{3}(V_{N} + V_{AB} - V_{CA})$$

$$V_{B} = \frac{1}{3}(V_{N} + V_{BC} - V_{AB})$$

$$V_{B} = \frac{1}{3}(V_{N} + V_{CA} - V_{BC})$$
(EQ 8.13)

If the **FAULT REPORT 1 VT SUBSTITUTION** setting value is "I0" and the VTs are connected in a wye configuration, the fault location is performed based on the actual phase to ground voltages. If the VTs are connected in a delta configuration, fault location is performed based on the delta voltages and zero-sequence voltage approximated based on the zero-sequence current:

$$V_{A} = \frac{1}{3}(V_{AB} - V_{CA}) - Z_{SYS0}I_{0}$$

$$V_{B} = \frac{1}{3}(V_{BC} - V_{AB}) - Z_{SYS0}I_{0}$$

$$V_{B} = \frac{1}{3}(V_{CA} - V_{BC}) - Z_{SYS0}I_{0}$$
(EQ 8.14)

where $Z_{\rm SYS0}$ is the equivalent zero-sequence impedance behind the relay as entered under the fault report setting menu.

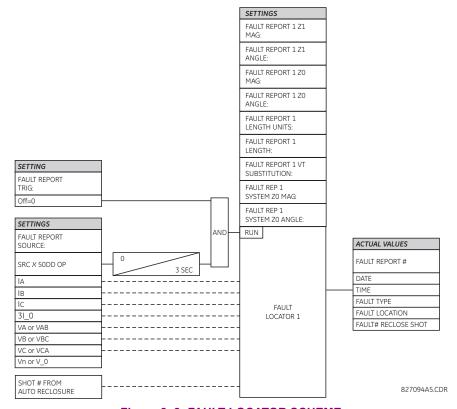


Figure 8-2: FAULT LOCATOR SCHEME

9 COMMISSIONING 9.1 TESTING

9.1.1 TESTING UNDERFREQUENCY AND OVERFREQUENCY ELEMENTS

Underfrequency and overfrequency protection requires techniques with subtle testing implications. Whereas most protection is designed to detect changes from normal to fault conditions that occur virtually instantaneously, power system inertia requires frequency protection to pickup while the frequency is changing slowly. Frequency measurement is inherently sensitive to noise, making high precision in combination with high speed challenging for both relays and test equipment.

Injection to a particular F60 frequency element must be to its configured source and to the channels the source uses for frequency measurement. For frequency measurement, a source will use the first quantity configured in the following order:

- 1. Phase voltages.
- 2. Auxiliary voltage.
- 3. Phase currents.
- Ground current.

For example, if only auxiliary voltage and phase currents are configured, the source will use the auxiliary voltage, not the phase voltages or any of the currents.

When phase voltages or phase currents are used, the source applies a filter that rejects the zero-sequence component. As such, the same signal must not be injected to all three phases, or the injected signal will be completely filtered out. For an underfrequency element using phase quantities, the phase A signal must be above the MIN VOLT/AMP setting value. Therefore, either inject into phase A only, or inject a balanced three-phase signal.

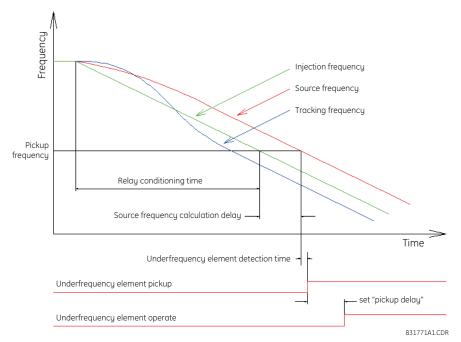


Figure 9-1: TYPICAL UNDERFREQUENCY ELEMENT TEST TIMING

The static accuracy of the frequency threshold may be determined by slowly adjusting the frequency of the injected signal about the set pickup. If the F60 frequency metering feature is used to determine the injected frequency, the metering accuracy should be verified by checking it against a known standard (for example, the power system).

To accurately measure the time delay of a frequency element, a test emulating realistic power system dynamics is required. The injected frequency should smoothly ramp through the set threshold, with the ramp starting frequency sufficiently outside the threshold so the relay becomes conditioned to the trend before operation. For typical interconnected power systems, the recommended testing ramp rate is 0.20 Hz/s.

9.1 TESTING

9 COMMISSIONING

The desired delay time is the interval from the point the frequency crosses the set threshold to the point the element operates. Some test sets can measure only the time from the ramp start to element operation, necessitating the subtraction of the pre-threshold ramp time from the reading. For example, with a ramp rate of 0.20 Hz/s, start the ramp 0.20 Hz before the threshold and subtract 1 second from test set time reading of ramp start to relay operation.

Note that the F60 event records only show the "pickup delay" component, a definite time timer. This is exclusive of the time taken by the frequency responding component to pickup.

The F60 oscillography can be used to measure the time between the calculated source frequency crossing the threshold and element operation; however, this method omits the delay in the calculated source frequency. The security features of the source frequency measurement algorithm result in the calculated frequency being delayed by 2 to 4 cycles (or longer with noise on the input). In addition, oscillography resolution is 0.004 Hz, which at 0.20 Hz/s corresponds to a delay of 20 ms. The tracking frequency should not be used in timing measurements, as its algorithm involves phase locking, which purposely sets its frequency high or low to allow the F60 sample clock to catch-up or wait as necessary to reach synchronism with the power system.

10 MAINTENANCE 10.1 MODULES

10.1.1 REPLACE A MODULE

Withdraw or insert a module only when control power has been removed from the unit, and be sure to insert only the correct module type into a slot, else personal injury, damage to the unit or connected equipment, or undesired operation can result.

To avoid damage to the equipment, use proper electrostatic discharge protection (for example, a static strap) when coming in contact with modules while the relay is energized.

The relay, being modular in design, allows for the withdrawal and insertion of modules. Modules must only be replaced with like modules in their original factory configured slots.

The enhanced faceplate can be opened to the left, once the thumb screw has been removed, as shown below. This allows for easy accessibility of the modules for withdrawal. The new wide-angle hinge assembly in the enhanced front panel opens completely and allows easy access to all modules in the F60.

842812A1.CDR

Figure 10-1: UR MODULE WITHDRAWAL AND INSERTION (ENHANCED FACEPLATE)

The standard faceplate can be opened to the left, once the sliding latch on the right side has been pushed up, as shown below. This allows for easy accessibility of the modules for withdrawal.

842760A1.CDR

Figure 10-2: UR MODULE WITHDRAWAL AND INSERTION (STANDARD FACEPLATE)

To properly remove a module, the ejector/inserter clips, located at the top and bottom of each module, must be pulled simultaneously. Before performing this action, **control power must be removed from the relay**. Record the original location of the module to ensure that the same or replacement module is inserted into the correct slot. Modules with current input provide automatic shorting of external CT circuits.

10.1 MODULES 10 MAINTENANCE

To properly insert a module, ensure that the **correct** module type is inserted into the **correct** slot position. The ejector/ inserter clips located at the top and at the bottom of each module must be in the disengaged position as the module is smoothly inserted into the slot. Once the clips have cleared the raised edge of the chassis, engage the clips simultaneously. When the clips have locked into position, the module will be fully inserted.

CPU connections must be individually disconnected from the module before the module can be removed from the chassis.

The new CT/VT modules can only be used with new CPUs; similarly, old CT/VT modules can only be used with old CPUs. In the event that there is a mismatch between the CPU and CT/VT module, the relay does not function and a **DSP ERROR** or **HARDWARE MISMATCH** error displays.

10 MAINTENANCE 10.2 BATTERIES

10.2.1 REPLACE BATTERY

When required, the battery can be replaced. Because the power supply module contains the battery and there are two possible power supplies, two procedures are possible. Check the power supply module or use the photographs here to determine which procedure to use.

a) REPLACE BATTERY FOR RH POWER SUPPLY

When required, the battery can be replaced. The power supply module contains the battery.

To avoid injury, ensure that the unit has been powered off for a minimum of three minutes before replacing the battery.

Risk of fire if battery is replaced with incorrect type or polarity.

To replace the battery:

- 1. Turn off the power to the unit.
- 2. Wait a minimum of three minutes to ensure that there is no power to the battery.
- 3. As outlined in the previous section, open the unit by sliding up the latch on the right side of the front panel and opening the panel to the left.
- 4. Unscrew the bracket on the front left of the unit so that you can open fully the front panel to access the power supply module, which is typically in the first slot on the left side.
- 5. Simultaneously pull the ejector clips at the top and bottom of the power supply module and remove the module.
- 6. Unscrew the screw that attaches the metal cover to the module.
- 7. Slide the metal cover away from the clips about 1 cm (1/4 inch) and remove the cover.
- 8. Unclip the black plastic holder that keeps the battery in place. The plastic clips into the socket at the bottom on both sides. Use a flat-head screwdriver if you cannot unclip the plastic with your fingers.
- 9. Observe the + and polarity of the battery and replace it with the same polarity as marked on the battery holder. Replace the battery with the identical make and model. For example, do not use a rechargeable battery.

Figure 10-3: BATTERY LOCATION ON RH POWER SUPPLY MODULE

- 859718A1.cdr
- 10. Reinstall the battery clip and the metal cover, and reinsert the power supply module into the unit.
- 11. Power on the unit.
- 12. Dispose of the old battery as outlined in the next section.

10.2 BATTERIES 10 MAINTENANCE

b) REPLACE BATTERY FOR RH REV B MAXIMUM POWER SUPPLY

When required, the battery can be replaced. The power supply module contains the battery.

To avoid injury, ensure that the unit has been powered off for a minimum of three minutes before replacing the battery.

Risk of fire if battery is replaced with incorrect type or polarity.

To replace the battery:

- 1. Turn off the power to the unit.
- 2. Wait a minimum of three minutes to ensure that there is no power to the battery.
- 3. As outlined in the previous section, open the unit by sliding up the latch on the right side of the front panel and opening the panel to the left.
- 4. Unscrew the bracket on the front left of the unit so that you can open fully the front panel to access the power supply module, which is typically in the first slot on the left side.
- 5. Simultaneously pull the ejector clips at the top and bottom of the power supply module and remove the module.
- 6. Unscrew all four screws (not three) that attach the metal cover to the module.
- 7. Slide the metal cover away from the clips about 1 cm (1/4 inch) and remove the cover.
- 8. Unclip the black plastic holder that keeps the battery in place. The plastic clips into the socket at the bottom on both sides. Use a flat-head screwdriver if you cannot unclip the plastic with your fingers.
- 9. Observe the + and polarity of the battery and replace it with the same polarity as marked on the battery holder. Replace the battery with the identical make and model. For example, do not use a rechargeable battery.

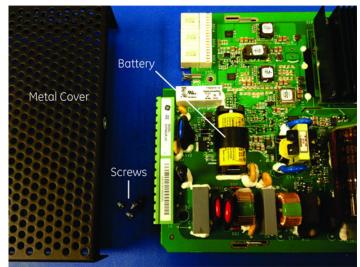


Figure 10-4: BATTERY LOCATION ON RH REV B POWER SUPPLY MODULE

859717A1.cdr

- 10. Reinstall the battery clip and the metal cover, and reinsert the power supply module into the unit.
- 11. Power on the unit.
- 12. Dispose of the old battery as outlined in the next section.

10 MAINTENANCE 10.2 BATTERIES

10.2.2 DISPOSE OF BATTERY

EN Battery Disposal

This product contains a battery that cannot be disposed of as unsorted municipal waste in the European Union. See the product documentation for specific battery information. The battery is marked with this symbol, which may include lettering to indicate cadmium (Cd), lead (Pb), or mercury (Hg). For proper recycling return the battery to your supplier or to a designated collection point. For more information see: www.recyclethis.info.

CS Nakládání s bateriemi

Tento produkt obsahuje baterie, které nemohou být zneškodněny v Evropské unii jako netříděný komunální odpadu. Viz dokumentace k produktu pro informace pro konkrétní baterie. Baterie je označena tímto symbolem, který může zahrnovat i uvedena písmena, kadmium (Cd), olovo (Pb), nebo rtuť (Hg). Pro správnou recyklaci baterií vraťte svémudodavateli nebo na určeném sběrném místě. Pro více informací viz: www.recyclethis.info.

DA Batteri affald

Dette produkt indeholder et batteri som ikke kan bortskaffes sammen med almindeligt husholdningsaffald i Europa. Se produktinformation for specifikke informationer om batteriet. Batteriet er forsynet med indgraveret symboler for hvad batteriet indeholder: kadmium (Cd), bly (Pb) og kviksølv (Hg). Europæiske brugere af elektrisk udstyr skal aflevere kasserede produkter til genbrug eller til leverandøren. Yderligere oplysninger findes på webstedet www.recyclethis.info.

DE Entsorgung von Batterien

Dieses Produkt beinhaltet eine Batterie, die nicht als unsortierter städtischer Abfall in der europäischen Union entsorgt werden darf. Beachten Sie die spezifischen Batterie-informationen in der Produktdokumentation. Die Batterie ist mit diesem Symbol gekennzeichnet, welches auch Hinweise auf möglicherweise enthaltene Stoffe wie Kadmium (Cd), Blei (Pb) oder Quecksilber (Hektogramm) darstellt. Für die korrekte Wiederverwertung bringen Sie diese Batterie zu Ihrem lokalen Lieferanten zurück oder entsorgen Sie das Produkt an den gekennzeichneten Sammelstellen. Weitere Informationen hierzu finden Sie auf der folgenden Website: www.recyclethis.info.

ΕL Απόρριψη μπαταριών

Αυτό το προϊόν περιέχει μια μπαταρία που δεν πρέπει να απορρίπτεται σε δημόσια συστήματα απόρριψης στην Ευρωπαϊκή Κοινότητα. Δείτε την τεκμηρίωση του προϊόντος για συγκεκριμένες πληροφορίες που αφορούν τη μπαταρία. Η μπαταρία είναι φέρει σήμανση με αυτό το σύμβολο, το οποίο μπορεί να περιλαμβάνει γράμματα για να δηλώσουν το κάδμιο (Cd), τον μόλυβδο (Pb), ή τον υδράργυρο (Hg). Για την κατάλληλη ανακύκλωση επιστρέψτε την μπαταρία στον προμηθευτή σας ή σε καθορισμένο σημείο συλλογής. Για περισσότερες πληροφορίες δείτε: www.recyclethis.info.

ES Eliminacion de baterias

Este producto contiene una batería que no se pueda eliminar como basura normal sin clasificar en la Unión Europea. Examine la documentación del producto para la información específica de la batería. La batería se marca con este símbolo, que puede incluir siglas para indicar el cadmio (Cd), el plomo (Pb), o el mercurio (Hg). Para el reciclaje apropiado, devuelva este producto a su distribuidor ó deshágase de él en los puntos de reciclaje designados. Para mas información: www.recyclethis.info.

ET Patareide kõrvaldamine

Käesolev toode sisaldab patareisid, mida Euroopa Liidus ei tohi kõrvaldada sorteerimata olmejäätmetena. Andmeid patareide kohta vaadake toote dokumentatsioonist. Patareid on märgistatud käesoleva sümboliga, millel võib olla kaadmiumi (Cd), pliid (Pb) või elavhõbedat (Hg) tähistavad tähed. Nõuetekohaseks ringlusse võtmiseks tagastage patarei tarnijale või kindlaksmääratud vastuvõtupunkti. Lisainformatsiooni saab Internetist aadressil: www.recyclethis.info.

FI Paristoje ja akkujen hävittäminen

Tuote sisältää pariston, jota ei saa hävittää Euroopan Unionin alueella talousjätteen mukana. Tarkista tuoteselosteesta tuotteen tiedot. Paristo on merkitty tällä symbolilla ja saattaa sisältää cadmiumia (Cd), lyijyä (Pb) tai elohopeaa (Hg). Oikean kierrätystavan varmistamiseksi palauta tuote paikalliselle jälleenmyyjälle tai palauta se paristojen keräyspisteeseen. Lisätietoja sivuilla www.recyclethis.info.

FR Élimination des piles

Ce produit contient une batterie qui ne peuvent être éliminés comme déchets municipaux non triés dans l'Union européenne. Voir la documentation du produit au niveau des renseignements sur la pile. La batterie est marqué de ce symbole, qui comprennent les indications cadmium (Cd), plomb (Pb), ou mercure (Hg). Pour le recyclage, retourner la batterie à votre fournisseur ou à un point de collecte. Pour plus d'informations, voir: www.recyclethis.info.

10.2 BATTERIES 10 MAINTENANCE

HU Akkumulátor hulladék kezelése

Ezen termék akkumulátort tartalmaz, amely az Európai Unión belül csak a kijelölt módon és helyen dobható ki. A terméken illetve a mellékelt ismertetőn olvasható a kadmium (Cd), ólom (Pb) vagy higany (Hg) tartalomra utaló betűjelzés. A hulladék akkumulátor leadható a termék forgalmazójánál új akkumulátor vásárlásakor, vagy a kijelölt elektronikai hulladékudvarokban. További információ a www.recyclethis.info oldalon.

IT Smaltimento batterie

Questo prodotto contiene una batteria che non può essere smaltita nei comuni contenitori per lo smaltimento rifiuti, nell' Unione Europea. Controllate la documentazione del prodotto per le informazioni specifiche sulla batteria. La batteria è contrassegnata con questo simbolo e può includere alcuni caratteri ad indicare la presenza di cadmio (Cd), piombo (Pb) oppure mercurio (Hg). Per il corretto smaltimento, potete restituirli al vostro fornitore locale, oppure rivolgervi e consegnarli presso i centri di raccolta preposti. Per maggiori informazioni vedere: ww.recyclethis.info.

LT Baterijų šalinimas

Šios įrangos sudėtyje yra baterijų, kurias draudžiama šalinti Europos Sąjungos viešose nerūšiuotų atliekų šalinimo sistemose. Informaciją apie baterijas galite rasti įrangos techninėje dokumentacijoje. Baterijos žymimos šiuo simboliu, papildomai gali būti nurodoma kad baterijų sudėtyje yra kadmio (Cd), švino (Pb) ar gyvsidabrio (Hg). Eksploatavimui nebetinkamas baterijas pristatykite į tam skirtas surinkimo vietas arba grąžinkite jas tiesioginiam tiekėjui, kad jos būtų tinkamai utilizuotos. Daugiau informacijos rasite šioje interneto svetainėje: www.recyclethis.info.

LV Bateriju likvidēšana

Šis produkts satur bateriju vai akumulatoru, kuru nedrīkst izmest Eiropas Savienībā esošajās sadzīves atkritumu sistēmās. Sk. produkta dokumentācijā, kur ir norādīta konkrēta informācija par bateriju vai akumulatoru. Baterijas vai akumulatora marķējumā ir šis simbols, kas var ietvert burtus, kuri norāda kadmiju (Cd), svinu (Pb) vai dzīvsudrabu (Hg). Pēc ekspluatācijas laika beigām baterijas vai akumulatori jānodod piegādātājam vai specializētā bateriju savākšanas vietā. Sīkāku informāciju var iegūt vietnē: www.recyclethis.info.

NL Verwiideren van bateriien

Dit product bevat een batterij welke niet kan verwijdert worden via de gemeentelijke huisvuilscheiding in de Europese Gemeenschap. Gelieve de product documentatie te controleren voor specifieke batterij informatie. De batterijen met deze label kunnen volgende indictaies bevatten cadium (Cd), lood (Pb) of kwik (Hg). Voor correcte vorm van kringloop, geef je de producten terug aan jou locale leverancier of geef het af aan een gespecialiseerde verzamelpunt. Meer informatie vindt u op de volgende website: www.recyclethis.info.

NO Retur av batteri

Dette produkt inneholder et batteri som ikke kan kastes med usortert kommunalt søppel i den Europeiske Unionen. Se produktdokumentasjonen for spesifikk batteriinformasjon. Batteriet er merket med dette symbolet som kan inkludere symboler for å indikere at kadmium (Cd), bly (Pb), eller kvikksølv (Hg) forekommer. Returner batteriet til leverandøren din eller til et dedikert oppsamlingspunkt for korrekt gjenvinning. For mer informasjon se: www.recyclethis.info.

PL Pozbywanie się zużytych baterii

Ten produkt zawiera baterie, które w Unii Europejskiej mogą być usuwane tylko jako posegregowane odpady komunalne. Dokładne informacje dotyczące użytych baterii znajdują się w dokumentacji produktu. Baterie oznaczone tym symbolem mogą zawierać dodatkowe oznaczenia literowe wskazujące na zawartość kadmu (Cd), ołowiu (Pb) lub rtęci (Hg). Dla zapewnienia właściwej utylizacji, należy zwrócić baterie do dostawcy albo do wyznaczonego punktu zbiórki. Więcej informacji można znaleźć na stronie internetowej www.recyclethis.info.

PT Eliminação de Baterias

Este produto contêm uma bateria que não pode ser considerado lixo municipal na União Europeia. Consulte a documentação do produto para obter informação específica da bateria. A bateria é identificada por meio de este símbolo, que pode incluir a rotulação para indicar o cádmio (Cd), chumbo (Pb), ou o mercúrio (hg). Para uma reciclagem apropriada envie a bateria para o seu fornecedor ou para um ponto de recolha designado. Para mais informação veja: www.recyclethis.info.

RU Утилизация батарей

Согласно европейской директиве об отходах электрического и электронного оборудования, продукты, содержащие батареи, нельзя утилизировать как обычные отходы на территории ЕС. Более подробную информацию вы найдете в документации к продукту. На этом символе могут присутствовать буквы, которые означают, что батарея собержит кадмий (Cd), свинец (Pb) или ртуть (Hg). Для надлежащей утилизации по окончании срока эксплуатации пользователь должен возвратить батареи локальному поставщику или сдать в специальный пункт приема. Подробности можно найти на веб-сайте: www.recyclethis.info.

SK Zaobchádzanie s batériami

Tento produkt obsahuje batériu, s ktorou sa v Európskej únii nesmie nakladať ako s netriedeným komunálnym odpadom. Dokumentácia k produktu obsahuje špecifické informácie o batérii. Batéria je označená týmto symbolom, ktorý môže obsahovať písmená na označenie kadmia (Cd), olova (Pb), alebo ortuti (Hg). Na správnu recykláciu vráťte batériu vášmu lokálnemu dodávateľovi alebo na určené zberné miesto. Pre viac informácii pozrite: www.recyclethis.info.

SL Odlaganje baterij

Ta izdelek vsebuje baterijo, ki je v Evropski uniji ni dovoljeno odstranjevati kot nesortiran komunalni odpadek. Za posebne informacije o bateriji glejte dokumentacijo izdelka. Baterija je označena s tem simbolom, ki lahko vključuje napise, ki označujejo kadmij (Cd), svinec (Pb) ali živo srebro (Hg). Za ustrezno recikliranje baterijo vrnite dobavitelju ali jo odstranite na določenem zbirališču. Za več informacij obiščite spletno stran: www.recyclethis.info.

10 MAINTENANCE 10.2 BATTERIES

SV Kassering av batteri

Denna produkt innehåller ett batteri som inte får kastas i allmänna sophanteringssytem inom den europeiska unionen. Se produktdokumentationen för specifik batteriinformation. Batteriet är märkt med denna symbol, vilket kan innebära att det innehåller kadmium (Cd), bly (Pb) eller kvicksilver (Hg). För korrekt återvinning skall batteriet returneras till leverantören eller till en därför avsedd deponering. För mer information, se: www.recyclethis.info.

TR Pil Geri Dönüşümü

Bu ürün Avrupa Bir¹liği genel atık sistemlerine atılmaması gereken pil içermektedir. Daha detaylı pil bilgisi için ürünün kataloğunu inceleyiniz. Bu sembolle işaretlenmiş piller Kadmiyum(Cd), Kurşun(Pb) ya da Civa(Hg) içerebilir. Doğru geri dönüşüm için ürünü yerel tedarikçinize geri veriniz ya da özel işaretlenmiş toplama noktlarına atınız. Daha fazla bilgi için: www.recyclethis.info.

Global Contacts

North America 905-294-6222
Latin America +55 11 3614 1700
Europe, Middle East, Africa +(34) 94 485 88 00
Asia +86-21-2401-3208
India +91 80 41314617

From GE Part Number 1604-0021-A1, GE Publication Number GEK-113574

A.1.1 FLEXANALOG ITEMS

FlexAnalog items are also viewable in a web browser. In the browser, enter the IP address of the UR, access the **Device Information Menu** option, then the **FlexAnalog Parameter Listing** option.

Table A-1: FLEXANALOG DATA ITEMS (Sheet 1 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
5760	Sns Dir Power 1	Watts	Sensitive directional power 1 actual value
5762	Sns Dir Power 2	Watts	Sensitive directional power 2 actual value
5824	Field RTD 1 Value		Field RTD 1 value
5825	Field RTD 2 Value		Field RTD 2 value
5826	Field RTD 3 Value		Field RTD 3 value
5827	Field RTD 4 Value		Field RTD 4 value
5828	Field RTD 5 Value		Field RTD 5 value
5829	Field RTD 6 Value		Field RTD 6 value
5830	Field RTD 7 Value		Field RTD 7 value
5831	Field RTD 8 Value		Field RTD 8 value
5832	Field TDR 1 Value		Field TDR 1 value
5834	Field TDR 2 Value		Field TDR 2 value
5836	Field TDR 3 Value		Field TDR 3 value
5838	Field TDR 4 Value		Field TDR 4 value
5840	Field TDR 5 Value		Field TDR 5 value
5842	Field TDR 6 Value		Field TDR 6 value
5844	Field TDR 7 Value		Field TDR 7 value
5846	Field TDR 8 Value		Field TDR 8 value
5856	Freq Rate 1 Value	Hz/s	Frequency rate of change 1 actual value
5860	Freq Rate 2 Value	Hz/s	Frequency rate of change 2 actual value
5864	Freq Rate 3 Value	Hz/s	Frequency rate of change 3 actual value
5868	Freq Rate 4 Value	Hz/s	Frequency rate of change 4 actual value
6144	SRC 1 la RMS	Amps	Source 1 phase A current RMS
6146	SRC 1 lb RMS	Amps	Source 1 phase B current RMS
6148	SRC 1 lc RMS	Amps	Source 1 phase C current RMS
6150	SRC 1 In RMS	Amps	Source 1 neutral current RMS
6152	SRC 1 la Mag	Amps	Source 1 phase A current magnitude
6154	SRC 1 la Angle	Degrees	Source 1 phase A current angle
6155	SRC 1 lb Mag	Amps	Source 1 phase B current magnitude
6157	SRC 1 lb Angle	Degrees	Source 1 phase B current angle
6158	SRC 1 lc Mag	Amps	Source 1 phase C current magnitude
6160	SRC 1 lc Angle	Degrees	Source 1 phase C current angle
6161	SRC 1 In Mag	Amps	Source 1 neutral current magnitude
6163	SRC 1 In Angle	Degrees	Source 1 neutral current angle
6164	SRC 1 lg RMS	Amps	Source 1 ground current RMS
6166	SRC 1 lg Mag	Degrees	Source 1 ground current magnitude
6168	SRC 1 lg Angle	Amps	Source 1 ground current angle
6169	SRC 1 I_0 Mag	Degrees	Source 1 zero-sequence current magnitude
6171	SRC 1 I_0 Angle	Amps	Source 1 zero-sequence current angle
6172	SRC 1 I_1 Mag	Degrees	Source 1 positive-sequence current magnitude
6174	SRC 1 I_1 Angle	Amps	Source 1 positive-sequence current angle
6175	SRC 1 I_2 Mag	Degrees	Source 1 negative-sequence current magnitude

Table A-1: FLEXANALOG DATA ITEMS (Sheet 2 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
6177	SRC 1 I_2 Angle	Amps	Source 1 negative-sequence current angle
6178	SRC 1 Igd Mag	Degrees	Source 1 differential ground current magnitude
6180	SRC 1 Igd Angle	Amps	Source 1 differential ground current angle
6208	SRC 2 la RMS	Amps	Source 2 phase A current RMS
6210	SRC 2 lb RMS	Amps	Source 2 phase B current RMS
6212	SRC 2 Ic RMS	Amps	Source 2 phase C current RMS
6214	SRC 2 In RMS	Amps	Source 2 neutral current RMS
6216	SRC 2 la Mag	Amps	Source 2 phase A current magnitude
6218	SRC 2 la Angle	Degrees	Source 2 phase A current angle
6219	SRC 2 lb Mag	Amps	Source 2 phase B current magnitude
6221	SRC 2 lb Angle	Degrees	Source 2 phase B current angle
6222	SRC 2 lc Mag	Amps	Source 2 phase C current magnitude
6224	SRC 2 lc Angle	Degrees	Source 2 phase C current angle
6225	SRC 2 In Mag	Amps	Source 2 neutral current magnitude
6227	SRC 2 In Angle	Degrees	Source 2 neutral current angle
6228	SRC 2 Ig RMS	Amps	Source 2 ground current RMS
6230	SRC 2 lg Mag	Degrees	Source 2 ground current magnitude
6232	SRC 2 lg Angle	Amps	Source 2 ground current angle
6233	SRC 2 I_0 Mag	Degrees	Source 2 zero-sequence current magnitude
6235	SRC 2 I_0 Angle	Amps	Source 2 zero-sequence current angle
6236	SRC 2 I_1 Mag	Degrees	Source 2 positive-sequence current magnitude
6238	SRC 2 I_1 Angle	Amps	Source 2 positive-sequence current angle
6239	SRC 2 I_2 Mag	Degrees	Source 2 negative-sequence current magnitude
6241	SRC 2 I_2 Angle	Amps	Source 2 negative-sequence current angle
6242	SRC 2 Igd Mag	Degrees	Source 2 differential ground current magnitude
6244	SRC 2 Igd Angle	Amps	Source 2 differential ground current angle
6656	SRC 1 Vag RMS	Volts	Source 1 phase AG voltage RMS
6658	SRC 1 Vbg RMS	Volts	Source 1 phase BG voltage RMS
6660	SRC 1 Vcg RMS	Volts	Source 1 phase CG voltage RMS
6662	SRC 1 Vag Mag	Volts	Source 1 phase AG voltage magnitude
6664	SRC 1 Vag Angle	Degrees	Source 1 phase AG voltage angle
6665	SRC 1 Vbg Mag	Volts	Source 1 phase BG voltage magnitude
6667	SRC 1 Vbg Angle	Degrees	Source 1 phase BG voltage angle
6668	SRC 1 Vcg Mag	Volts	Source 1 phase CG voltage magnitude
6670	SRC 1 Vcg Angle	Degrees	Source 1 phase CG voltage angle
6671	SRC 1 Vab RMS	Volts	Source 1 phase AB voltage RMS
6673	SRC 1 Vbc RMS	Volts	Source 1 phase BC voltage RMS
6675	SRC 1 Vca RMS	Volts	Source 1 phase CA voltage RMS
6677	SRC 1 Vab Mag	Volts	Source 1 phase AB voltage magnitude
6679	SRC 1 Vab Angle	Degrees	Source 1 phase AB voltage angle
6680	SRC 1 Vbc Mag	Volts	Source 1 phase BC voltage magnitude
6682	SRC 1 Vbc Angle	Degrees	Source 1 phase BC voltage angle
6683	SRC 1 Vca Mag	Volts	Source 1 phase CA voltage magnitude
6685	SRC 1 Vca Angle	Degrees	Source 1 phase CA voltage angle
6686	SRC 1 Vx RMS	Volts	Source 1 auxiliary voltage RMS
6688	SRC 1 Vx Mag	Volts	Source 1 auxiliary voltage magnitude
6690	SRC 1 Vx Angle	Degrees	Source 1 auxiliary voltage angle

Table A-1: FLEXANALOG DATA ITEMS (Sheet 3 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
6691	SRC 1 V_0 Mag	Volts	Source 1 zero-sequence voltage magnitude
6693	SRC 1 V_0 Angle	Degrees	Source 1 zero-sequence voltage angle
6694	SRC 1 V_1 Mag	Volts	Source 1 positive-sequence voltage magnitude
6696	SRC 1 V_1 Angle	Degrees	Source 1 positive-sequence voltage angle
6697	SRC 1 V_2 Mag	Volts	Source 1 negative-sequence voltage magnitude
6699	SRC 1 V_2 Angle	Degrees	Source 1 negative-sequence voltage angle
6720	SRC 2 Vag RMS	Volts	Source 2 phase AG voltage RMS
6722	SRC 2 Vbg RMS	Volts	Source 2 phase BG voltage RMS
6724	SRC 2 Vcg RMS	Volts	Source 2 phase CG voltage RMS
6726	SRC 2 Vag Mag	Volts	Source 2 phase AG voltage magnitude
6728	SRC 2 Vag Angle	Degrees	Source 2 phase AG voltage angle
6729	SRC 2 Vbg Mag	Volts	Source 2 phase BG voltage magnitude
6731	SRC 2 Vbg Angle	Degrees	Source 2 phase BG voltage angle
6732	SRC 2 Vcg Mag	Volts	Source 2 phase CG voltage magnitude
6734	SRC 2 Vcg Angle	Degrees	Source 2 phase CG voltage angle
6735	SRC 2 Vab RMS	Volts	Source 2 phase AB voltage RMS
6737	SRC 2 Vbc RMS	Volts	Source 2 phase BC voltage RMS
6739	SRC 2 Vca RMS	Volts	Source 2 phase CA voltage RMS
6741	SRC 2 Vab Mag	Volts	Source 2 phase AB voltage magnitude
6743	SRC 2 Vab Angle	Degrees	Source 2 phase AB voltage angle
6744	SRC 2 Vbc Mag	Volts	Source 2 phase BC voltage magnitude
6746	SRC 2 Vbc Angle	Degrees	Source 2 phase BC voltage angle
6747	SRC 2 Vca Mag	Volts	Source 2 phase CA voltage magnitude
6749	SRC 2 Vca Angle	Degrees	Source 2 phase CA voltage angle
6750	SRC 2 Vx RMS	Volts	Source 2 auxiliary voltage RMS
6752	SRC 2 Vx Mag	Volts	Source 2 auxiliary voltage magnitude
6754	SRC 2 Vx Angle	Degrees	Source 2 auxiliary voltage angle
6755	SRC 2 V_0 Mag	Volts	Source 2 zero-sequence voltage magnitude
6757	SRC 2 V_0 Angle	Degrees	Source 2 zero-sequence voltage angle
6758	SRC 2 V_1 Mag	Volts	Source 2 positive-sequence voltage magnitude
6760	SRC 2 V_1 Angle	Degrees	Source 2 positive-sequence voltage angle
6761	SRC 2 V_2 Mag	Volts	Source 2 negative-sequence voltage magnitude
6763	SRC 2 V_2 Angle	Degrees	Source 2 negative-sequence voltage angle
7168	SRC 1 P	Watts	Source 1 three-phase real power
7170	SRC 1 Pa	Watts	Source 1 phase A real power
7172	SRC 1 Pb	Watts	Source 1 phase B real power
7174	SRC 1 Pc	Watts	Source 1 phase C real power
7176	SRC 1 Q	Vars	Source 1 three-phase reactive power
7178	SRC 1 Qa	Vars	Source 1 phase A reactive power
7180	SRC 1 Qb	Vars	Source 1 phase B reactive power
7182	SRC 1 Qc	Vars	Source 1 phase C reactive power
7184	SRC 1 S	VA	Source 1 three-phase apparent power
7186	SRC 1 Sa	VA	Source 1 phase A apparent power
7188	SRC 1 Sb	VA	Source 1 phase B apparent power
7190	SRC 1 Sc	VA	Source 1 phase C apparent power
7192	SRC 1 PF		Source 1 three-phase power factor
7193	SRC 1 Phase A PF		Source 1 phase A power factor

Table A-1: FLEXANALOG DATA ITEMS (Sheet 4 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
7194	SRC 1 Phase B PF		Source 1 phase B power factor
7195	SRC 1 Phase C PF		Source 1 phase C power factor
7200	SRC 2 P	Watts	Source 2 three-phase real power
7202	SRC 2 Pa	Watts	Source 2 phase A real power
7204	SRC 2 Pb	Watts	Source 2 phase B real power
7206	SRC 2 Pc	Watts	Source 2 phase C real power
7208	SRC 2 Q	Vars	Source 2 three-phase reactive power
7210	SRC 2 Qa	Vars	Source 2 phase A reactive power
7212	SRC 2 Qb	Vars	Source 2 phase B reactive power
7214	SRC 2 Qc	Vars	Source 2 phase C reactive power
7216	SRC 2 S	VA	Source 2 three-phase apparent power
7218	SRC 2 Sa	VA	Source 2 phase A apparent power
7220	SRC 2 Sb	VA	Source 2 phase B apparent power
7222	SRC 2 Sc	VA	Source 2 phase C apparent power
7224	SRC 2 PF		Source 2 three-phase power factor
7225	SRC 2 Phase A PF		Source 2 phase A power factor
7226	SRC 2 Phase B PF		Source 2 phase B power factor
7227	SRC 2 Phase C PF		Source 2 phase C power factor
7552	SRC 1 Frequency	Hz	Source 1 frequency
7554	SRC 2 Frequency	Hz	Source 2 frequency
7680	SRC 1 Demand Ia	Amps	Source 1 phase A current demand
7682	SRC 1 Demand Ib	Amps	Source 1 phase B current demand
7684	SRC 1 Demand Ic	Amps	Source 1 phase C current demand
7686	SRC 1 Demand Watt	Watts	Source 1 real power demand
7688	SRC 1 Demand var	Vars	Source 1 reactive power demand
7690	SRC 1 Demand Va	VA	Source 1 apparent power demand
7696	SRC 2 Demand Ia	Amps	Source 2 phase A current demand
7698	SRC 2 Demand Ib	Amps	Source 2 phase B current demand
7700	SRC 2 Demand Ic	Amps	Source 2 phase C current demand
7702	SRC 2 Demand Watt	Watts	Source 2 real power demand
7704	SRC 2 Demand var	Vars	Source 2 reactive power demand
7706	SRC 2 Demand Va	VA	Source 2 apparent power demand
8064	SRC 1 Va THD		Source 1 phase A voltage total harmonic distortion (THD)
8065	SRC 1 Va Harm[0]	Volts	Source 1 phase A voltage second harmonic
8066	SRC 1 Va Harm[1]	Volts	Source 1 phase A voltage third harmonic
8067	SRC 1 Va Harm[2]	Volts	Source 1 phase A voltage fourth harmonic
8068	SRC 1 Va Harm[3]	Volts	Source 1 phase A voltage fifth harmonic
8069	SRC 1 Va Harm[4]	Volts	Source 1 phase A voltage sixth harmonic
8070	SRC 1 Va Harm[5]	Volts	Source 1 phase A voltage seventh harmonic
8071	SRC 1 Va Harm[6]	Volts	Source 1 phase A voltage eighth harmonic
8072	SRC 1 Va Harm[7]	Volts	Source 1 phase A voltage ninth harmonic
8073	SRC 1 Va Harm[8]	Volts	Source 1 phase A voltage tenth harmonic
8074	SRC 1 Va Harm[9]	Volts	Source 1 phase A voltage eleventh harmonic
8075	SRC 1 Va Harm[10]	Volts	Source 1 phase A voltage twelfth harmonic
8076	SRC 1 Va Harm[11]	Volts	Source 1 phase A voltage thirteenth harmonic
8077	SRC 1 Va Harm[12]	Volts	Source 1 phase A voltage fourteenth harmonic
8078	SRC 1 Va Harm[13]	Volts	Source 1 phase A voltage fifteenth harmonic

Table A-1: FLEXANALOG DATA ITEMS (Sheet 5 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
8079	SRC 1 Va Harm[14]	Volts	Source 1 phase A voltage sixteenth harmonic
8080	SRC 1 Va Harm[15]	Volts	Source 1 phase A voltage seventeenth harmonic
8081	SRC 1 Va Harm[16]	Volts	Source 1 phase A voltage eighteenth harmonic
8082	SRC 1 Va Harm[17]	Volts	Source 1 phase A voltage nineteenth harmonic
8083	SRC 1 Va Harm[18]	Volts	Source 1 phase A voltage twentieth harmonic
8084	SRC 1 Va Harm[19]	Volts	Source 1 phase A voltage twenty-first harmonic
8085	SRC 1 Va Harm[20]	Volts	Source 1 phase A voltage twenty-second harmonic
8086	SRC 1 Va Harm[21]	Volts	Source 1 phase A voltage twenty-third harmonic
8087	SRC 1 Va Harm[22]	Volts	Source 1 phase A voltage twenty-fourth harmonic
8088	SRC 1 Va Harm[23]	Volts	Source 1 phase A voltage twenty-fifth harmonic
8089	SRC 1 Vb THD		Source 1 phase B voltage total harmonic distortion (THD)
8090	SRC 1 Vb Harm[0]	Volts	Source 1 phase B voltage second harmonic
8091	SRC 1 Vb Harm[1]	Volts	Source 1 phase B voltage third harmonic
8092	SRC 1 Vb Harm[2]	Volts	Source 1 phase B voltage fourth harmonic
8093	SRC 1 Vb Harm[3]	Volts	Source 1 phase B voltage fifth harmonic
8094	SRC 1 Vb Harm[4]	Volts	Source 1 phase B voltage sixth harmonic
8095	SRC 1 Vb Harm[5]	Volts	Source 1 phase B voltage seventh harmonic
8096	SRC 1 Vb Harm[6]	Volts	Source 1 phase B voltage eighth harmonic
8097	SRC 1 Vb Harm[7]	Volts	Source 1 phase B voltage ninth harmonic
8098	SRC 1 Vb Harm[8]	Volts	Source 1 phase B voltage tenth harmonic
8099	SRC 1 Vb Harm[9]	Volts	Source 1 phase B voltage eleventh harmonic
8100	SRC 1 Vb Harm[10]	Volts	Source 1 phase B voltage twelfth harmonic
8101	SRC 1 Vb Harm[11]	Volts	Source 1 phase B voltage thirteenth harmonic
8102	SRC 1 Vb Harm[12]	Volts	Source 1 phase B voltage fourteenth harmonic
8103	SRC 1 Vb Harm[13]	Volts	Source 1 phase B voltage fifteenth harmonic
8104	SRC 1 Vb Harm[14]	Volts	Source 1 phase B voltage sixteenth harmonic
8105	SRC 1 Vb Harm[15]	Volts	Source 1 phase B voltage seventeenth harmonic
8106	SRC 1 Vb Harm[16]	Volts	Source 1 phase B voltage eighteenth harmonic
8107	SRC 1 Vb Harm[17]	Volts	Source 1 phase B voltage nineteenth harmonic
8108	SRC 1 Vb Harm[18]	Volts	Source 1 phase B voltage twentieth harmonic
8109	SRC 1 Vb Harm[19]	Volts	Source 1 phase B voltage twenty-first harmonic
8110	SRC 1 Vb Harm[20]	Volts	Source 1 phase B voltage twenty-second harmonic
8111	SRC 1 Vb Harm[21]	Volts	Source 1 phase B voltage twenty-third harmonic
8112	SRC 1 Vb Harm[22]	Volts	Source 1 phase B voltage twenty-fourth harmonic
8113	SRC 1 Vb Harm[23]	Volts	Source 1 phase B voltage twenty-fifth harmonic
8114	SRC 1 Vc THD		Source 1 phase C voltage total harmonic distortion (THD)
8115	SRC 1 Vc Harm[0]	Volts	Source 1 phase C voltage second harmonic
8116	SRC 1 Vc Harm[1]	Volts	Source 1 phase C voltage third harmonic
8117	SRC 1 Vc Harm[2]	Volts	Source 1 phase C voltage fourth harmonic
8118	SRC 1 Vc Harm[3]	Volts	Source 1 phase C voltage fifth harmonic
8119	SRC 1 Vc Harm[4]	Volts	Source 1 phase C voltage sixth harmonic
8120	SRC 1 Vc Harm[5]	Volts	Source 1 phase C voltage seventh harmonic
8121	SRC 1 Vc Harm[6]	Volts	Source 1 phase C voltage eighth harmonic
8122	SRC 1 Vc Harm[7]	Volts	Source 1 phase C voltage ninth harmonic
8123	SRC 1 Vc Harm[8]	Volts	Source 1 phase C voltage tenth harmonic
8124	SRC 1 Vc Harm[9]	Volts	Source 1 phase C voltage eleventh harmonic
8125	SRC 1 Vc Harm[10]	Volts	Source 1 phase C voltage twelfth harmonic

Table A-1: FLEXANALOG DATA ITEMS (Sheet 6 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
8126	SRC 1 Vc Harm[11]	Volts	Source 1 phase C voltage thirteenth harmonic
8127	SRC 1 Vc Harm[12]	Volts	Source 1 phase C voltage fourteenth harmonic
8128	SRC 1 Vc Harm[13]	Volts	Source 1 phase C voltage fifteenth harmonic
8129	SRC 1 Vc Harm[14]	Volts	Source 1 phase C voltage sixteenth harmonic
8130	SRC 1 Vc Harm[15]	Volts	Source 1 phase C voltage seventeenth harmonic
8131	SRC 1 Vc Harm[16]	Volts	Source 1 phase C voltage eighteenth harmonic
8132	SRC 1 Vc Harm[17]	Volts	Source 1 phase C voltage nineteenth harmonic
8133	SRC 1 Vc Harm[18]	Volts	Source 1 phase C voltage twentieth harmonic
8134	SRC 1 Vc Harm[19]	Volts	Source 1 phase C voltage twenty-first harmonic
8135	SRC 1 Vc Harm[20]	Volts	Source 1 phase C voltage twenty-second harmonic
8136	SRC 1 Vc Harm[21]	Volts	Source 1 phase C voltage twenty-third harmonic
8137	SRC 1 Vc Harm[22]	Volts	Source 1 phase C voltage twenty-fourth harmonic
8138	SRC 1 Vc Harm[23]	Volts	Source 1 phase C voltage twenty-fifth harmonic
8139	SRC 2 Va THD		Source 2 phase A voltage total harmonic distortion (THD)
8140	SRC 2 Va Harm[0]	Volts	Source 2 phase A voltage second harmonic
8141	SRC 2 Va Harm[1]	Volts	Source 2 phase A voltage third harmonic
8142	SRC 2 Va Harm[2]	Volts	Source 2 phase A voltage fourth harmonic
8143	SRC 2 Va Harm[3]	Volts	Source 2 phase A voltage fifth harmonic
8144	SRC 2 Va Harm[4]	Volts	Source 2 phase A voltage sixth harmonic
8145	SRC 2 Va Harm[5]	Volts	Source 2 phase A voltage seventh harmonic
8146	SRC 2 Va Harm[6]	Volts	Source 2 phase A voltage eighth harmonic
8147	SRC 2 Va Harm[7]	Volts	Source 2 phase A voltage ninth harmonic
8148	SRC 2 Va Harm[8]	Volts	Source 2 phase A voltage tenth harmonic
8149	SRC 2 Va Harm[9]	Volts	Source 2 phase A voltage eleventh harmonic
8150	SRC 2 Va Harm[10]	Volts	Source 2 phase A voltage twelfth harmonic
8151	SRC 2 Va Harm[11]	Volts	Source 2 phase A voltage thirteenth harmonic
8152	SRC 2 Va Harm[12]	Volts	Source 2 phase A voltage fourteenth harmonic
8153	SRC 2 Va Harm[13]	Volts	Source 2 phase A voltage fifteenth harmonic
8154	SRC 2 Va Harm[14]	Volts	Source 2 phase A voltage sixteenth harmonic
8155	SRC 2 Va Harm[15]	Volts	Source 2 phase A voltage seventeenth harmonic
8156	SRC 2 Va Harm[16]	Volts	Source 2 phase A voltage eighteenth harmonic
8157	SRC 2 Va Harm[17]	Volts	Source 2 phase A voltage nineteenth harmonic
8158	SRC 2 Va Harm[18]	Volts	Source 2 phase A voltage twentieth harmonic
8159	SRC 2 Va Harm[19]	Volts	Source 2 phase A voltage twenty-first harmonic
8160	SRC 2 Va Harm[20]	Volts	Source 2 phase A voltage twenty-second harmonic
8161	SRC 2 Va Harm[21]	Volts	Source 2 phase A voltage twenty-third harmonic
8162	SRC 2 Va Harm[22]	Volts	Source 2 phase A voltage twenty-fourth harmonic
8163	SRC 2 Va Harm[23]	Volts	Source 2 phase A voltage twenty-fifth harmonic
8164	SRC 2 Vb THD		Source 2 phase B voltage total harmonic distortion (THD)
8165	SRC 2 Vb Harm[0]	Volts	Source 2 phase B voltage second harmonic
8166	SRC 2 Vb Harm[1]	Volts	Source 2 phase B voltage third harmonic
8167	SRC 2 Vb Harm[2]	Volts	Source 2 phase B voltage fourth harmonic
8168	SRC 2 Vb Harm[3]	Volts	Source 2 phase B voltage fifth harmonic
8169	SRC 2 Vb Harm[4]	Volts	Source 2 phase B voltage sixth harmonic
8170	SRC 2 Vb Harm[5]	Volts	Source 2 phase B voltage seventh harmonic
8171	SRC 2 Vb Harm[6]	Volts	Source 2 phase B voltage eighth harmonic
8172	SRC 2 Vb Harm[7]	Volts	Source 2 phase B voltage ninth harmonic

Table A-1: FLEXANALOG DATA ITEMS (Sheet 7 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
8173	SRC 2 Vb Harm[8]	Volts	Source 2 phase B voltage tenth harmonic
8174	SRC 2 Vb Harm[9]	Volts	Source 2 phase B voltage eleventh harmonic
8175	SRC 2 Vb Harm[10]	Volts	Source 2 phase B voltage twelfth harmonic
8176	SRC 2 Vb Harm[11]	Volts	Source 2 phase B voltage thirteenth harmonic
8177	SRC 2 Vb Harm[12]	Volts	Source 2 phase B voltage fourteenth harmonic
8178	SRC 2 Vb Harm[13]	Volts	Source 2 phase B voltage fifteenth harmonic
8179	SRC 2 Vb Harm[14]	Volts	Source 2 phase B voltage sixteenth harmonic
8180	SRC 2 Vb Harm[15]	Volts	Source 2 phase B voltage seventeenth harmonic
8181	SRC 2 Vb Harm[16]	Volts	Source 2 phase B voltage eighteenth harmonic
8182	SRC 2 Vb Harm[17]	Volts	Source 2 phase B voltage nineteenth harmonic
8183	SRC 2 Vb Harm[18]	Volts	Source 2 phase B voltage twentieth harmonic
8184	SRC 2 Vb Harm[19]	Volts	Source 2 phase B voltage twenty-first harmonic
8185	SRC 2 Vb Harm[20]	Volts	Source 2 phase B voltage twenty-second harmonic
8186	SRC 2 Vb Harm[21]	Volts	Source 2 phase B voltage twenty-third harmonic
8187	SRC 2 Vb Harm[22]	Volts	Source 2 phase B voltage twenty-fourth harmonic
8188	SRC 2 Vb Harm[23]	Volts	Source 2 phase B voltage twenty-fifth harmonic
8189	SRC 2 Vc THD		Source 2 phase C voltage total harmonic distortion (THD)
8190	SRC 2 Vc Harm[0]	Volts	Source 2 phase C voltage second harmonic
8191	SRC 2 Vc Harm[1]	Volts	Source 2 phase C voltage third harmonic
8192	SRC 2 Vc Harm[2]	Volts	Source 2 phase C voltage fourth harmonic
8193	SRC 2 Vc Harm[3]	Volts	Source 2 phase C voltage fifth harmonic
8194	SRC 2 Vc Harm[4]	Volts	Source 2 phase C voltage sixth harmonic
8195	SRC 2 Vc Harm[5]	Volts	Source 2 phase C voltage seventh harmonic
8196	SRC 2 Vc Harm[6]	Volts	Source 2 phase C voltage eighth harmonic
8197	SRC 2 Vc Harm[7]	Volts	Source 2 phase C voltage ninth harmonic
8198	SRC 2 Vc Harm[8]	Volts	Source 2 phase C voltage tenth harmonic
8199	SRC 2 Vc Harm[9]	Volts	Source 2 phase C voltage eleventh harmonic
8200	SRC 2 Vc Harm[10]	Volts	Source 2 phase C voltage twelfth harmonic
8201	SRC 2 Vc Harm[11]	Volts	Source 2 phase C voltage thirteenth harmonic
8202	SRC 2 Vc Harm[12]	Volts	Source 2 phase C voltage fourteenth harmonic
8203	SRC 2 Vc Harm[13]	Volts	Source 2 phase C voltage fifteenth harmonic
8204	SRC 2 Vc Harm[14]	Volts	Source 2 phase C voltage sixteenth harmonic
8205	SRC 2 Vc Harm[15]	Volts	Source 2 phase C voltage seventeenth harmonic
8206	SRC 2 Vc Harm[16]	Volts	Source 2 phase C voltage eighteenth harmonic
8207	SRC 2 Vc Harm[17]	Volts	Source 2 phase C voltage nineteenth harmonic
8208	SRC 2 Vc Harm[18]	Volts	Source 2 phase C voltage twentieth harmonic
8209	SRC 2 Vc Harm[19]	Volts	Source 2 phase C voltage twenty-first harmonic
8210	SRC 2 Vc Harm[20]	Volts	Source 2 phase C voltage twenty-second harmonic
8211	SRC 2 Vc Harm[21]	Volts	Source 2 phase C voltage twenty-third harmonic
8212	SRC 2 Vc Harm[22]	Volts	Source 2 phase C voltage twenty-fourth harmonic
8213	SRC 2 Vc Harm[23]	Volts	Source 2 phase C voltage twenty-fifth harmonic
8784	HIZ Status		High impedance fault detection status
8785	HIZ Phase A Arc Conf		High impedance fault detection phase A arc confidence
8786	HIZ Phase B Arc Conf		High impedance fault detection phase B arc confidence
8787	HIZ Phase C Arc Conf		High impedance fault detection phase C arc confidence
8788	HIZ Neutral Arc Conf		High impedance fault detection neutral arc confidence
9024	Prefault la Mag [0]	Amps	Fault 1 pre-fault phase A current magnitude

Table A-1: FLEXANALOG DATA ITEMS (Sheet 8 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
9026	Prefault la Ang [0]	Degrees	Fault 1 pre-fault phase A current angle
9027	Prefault Ib Mag [0]	Amps	Fault 1 pre-fault phase B current magnitude
9029	Prefault Ib Ang [0]	Degrees	Fault 1 pre-fault phase B current angle
9030	Prefault Ic Mag [0]	Amps	Fault 1 pre-fault phase C current magnitude
9032	Prefault Ic Ang [0]	Degrees	Fault 1 pre-fault phase C current angle
9033	Prefault Va Mag [0]	Volts	Fault 1 pre-fault phase A voltage magnitude
9035	Prefault Va Ang [0]	Degrees	Fault 1 pre-fault phase A voltage angle
9036	Prefault Vb Mag [0]	Volts	Fault 1 pre-fault phase B voltage magnitude
9038	Prefault Vb Ang [0]	Degrees	Fault 1 pre-fault phase B voltage angle
9039	Prefault Vc Mag [0]	Volts	Fault 1 pre-fault phase C voltage magnitude
9041	Prefault Vc Ang [0]	Degrees	Fault 1 pre-fault phase C voltage angle
9042	Postfault la Mag [0]	Amps	Fault 1 post-fault phase A current magnitude
9044	Postfault la Ang [0]	Degrees	Fault 1 post-fault phase A current angle
9045	Postfault lb Mag [0]	Amps	Fault 1 post-fault phase B current magnitude
9047	Postfault lb Ang [0]	Degrees	Fault 1 post-fault phase B current angle
9048	Postfault Ic Mag [0]	Amps	Fault 1 post-fault phase C current magnitude
9050	Postfault Ic Ang [0]	Degrees	Fault 1 post-fault phase C current angle
9051	Postfault Va Mag [0]	Volts	Fault 1 post-fault phase A voltage magnitude
9053	Postfault Va Ang [0]	Degrees	Fault 1 post-fault phase A voltage angle
9054	Postfault Vb Mag [0]	Volts	Fault 1 post-fault phase B voltage magnitude
9056	Postfault Vb Ang [0]	Degrees	Fault 1 post-fault phase B voltage angle
9057	Postfault Vc Mag [0]	Volts	Fault 1 post-fault phase C voltage magnitude
9059	Postfault Vc Ang [0]	Degrees	Fault 1 post-fault phase C voltage angle
9060	Fault Type [0]		Fault 1 type
9061	Fault Location [0]		Fault 1 location
9216	Synchchk 1 Delta V	Volts	Synchrocheck 1 delta voltage
9218	Synchchk 1 Delta F	Hz	Synchrocheck 1 delta frequency
9219	Synchchk 1 Delta Phs	Degrees	Synchrocheck 1 delta phase
9220	Synchchk 2 Delta V	Volts	Synchrocheck 2 delta voltage
9222	Synchchk 2 Delta F	Hz	Synchrocheck 2 delta frequency
9223	Synchchk 2 Delta Phs	Degrees	Synchrocheck 2 delta phase
9224	Synchchk 3 Delta V	Volts	Synchrocheck 3 delta voltage
9226	Synchchk 3 Delta F	Hz	Synchrocheck 3 delta frequency
9227	Synchchk 3 Delta Phs	Degrees	Synchrocheck 3 delta phase
9228	Synchchk 4 Delta V	Volts	Synchrocheck 4 delta voltage
9230	Synchchk 4 Delta F	Hz	Synchrocheck 4 delta frequency
9231	Synchchk 4 Delta Phs	Degrees	Synchrocheck 4 delta phase
9581	PMU 1 Va Mag	Volts	Phasor measurement unit 1 phase A voltage magnitude
9583	PMU 1 Va Angle	Degrees	Phasor measurement unit 1 phase A voltage angle
9584	PMU 1 Vb Mag	Volts	Phasor measurement unit 1 phase B voltage magnitude
9586	PMU 1 Vb Angle	Degrees	Phasor measurement unit 1 phase B voltage angle
9587	PMU 1 Vc Mag	Volts	Phasor measurement unit 1 phase C voltage magnitude
9589	PMU 1 Vc Angle	Degrees	Phasor measurement unit 1 phase C voltage angle
9590	PMU 1 Vx Mag	Volts	Phasor measurement unit 1 auxiliary voltage magnitude
9592	PMU 1 Vx Angle	Degrees	Phasor measurement unit 1 auxiliary voltage angle
9593	PMU 1 V1 Mag	Volts	Phasor measurement unit 1 positive-sequence voltage magnitude
9595	PMU 1 V1 Angle	Degrees	Phasor measurement unit 1 positive-sequence voltage angle

Table A-1: FLEXANALOG DATA ITEMS (Sheet 9 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
9596	PMU 1 V2 Mag	Volts	Phasor measurement unit 1 negative-sequence voltage magnitude
9598	PMU 1 V2 Angle	Degrees	Phasor measurement unit 1 negative-sequence voltage angle
9599	PMU 1 V0 Mag	Volts	Phasor measurement unit 1 zero-sequence voltage magnitude
9601	PMU 1 V0 Angle	Degrees	Phasor measurement unit 1 zero-sequence voltage angle
9602	PMU 1 la Mag	Amps	Phasor measurement unit 1 phase A current magnitude
9604	PMU 1 la Angle	Degrees	Phasor measurement unit 1 phase A current angle
9605	PMU 1 lb Mag	Amps	Phasor measurement unit 1 phase B current magnitude
9607	PMU 1 lb Angle	Degrees	Phasor measurement unit 1 phase B current angle
9608	PMU 1 lc Mag	Amps	Phasor measurement unit 1 phase C current magnitude
9610	PMU 1 lc Angle	Degrees	Phasor measurement unit 1 phase C current angle
9611	PMU 1 lg Mag	Amps	Phasor measurement unit 1 ground current magnitude
9613	PMU 1 lg Angle	Degrees	Phasor measurement unit 1 ground current angle
9614	PMU 1 I1 Mag	Amps	Phasor measurement unit 1 positive-sequence current magnitude
9616	PMU 1 I1 Angle	Degrees	Phasor measurement unit 1 positive-sequence current angle
9617	PMU 1 I2 Mag	Amps	Phasor measurement unit 1 negative-sequence current magnitude
9619	PMU 1 I2 Angle	Degrees	Phasor measurement unit 1 negative-sequence current angle
9620	PMU 1 I0 Mag	Amps	Phasor measurement unit 1 zero-sequence current magnitude
9622	PMU 1 I0 Angle	Degrees	Phasor measurement unit 1 zero-sequence current angle
9623	PMU 1 Freq	Hz	Phasor measurement unit 1 frequency
9625	PMU 1 df dt	Hz/s	Phasor measurement unit 1 rate of change of frequency
9626	PMU 1 Conf Ch		Phasor measurement unit 1 configuration change counter
10240	SRC 1 la THD		Source 1 phase A current total harmonic distortion
10241	SRC 1 la Harm[0]	Amps	Source 1 phase A current second harmonic
10242	SRC 1 la Harm[1]	Amps	Source 1 phase A current third harmonic
10243	SRC 1 la Harm[2]	Amps	Source 1 phase A current fourth harmonic
10244	SRC 1 la Harm[3]	Amps	Source 1 phase A current fifth harmonic
10245	SRC 1 la Harm[4]	Amps	Source 1 phase A current sixth harmonic
10246	SRC 1 la Harm[5]	Amps	Source 1 phase A current seventh harmonic
10247	SRC 1 la Harm[6]	Amps	Source 1 phase A current eighth harmonic
10248	SRC 1 la Harm[7]	Amps	Source 1 phase A current ninth harmonic
10249	SRC 1 la Harm[8]	Amps	Source 1 phase A current tenth harmonic
10250	SRC 1 la Harm[9]	Amps	Source 1 phase A current eleventh harmonic
10251	SRC 1 la Harm[10]	Amps	Source 1 phase A current twelfth harmonic
10252	SRC 1 la Harm[11]	Amps	Source 1 phase A current thirteenth harmonic
10253	SRC 1 la Harm[12]	Amps	Source 1 phase A current fourteenth harmonic
10254	SRC 1 la Harm[13]	Amps	Source 1 phase A current fifteenth harmonic
10255	SRC 1 la Harm[14]	Amps	Source 1 phase A current sixteenth harmonic
10256	SRC 1 la Harm[15]	Amps	Source 1 phase A current seventeenth harmonic
10257	SRC 1 la Harm[16]	Amps	Source 1 phase A current eighteenth harmonic
10258	SRC 1 la Harm[17]	Amps	Source 1 phase A current nineteenth harmonic
10259	SRC 1 la Harm[18]	Amps	Source 1 phase A current twentieth harmonic
10260	SRC 1 la Harm[19]	Amps	Source 1 phase A current twenty-first harmonic
10261	SRC 1 la Harm[20]	Amps	Source 1 phase A current twenty-second harmonic
10262	SRC 1 la Harm[21]	Amps	Source 1 phase A current twenty-third harmonic
10263	SRC 1 la Harm[22]	Amps	Source 1 phase A current twenty-fourth harmonic
10264	SRC 1 la Harm[23]	Amps	Source 1 phase A current twenty-fifth harmonic
10273	SRC 1 lb THD		Source 1 phase B current total harmonic distortion

Table A-1: FLEXANALOG DATA ITEMS (Sheet 10 of 16)

19274 SRC 1 lb Harm[0]	ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
10276	10274	SRC 1 lb Harm[0]	Amps	Source 1 phase B current second harmonic
10277 SRC 1 lb Harm[3]	10275	SRC 1 lb Harm[1]	Amps	Source 1 phase B current third harmonic
10276 SRC 1 lb Hamr[4] Amps Source 1 phase B current sixth harmonic 10279 SRC 1 lb Hamr[6] Amps Source 1 phase B current eight harmonic 10280 SRC 1 lb Hamr[7] Amps Source 1 phase B current eight harmonic 10281 SRC 1 lb Hamr[7] Amps Source 1 phase B current leventh harmonic 10282 SRC 1 lb Hamr[9] Amps Source 1 phase B current leventh harmonic 10283 SRC 1 lb Hamr[10] Amps Source 1 phase B current tweffth harmonic 10284 SRC 1 lb Hamr[11] Amps Source 1 phase B current tweffth harmonic 10285 SRC 1 lb Hamr[12] Amps Source 1 phase B current itweffth harmonic 10286 SRC 1 lb Hamr[12] Amps Source 1 phase B current sixteenth harmonic 10287 SRC 1 lb Hamr[13] Amps Source 1 phase B current sixteenth harmonic 10288 SRC 1 lb Hamr[16] Amps Source 1 phase B current eightheenth harmonic 10289 SRC 1 lb Hamr[16] Amps Source 1 phase B current highteenth harmonic 10291 SRC 1 lb Hamr[18] Amps Source 1 phase B current twenty-first harmonic	10276	SRC 1 lb Harm[2]	Amps	Source 1 phase B current fourth harmonic
	10277	SRC 1 lb Harm[3]	Amps	Source 1 phase B current fifth harmonic
10280 SRC 1 b Harm[6] Amps Source 1 phase B current eighth harmonic	10278	SRC 1 lb Harm[4]	Amps	Source 1 phase B current sixth harmonic
10281 SRC 1 lb Harm[7]	10279	SRC 1 lb Harm[5]	Amps	Source 1 phase B current seventh harmonic
10282 SRC 1 b Harm[8] Amps Source 1 phase B current tenth harmonic 10283 SRC 1 b Harm[9] Amps Source 1 phase B current twelfth harmonic 10284 SRC 1 b Harm[10] Amps Source 1 phase B current twelfth harmonic 10285 SRC 1 b Harm[11] Amps Source 1 phase B current twelfth harmonic 10286 SRC 1 b Harm[12] Amps Source 1 phase B current fourteenth harmonic 10287 SRC 1 b Harm[13] Amps Source 1 phase B current fourteenth harmonic 10288 SRC 1 b Harm[14] Amps Source 1 phase B current fourteenth harmonic 10289 SRC 1 b Harm[15] Amps Source 1 phase B current sixteenth harmonic 10290 SRC 1 b Harm[16] Amps Source 1 phase B current seventeenth harmonic 10291 SRC 1 b Harm[16] Amps Source 1 phase B current leighteenth harmonic 10292 SRC 1 b Harm[18] Amps Source 1 phase B current wenty-lenth harmonic 10293 SRC 1 b Harm[18] Amps Source 1 phase B current twenty-first harmonic 10294 SRC 1 b Harm[19] Amps Source 1 phase B current twenty-first harmonic 10295 SRC 1 b Harm[20] Amps Source 1 phase B current twenty-first harmonic 10296 SRC 1 b Harm[22] Amps Source 1 phase B current twenty-first harmonic 10297 SRC 1 b Harm[22] Amps Source 1 phase B current twenty-fourth harmonic 10298 SRC 1 b Harm[22] Amps Source 1 phase B current twenty-fourth harmonic 10299 SRC 1 b Harm[23] Amps Source 1 phase C current twenty-first harmonic 10290 SRC 1 b Harm[1] Amps Source 1 phase C current twenty-first harmonic 10307 SRC 1 c Harm[1] Amps Source 1 phase C current sixth harmonic 10308 SRC 1 c Harm[1] Amps Source 1 phase C current sixth harmonic 10310 SRC 1 c Harm[1] Amps Source 1 phase C current sixth harmonic 10311 SRC 1 c Harm[1] Amps Source 1 phase C current harmonic 10312 SRC 1 c Harm[1] Amps Source 1 phase C current harmon	10280	SRC 1 lb Harm[6]	Amps	Source 1 phase B current eighth harmonic
10283 SRC 1 lb Harm[9]	10281	SRC 1 lb Harm[7]	Amps	Source 1 phase B current ninth harmonic
10284 SRC 1 lb Harm[10] Amps Source 1 phase B current twelfth harmonic 10285 SRC 1 lb Harm[11] Amps Source 1 phase B current fiviteenth harmonic 10286 SRC 1 lb Harm[13] Amps Source 1 phase B current fifteenth harmonic 10287 SRC 1 lb Harm[14] Amps Source 1 phase B current fifteenth harmonic 10289 SRC 1 lb Harm[15] Amps Source 1 phase B current syetheth harmonic 10290 SRC 1 lb Harm[16] Amps Source 1 phase B current eighteenth harmonic 10291 SRC 1 lb Harm[18] Amps Source 1 phase B current twelteth harmonic 10292 SRC 1 lb Harm[19] Amps Source 1 phase B current twentheth harmonic 10293 SRC 1 lb Harm[19] Amps Source 1 phase B current twenthy-first harmonic 10294 SRC 1 lb Harm[20] Amps Source 1 phase B current twenty-first harmonic 10295 SRC 1 lb Harm[21] Amps Source 1 phase B current twenty-first harmonic 10296 SRC 1 lb Harm[22] Amps Source 1 phase B current twenty-first harmonic 10297 SRC 1 lb Harm[23] Amps Source 1 pha	10282	SRC 1 lb Harm[8]	Amps	Source 1 phase B current tenth harmonic
10285 SRC 1 lb Harm[17] Amps Source 1 phase B current thirteenth harmonic 10286 SRC 1 lb Harm[12] Amps Source 1 phase B current fourteenth harmonic 10287 SRC 1 lb Harm[14] Amps Source 1 phase B current sixteenth harmonic 10288 SRC 1 lb Harm[15] Amps Source 1 phase B current sixteenth harmonic 10289 SRC 1 lb Harm[16] Amps Source 1 phase B current sixteenth harmonic 10290 SRC 1 lb Harm[17] Amps Source 1 phase B current seventeenth harmonic 10291 SRC 1 lb Harm[18] Amps Source 1 phase B current twentheth harmonic 10292 SRC 1 lb Harm[19] Amps Source 1 phase B current twentheth harmonic 10293 SRC 1 lb Harm[20] Amps Source 1 phase B current twentheth harmonic 10294 SRC 1 lb Harm[21] Amps Source 1 phase B current twenthetheth harmonic 10295 SRC 1 lb Harm[21] Amps Source 1 phase B current twenthethethethethethethethethethethethethet	10283	SRC 1 lb Harm[9]	Amps	Source 1 phase B current eleventh harmonic
10286 SRC 1 lb Harm[12]	10284	SRC 1 lb Harm[10]	Amps	Source 1 phase B current twelfth harmonic
10287 SRC 1 lb Harm[13]	10285	SRC 1 lb Harm[11]	Amps	Source 1 phase B current thirteenth harmonic
10288 SRC 1 lb Harm[14]	10286	SRC 1 lb Harm[12]	Amps	Source 1 phase B current fourteenth harmonic
10289 SRC 1 lb Ham[15]	10287	SRC 1 lb Harm[13]	Amps	Source 1 phase B current fifteenth harmonic
10290 SRC 1 lb Harm[16]	10288	SRC 1 lb Harm[14]	Amps	Source 1 phase B current sixteenth harmonic
10291 SRC 1 lb Harm[17]	10289	SRC 1 lb Harm[15]	Amps	Source 1 phase B current seventeenth harmonic
10292 SRC 1 b Harm[18]	10290	SRC 1 lb Harm[16]	Amps	Source 1 phase B current eighteenth harmonic
10293 SRC 1 Ib Harm[19] Amps Source 1 phase B current twenty-first harmonic	10291	SRC 1 lb Harm[17]	Amps	Source 1 phase B current nineteenth harmonic
10294 SRC 1 lb Harm[20]	10292	SRC 1 lb Harm[18]	Amps	Source 1 phase B current twentieth harmonic
10295 SRC 1 lb Harm[21]	10293	SRC 1 lb Harm[19]	Amps	Source 1 phase B current twenty-first harmonic
10296 SRC 1 lb Harm[2]	10294	SRC 1 lb Harm[20]	Amps	Source 1 phase B current twenty-second harmonic
10297 SRC 1 lb Harm[23] Amps Source 1 phase B current twenty-fifth harmonic 10306 SRC 1 lc THD Source 1 phase C current total harmonic distortion 10307 SRC 1 lc Harm[0] Amps Source 1 phase C current second harmonic 10308 SRC 1 lc Harm[1] Amps Source 1 phase C current third harmonic 10309 SRC 1 lc Harm[2] Amps Source 1 phase C current fourth harmonic 10310 SRC 1 lc Harm[3] Amps Source 1 phase C current fifth harmonic 10311 SRC 1 lc Harm[4] Amps Source 1 phase C current fifth harmonic 10312 SRC 1 lc Harm[5] Amps Source 1 phase C current sixth harmonic 10313 SRC 1 lc Harm[6] Amps Source 1 phase C current seventh harmonic 10314 SRC 1 lc Harm[6] Amps Source 1 phase C current eighth harmonic 10315 SRC 1 lc Harm[8] Amps Source 1 phase C current teighth harmonic 10316 SRC 1 lc Harm[9] Amps Source 1 phase C current teighth harmonic 10317 SRC 1 lc Harm[10] Amps Source 1 phase C current televenth harmonic 10318 SRC 1 lc Harm[10] Amps Source 1 phase C current theighth harmonic 10319 SRC 1 lc Harm[11] Amps Source 1 phase C current theighth harmonic 10320 SRC 1 lc Harm[13] Amps Source 1 phase C current fourteenth harmonic 10321 SRC 1 lc Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 lc Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 lc Harm[16] Amps Source 1 phase C current seventeenth harmonic 10324 SRC 1 lc Harm[17] Amps Source 1 phase C current seventeenth harmonic 10325 SRC 1 lc Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 10328 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 1	10295	SRC 1 lb Harm[21]	Amps	Source 1 phase B current twenty-third harmonic
10306 SRC 1 lc THD Source 1 phase C current total harmonic distortion 10307 SRC 1 lc Harm[0] Amps Source 1 phase C current second harmonic 10308 SRC 1 lc Harm[1] Amps Source 1 phase C current third harmonic 10309 SRC 1 lc Harm[2] Amps Source 1 phase C current fourth harmonic 10310 SRC 1 lc Harm[3] Amps Source 1 phase C current fifth harmonic 10311 SRC 1 lc Harm[4] Amps Source 1 phase C current sixth harmonic 10312 SRC 1 lc Harm[5] Amps Source 1 phase C current sixth harmonic 10313 SRC 1 lc Harm[6] Amps Source 1 phase C current seventh harmonic 10314 SRC 1 lc Harm[7] Amps Source 1 phase C current ininth harmonic 10315 SRC 1 lc Harm[8] Amps Source 1 phase C current tenth harmonic 10316 SRC 1 lc Harm[9] Amps Source 1 phase C current tenth harmonic 10317 SRC 1 lc Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 lc Harm[10] Amps Source 1 phase C current twelfth harmonic 10319 SRC 1 lc Harm[11] Amps Source 1 phase C current thirteenth harmonic 10319 SRC 1 lc Harm[12] Amps Source 1 phase C current thirteenth harmonic 10320 SRC 1 lc Harm[13] Amps Source 1 phase C current foruteenth harmonic 10321 SRC 1 lc Harm[14] Amps Source 1 phase C current fifteenth harmonic 10322 SRC 1 lc Harm[15] Amps Source 1 phase C current sixteenth harmonic 10323 SRC 1 lc Harm[16] Amps Source 1 phase C current sixteenth harmonic 10324 SRC 1 lc Harm[16] Amps Source 1 phase C current sixteenth harmonic 10325 SRC 1 lc Harm[17] Amps Source 1 phase C current harmonic 10326 SRC 1 lc Harm[18] Amps Source 1 phase C current harmonic 10327 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic	10296	SRC 1 lb Harm[22]	Amps	Source 1 phase B current twenty-fourth harmonic
10307 SRC 1 Ic Harm[0] Amps Source 1 phase C current second harmonic 10308 SRC 1 Ic Harm[1] Amps Source 1 phase C current third harmonic 10309 SRC 1 Ic Harm[2] Amps Source 1 phase C current fourth harmonic 10310 SRC 1 Ic Harm[3] Amps Source 1 phase C current fifth harmonic 10311 SRC 1 Ic Harm[4] Amps Source 1 phase C current sixth harmonic 10312 SRC 1 Ic Harm[5] Amps Source 1 phase C current seventh harmonic 10313 SRC 1 Ic Harm[6] Amps Source 1 phase C current eighth harmonic 10314 SRC 1 Ic Harm[7] Amps Source 1 phase C current teinth harmonic 10315 SRC 1 Ic Harm[8] Amps Source 1 phase C current teiventh harmonic 10316 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current theirteenth harmonic 10320 SRC 1 Ic Harm[12] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 Ic Harm[14] Amps Sou	10297	SRC 1 lb Harm[23]	Amps	Source 1 phase B current twenty-fifth harmonic
10308 SRC 1 Ic Harm[1] Amps Source 1 phase C current third harmonic 10309 SRC 1 Ic Harm[2] Amps Source 1 phase C current fourth harmonic 10310 SRC 1 Ic Harm[3] Amps Source 1 phase C current fifth harmonic 10311 SRC 1 Ic Harm[4] Amps Source 1 phase C current sixth harmonic 10312 SRC 1 Ic Harm[5] Amps Source 1 phase C current seventh harmonic 10313 SRC 1 Ic Harm[6] Amps Source 1 phase C current eighth harmonic 10314 SRC 1 Ic Harm[7] Amps Source 1 phase C current inth harmonic 10315 SRC 1 Ic Harm[8] Amps Source 1 phase C current tenth harmonic 10316 SRC 1 Ic Harm[9] Amps Source 1 phase C current televenth harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current fourteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 Ic Harm[14] Amps Source 1 phase C current seventeenth harmonic 10322 SRC 1 Ic Harm[16] Amps So	10306	SRC 1 lc THD		Source 1 phase C current total harmonic distortion
10309 SRC 1 Ic Harm[2] Amps Source 1 phase C current fourth harmonic 10310 SRC 1 Ic Harm[3] Amps Source 1 phase C current fifth harmonic 10311 SRC 1 Ic Harm[4] Amps Source 1 phase C current sixth harmonic 10312 SRC 1 Ic Harm[5] Amps Source 1 phase C current seventh harmonic 10313 SRC 1 Ic Harm[6] Amps Source 1 phase C current eighth harmonic 10314 SRC 1 Ic Harm[7] Amps Source 1 phase C current ninth harmonic 10315 SRC 1 Ic Harm[8] Amps Source 1 phase C current teeth harmonic 10316 SRC 1 Ic Harm[9] Amps Source 1 phase C current twelfth harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current fourteenth harmonic 10319 SRC 1 Ic Harm[12] Amps Source 1 phase C current fifteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current seventeenth harmonic 10321 SRC 1 Ic Harm[15] Amps Source 1 phase C current eighteenth harmonic </td <td>10307</td> <td>SRC 1 lc Harm[0]</td> <td>Amps</td> <td>Source 1 phase C current second harmonic</td>	10307	SRC 1 lc Harm[0]	Amps	Source 1 phase C current second harmonic
10310 SRC 1 Ic Harm[3] Amps Source 1 phase C current fifth harmonic 10311 SRC 1 Ic Harm[4] Amps Source 1 phase C current sixth harmonic 10312 SRC 1 Ic Harm[5] Amps Source 1 phase C current seventh harmonic 10313 SRC 1 Ic Harm[6] Amps Source 1 phase C current eighth harmonic 10314 SRC 1 Ic Harm[7] Amps Source 1 phase C current inith harmonic 10315 SRC 1 Ic Harm[8] Amps Source 1 phase C current tenth harmonic 10316 SRC 1 Ic Harm[9] Amps Source 1 phase C current televenth harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current fourteenth harmonic 10319 SRC 1 Ic Harm[12] Amps Source 1 phase C current fifteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current sixteenth harmonic 10321 SRC 1 Ic Harm[15] Amps Source 1 phase C current eighteenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current inheteenth harmonic	10308	SRC 1 lc Harm[1]	Amps	Source 1 phase C current third harmonic
10311 SRC 1 lc Harm[4] Amps Source 1 phase C current sixth harmonic 10312 SRC 1 lc Harm[5] Amps Source 1 phase C current seventh harmonic 10313 SRC 1 lc Harm[6] Amps Source 1 phase C current eighth harmonic 10314 SRC 1 lc Harm[7] Amps Source 1 phase C current ninth harmonic 10315 SRC 1 lc Harm[8] Amps Source 1 phase C current tenth harmonic 10316 SRC 1 lc Harm[9] Amps Source 1 phase C current eleventh harmonic 10317 SRC 1 lc Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 lc Harm[11] Amps Source 1 phase C current twelfth harmonic 10319 SRC 1 lc Harm[12] Amps Source 1 phase C current fourteenth harmonic 10320 SRC 1 lc Harm[13] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 lc Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 lc Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 lc Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 lc Harm[17] Amps Source 1 phase C current eighteenth harmonic 10325 SRC 1 lc Harm[18] Amps Source 1 phase C current inneteenth harmonic 10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 lc Harm[19] Amps Source 1 phase C current twentieth harmonic	10309	SRC 1 lc Harm[2]	Amps	Source 1 phase C current fourth harmonic
SRC 1 Ic Harm[5] Amps Source 1 phase C current seventh harmonic	10310	SRC 1 lc Harm[3]	Amps	Source 1 phase C current fifth harmonic
SRC 1 C Harm[6] Amps Source 1 phase C current eighth harmonic	10311	SRC 1 lc Harm[4]	Amps	Source 1 phase C current sixth harmonic
10314 SRC 1 Ic Harm[7] Amps Source 1 phase C current ninth harmonic 10315 SRC 1 Ic Harm[8] Amps Source 1 phase C current tenth harmonic 10316 SRC 1 Ic Harm[9] Amps Source 1 phase C current eleventh harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current thirteenth harmonic 10319 SRC 1 Ic Harm[12] Amps Source 1 phase C current fourteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 Ic Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 Ic Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 Ic Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-first harmonic	10312	SRC 1 lc Harm[5]	Amps	Source 1 phase C current seventh harmonic
10315 SRC 1 Ic Harm[8] Amps Source 1 phase C current tenth harmonic 10316 SRC 1 Ic Harm[9] Amps Source 1 phase C current eleventh harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current thirteenth harmonic 10319 SRC 1 Ic Harm[12] Amps Source 1 phase C current fourteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 Ic Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 Ic Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 Ic Harm[17] Amps Source 1 phase C current inheteenth harmonic 10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-first harmonic	10313	SRC 1 lc Harm[6]	Amps	Source 1 phase C current eighth harmonic
10316 SRC 1 Ic Harm[9] Amps Source 1 phase C current eleventh harmonic 10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current thirteenth harmonic 10319 SRC 1 Ic Harm[12] Amps Source 1 phase C current fourteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 Ic Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 Ic Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 Ic Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-first harmonic	10314	SRC 1 lc Harm[7]	Amps	Source 1 phase C current ninth harmonic
10317 SRC 1 Ic Harm[10] Amps Source 1 phase C current twelfth harmonic 10318 SRC 1 Ic Harm[11] Amps Source 1 phase C current thirteenth harmonic 10319 SRC 1 Ic Harm[12] Amps Source 1 phase C current fourteenth harmonic 10320 SRC 1 Ic Harm[13] Amps Source 1 phase C current fifteenth harmonic 10321 SRC 1 Ic Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 Ic Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 Ic Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twentieth harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-first harmonic	10315	SRC 1 lc Harm[8]	Amps	Source 1 phase C current tenth harmonic
10318SRC 1 Ic Harm[11]AmpsSource 1 phase C current thirteenth harmonic10319SRC 1 Ic Harm[12]AmpsSource 1 phase C current fourteenth harmonic10320SRC 1 Ic Harm[13]AmpsSource 1 phase C current fifteenth harmonic10321SRC 1 Ic Harm[14]AmpsSource 1 phase C current sixteenth harmonic10322SRC 1 Ic Harm[15]AmpsSource 1 phase C current seventeenth harmonic10323SRC 1 Ic Harm[16]AmpsSource 1 phase C current eighteenth harmonic10324SRC 1 Ic Harm[17]AmpsSource 1 phase C current inneteenth harmonic10325SRC 1 Ic Harm[18]AmpsSource 1 phase C current twentieth harmonic10326SRC 1 Ic Harm[20]AmpsSource 1 phase C current twenty-first harmonic10327SRC 1 Ic Harm[20]AmpsSource 1 phase C current twenty-second harmonic	10316	SRC 1 lc Harm[9]	Amps	Source 1 phase C current eleventh harmonic
10319SRC 1 lc Harm[12]AmpsSource 1 phase C current fourteenth harmonic10320SRC 1 lc Harm[13]AmpsSource 1 phase C current fifteenth harmonic10321SRC 1 lc Harm[14]AmpsSource 1 phase C current sixteenth harmonic10322SRC 1 lc Harm[15]AmpsSource 1 phase C current seventeenth harmonic10323SRC 1 lc Harm[16]AmpsSource 1 phase C current eighteenth harmonic10324SRC 1 lc Harm[17]AmpsSource 1 phase C current nineteenth harmonic10325SRC 1 lc Harm[18]AmpsSource 1 phase C current twentieth harmonic10326SRC 1 lc Harm[19]AmpsSource 1 phase C current twenty-first harmonic10327SRC 1 lc Harm[20]AmpsSource 1 phase C current twenty-second harmonic	10317	SRC 1 lc Harm[10]	Amps	Source 1 phase C current twelfth harmonic
10320SRC 1 lc Harm[13]AmpsSource 1 phase C current fifteenth harmonic10321SRC 1 lc Harm[14]AmpsSource 1 phase C current sixteenth harmonic10322SRC 1 lc Harm[15]AmpsSource 1 phase C current seventeenth harmonic10323SRC 1 lc Harm[16]AmpsSource 1 phase C current eighteenth harmonic10324SRC 1 lc Harm[17]AmpsSource 1 phase C current nineteenth harmonic10325SRC 1 lc Harm[18]AmpsSource 1 phase C current twentieth harmonic10326SRC 1 lc Harm[19]AmpsSource 1 phase C current twenty-first harmonic10327SRC 1 lc Harm[20]AmpsSource 1 phase C current twenty-second harmonic	10318	SRC 1 lc Harm[11]	Amps	Source 1 phase C current thirteenth harmonic
10321 SRC 1 Ic Harm[14] Amps Source 1 phase C current sixteenth harmonic 10322 SRC 1 Ic Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 Ic Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twenty-first harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-second harmonic	10319	SRC 1 lc Harm[12]	Amps	Source 1 phase C current fourteenth harmonic
10322 SRC 1 Ic Harm[15] Amps Source 1 phase C current seventeenth harmonic 10323 SRC 1 Ic Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 Ic Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twenty-first harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-second harmonic	10320	SRC 1 lc Harm[13]	Amps	Source 1 phase C current fifteenth harmonic
10323 SRC 1 lc Harm[16] Amps Source 1 phase C current eighteenth harmonic 10324 SRC 1 lc Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 lc Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twenty-first harmonic 10327 SRC 1 lc Harm[20] Amps Source 1 phase C current twenty-second harmonic	10321	SRC 1 lc Harm[14]	Amps	Source 1 phase C current sixteenth harmonic
10324 SRC 1 lc Harm[17] Amps Source 1 phase C current nineteenth harmonic 10325 SRC 1 lc Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twenty-first harmonic 10327 SRC 1 lc Harm[20] Amps Source 1 phase C current twenty-second harmonic	10322	SRC 1 lc Harm[15]	Amps	Source 1 phase C current seventeenth harmonic
10325 SRC 1 Ic Harm[18] Amps Source 1 phase C current twentieth harmonic 10326 SRC 1 Ic Harm[19] Amps Source 1 phase C current twenty-first harmonic 10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-second harmonic	10323	SRC 1 lc Harm[16]	Amps	Source 1 phase C current eighteenth harmonic
10326 SRC 1 lc Harm[19] Amps Source 1 phase C current twenty-first harmonic 10327 SRC 1 lc Harm[20] Amps Source 1 phase C current twenty-second harmonic	10324	SRC 1 lc Harm[17]	Amps	Source 1 phase C current nineteenth harmonic
10327 SRC 1 Ic Harm[20] Amps Source 1 phase C current twenty-second harmonic	10325	SRC 1 lc Harm[18]	Amps	Source 1 phase C current twentieth harmonic
	10326	SRC 1 lc Harm[19]	Amps	Source 1 phase C current twenty-first harmonic
SRC 1 Ic Harm[21] Amps Source 1 phase C current twenty-third harmonic	10327	SRC 1 lc Harm[20]	Amps	Source 1 phase C current twenty-second harmonic
	10328	SRC 1 lc Harm[21]	Amps	Source 1 phase C current twenty-third harmonic

Table A-1: FLEXANALOG DATA ITEMS (Sheet 11 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
10329	SRC 1 lc Harm[22]	Amps	Source 1 phase C current twenty-fourth harmonic
10330	SRC 1 lc Harm[23]	Amps	Source 1 phase C current twenty-fifth harmonic
10339	SRC 2 la THD		Source 2 phase A current total harmonic distortion
10340	SRC 2 la Harm[0]	Amps	Source 2 phase A current second harmonic
10341	SRC 2 la Harm[1]	Amps	Source 2 phase A current third harmonic
10342	SRC 2 la Harm[2]	Amps	Source 2 phase A current fourth harmonic
10343	SRC 2 la Harm[3]	Amps	Source 2 phase A current fifth harmonic
10344	SRC 2 la Harm[4]	Amps	Source 2 phase A current sixth harmonic
10345	SRC 2 la Harm[5]	Amps	Source 2 phase A current seventh harmonic
10346	SRC 2 la Harm[6]	Amps	Source 2 phase A current eighth harmonic
10347	SRC 2 la Harm[7]	Amps	Source 2 phase A current ninth harmonic
10348	SRC 2 la Harm[8]	Amps	Source 2 phase A current tenth harmonic
10349	SRC 2 la Harm[9]	Amps	Source 2 phase A current eleventh harmonic
10350	SRC 2 la Harm[10]	Amps	Source 2 phase A current twelfth harmonic
10351	SRC 2 la Harm[11]	Amps	Source 2 phase A current thirteenth harmonic
10352	SRC 2 la Harm[12]	Amps	Source 2 phase A current fourteenth harmonic
10353	SRC 2 la Harm[13]	Amps	Source 2 phase A current fifteenth harmonic
10354	SRC 2 la Harm[14]	Amps	Source 2 phase A current sixteenth harmonic
10355	SRC 2 la Harm[15]	Amps	Source 2 phase A current seventeenth harmonic
10356	SRC 2 la Harm[16]	Amps	Source 2 phase A current eighteenth harmonic
10357	SRC 2 la Harm[17]	Amps	Source 2 phase A current nineteenth harmonic
10358	SRC 2 la Harm[18]	Amps	Source 2 phase A current twentieth harmonic
10359	SRC 2 la Harm[19]	Amps	Source 2 phase A current twenty-first harmonic
10360	SRC 2 la Harm[20]	Amps	Source 2 phase A current twenty-second harmonic
10361	SRC 2 la Harm[21]	Amps	Source 2 phase A current twenty-third harmonic
10362	SRC 2 la Harm[22]	Amps	Source 2 phase A current twenty-fourth harmonic
10363	SRC 2 la Harm[23]	Amps	Source 2 phase A current twenty-fifth harmonic
10372	SRC 2 lb THD		Source 2 phase B current total harmonic distortion
10373	SRC 2 lb Harm[0]	Amps	Source 2 phase B current second harmonic
10374	SRC 2 lb Harm[1]	Amps	Source 2 phase B current third harmonic
10375	SRC 2 lb Harm[2]	Amps	Source 2 phase B current fourth harmonic
10376	SRC 2 lb Harm[3]	Amps	Source 2 phase B current fifth harmonic
10377	SRC 2 lb Harm[4]	Amps	Source 2 phase B current sixth harmonic
10378	SRC 2 lb Harm[5]	Amps	Source 2 phase B current seventh harmonic
10379	SRC 2 lb Harm[6]	Amps	Source 2 phase B current eighth harmonic
10380	SRC 2 lb Harm[7]	Amps	Source 2 phase B current ninth harmonic
10381	SRC 2 lb Harm[8]	Amps	Source 2 phase B current tenth harmonic
10382	SRC 2 lb Harm[9]	Amps	Source 2 phase B current eleventh harmonic
10383	SRC 2 lb Harm[10]	Amps	Source 2 phase B current twelfth harmonic
10384	SRC 2 lb Harm[11]	Amps	Source 2 phase B current thirteenth harmonic
10385	SRC 2 lb Harm[12]	Amps	Source 2 phase B current fourteenth harmonic
10386	SRC 2 lb Harm[13]	Amps	Source 2 phase B current fifteenth harmonic
10387	SRC 2 lb Harm[14]	Amps	Source 2 phase B current sixteenth harmonic
10388	SRC 2 lb Harm[15]	Amps	Source 2 phase B current seventeenth harmonic
10389	SRC 2 lb Harm[16]	Amps	Source 2 phase B current eighteenth harmonic
10390	SRC 2 lb Harm[17]	Amps	Source 2 phase B current nineteenth harmonic
10391	SRC 2 lb Harm[18]	Amps	Source 2 phase B current twentieth harmonic

Table A-1: FLEXANALOG DATA ITEMS (Sheet 12 of 16)

19392 SRC 2 lb Harm[9]	ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
10394 SRC 2 lb Harm[21]	10392	SRC 2 lb Harm[19]	Amps	Source 2 phase B current twenty-first harmonic
10395 SRC 2 lb Harm 22 Amps Source 2 phase B current twenty-fourth harmonic 10396 SRC 2 lc Harm 23 Amps Source 2 phase B current twenty-fifth harmonic 10405 SRC 2 lc Harm 21	10393	SRC 2 lb Harm[20]	Amps	Source 2 phase B current twenty-second harmonic
SRC 2 b Hamri[23]	10394	SRC 2 lb Harm[21]	Amps	Source 2 phase B current twenty-third harmonic
10405 SRC 2 c THD	10395	SRC 2 lb Harm[22]	Amps	Source 2 phase B current twenty-fourth harmonic
10406 SRC 2 lo Harm[0] Amps Source 2 phase C current second harmonic 10407 SRC 2 lo Harm[1] Amps Source 2 phase C current fourth harmonic 10408 SRC 2 lo Harm[3] Amps Source 2 phase C current fourth harmonic 10410 SRC 2 lo Harm[3] Amps Source 2 phase C current fifth harmonic 10410 SRC 2 lo Harm[6] Amps Source 2 phase C current seventh harmonic 10411 SRC 2 lo Harm[6] Amps Source 2 phase C current eighth harmonic 10412 SRC 2 lo Harm[6] Amps Source 2 phase C current eighth harmonic 10413 SRC 2 lo Harm[8] Amps Source 2 phase C current teith harmonic 10414 SRC 2 lo Harm[8] Amps Source 2 phase C current thereith harmonic 10416 SRC 2 lo Harm[10] Amps Source 2 phase C current thereith harmonic 10417 SRC 2 lo Harm[11] Amps Source 2 phase C current fourteenth harmonic 10418 SRC 2 lo Harm[13] Amps Source 2 phase C current fourteenth harmonic 10420 SRC 2 lo Harm[14] Amps Source 2 phase C current fourteenth harmonic <td>10396</td> <td>SRC 2 lb Harm[23]</td> <td>Amps</td> <td>Source 2 phase B current twenty-fifth harmonic</td>	10396	SRC 2 lb Harm[23]	Amps	Source 2 phase B current twenty-fifth harmonic
10407 SRC 2 c Hamr[1]	10405	SRC 2 lc THD		Source 2 phase C current total harmonic distortion
10408 SRC 2 Le Hamr[2] Amps Source 2 phase C current flourth harmonic 10409 SRC 2 Le Harm[3] Amps Source 2 phase C current flith harmonic 10410 SRC 2 Le Harm[5] Amps Source 2 phase C current sixth harmonic 10411 SRC 2 Le Harm[6] Amps Source 2 phase C current sixth harmonic 10412 SRC 2 Le Harm[6] Amps Source 2 phase C current eighth harmonic 10413 SRC 2 Le Harm[7] Amps Source 2 phase C current leighth harmonic 10414 SRC 2 Le Harm[8] Amps Source 2 phase C current leighth harmonic 10415 SRC 2 Le Harm[8] Amps Source 2 phase C current leighth harmonic 10416 SRC 2 Le Harm[10] Amps Source 2 phase C current therith harmonic 10417 SRC 2 Le Harm[10] Amps Source 2 phase C current therein harmonic 10418 SRC 2 Le Harm[11] Amps Source 2 phase C current therein harmonic 10419 SRC 2 Le Harm[12] Amps Source 2 phase C current flourteenth harmonic 10420 SRC 2 Le Harm[13] Amps Source 2 phase C current flitteenth harmonic 10421 SRC 2 Le Harm[14] Amps Source 2 phase C current sixteenth harmonic 10422 SRC 2 Le Harm[15] Amps Source 2 phase C current sixteenth harmonic 10423 SRC 2 Le Harm[16] Amps Source 2 phase C current sixteenth harmonic 10424 SRC 2 Le Harm[16] Amps Source 2 phase C current inherenth harmonic 10425 SRC 2 Le Harm[16] Amps Source 2 phase C current inherenth harmonic 10426 SRC 2 Le Harm[19] Amps Source 2 phase C current twenty-first harmonic 10427 SRC 2 Le Harm[19] Amps Source 2 phase C current twenty-first harmonic 10428 SRC 2 Le Harm[19] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Le Harm[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Le Harm[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Le Harm[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Le Harm[2] Amps Source 2 phase C current twenty-fir	10406	SRC 2 lc Harm[0]	Amps	Source 2 phase C current second harmonic
10409 SRC 2 c Hamr[3] Amps Source 2 phase C current sixth harmonic 10410 SRC 2 c Hamr[4] Amps Source 2 phase C current sixth harmonic 10411 SRC 2 c Hamr[5] Amps Source 2 phase C current sixth harmonic 10412 SRC 2 c Hamr[6] Amps Source 2 phase C current eighth harmonic 10413 SRC 2 c Hamr[7] Amps Source 2 phase C current ninth harmonic 10414 SRC 2 c Hamr[8] Amps Source 2 phase C current ninth harmonic 10415 SRC 2 c Hamr[9] Amps Source 2 phase C current leventh harmonic 10416 SRC 2 c Hamr[10] Amps Source 2 phase C current twelfth harmonic 10417 SRC 2 c Hamr[11] Amps Source 2 phase C current twelfth harmonic 10418 SRC 2 c Hamr[12] Amps Source 2 phase C current twelfth harmonic 10419 SRC 2 c Hamr[13] Amps Source 2 phase C current fineenth harmonic 10420 SRC 2 c Hamr[14] Amps Source 2 phase C current sixteenth harmonic 10421 SRC 2 c Hamr[15] Amps Source 2 phase C current sixteenth harmonic 10422 SRC 2 c Hamr[16] Amps Source 2 phase C current sixteenth harmonic 10423 SRC 2 c Hamr[16] Amps Source 2 phase C current sixteenth harmonic 10424 SRC 2 c Hamr[17] Amps Source 2 phase C current liventeenth harmonic 10425 SRC 2 c Hamr[17] Amps Source 2 phase C current twenteenth harmonic 10426 SRC 2 c Hamr[19] Amps Source 2 phase C current twenty-first harmonic 10427 SRC 2 c Hamr[2] Amps Source 2 phase C current twenty-first harmonic 10428 SRC 2 c Hamr[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 c Hamr[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 c Hamr[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 c Hamr[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 c Hamr[2] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 c Hamr[2] Amps Source 2 pha	10407	SRC 2 lc Harm[1]	Amps	Source 2 phase C current third harmonic
10410 SRC 2 Ic Harm[4]	10408	SRC 2 lc Harm[2]	Amps	Source 2 phase C current fourth harmonic
10411 SRC 2 Ic Harm[5]	10409	SRC 2 lc Harm[3]	Amps	Source 2 phase C current fifth harmonic
10412 SRC 2 Ic Harm[6]	10410	SRC 2 lc Harm[4]	Amps	Source 2 phase C current sixth harmonic
10413 SRC 2 Ic Harm[7]	10411	SRC 2 lc Harm[5]	Amps	Source 2 phase C current seventh harmonic
10414 SRC 2 Ic Harm[8]	10412	SRC 2 lc Harm[6]	Amps	Source 2 phase C current eighth harmonic
10415 SRC 2 Ic Ham[9] Amps Source 2 phase C current eleventh harmonic	10413	SRC 2 lc Harm[7]	Amps	Source 2 phase C current ninth harmonic
10416 SRC 2 Ic Harm[10]	10414	SRC 2 lc Harm[8]	Amps	Source 2 phase C current tenth harmonic
SRC 2 c Harm[11]	10415	SRC 2 lc Harm[9]	Amps	Source 2 phase C current eleventh harmonic
10418 SRC 2 Ic Harm[12] Amps Source 2 phase C current fourteenth harmonic 10419 SRC 2 Ic Harm[13] Amps Source 2 phase C current fifteenth harmonic 10420 SRC 2 Ic Harm[14] Amps Source 2 phase C current sixteenth harmonic 10421 SRC 2 Ic Harm[15] Amps Source 2 phase C current sixteenth harmonic 10422 SRC 2 Ic Harm[15] Amps Source 2 phase C current sixteenth harmonic 10423 SRC 2 Ic Harm[17] Amps Source 2 phase C current eighteenth harmonic 10424 SRC 2 Ic Harm[18] Amps Source 2 phase C current mentheenth harmonic 10425 SRC 2 Ic Harm[19] Amps Source 2 phase C current twentieth harmonic 10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-first harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-first harmonic 10428 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-first harmonic 10430 Oscill Num Triggers	10416	SRC 2 lc Harm[10]	Amps	Source 2 phase C current twelfth harmonic
10419 SRC 2 Ic Harm[13] Amps Source 2 phase C current fifteenth harmonic 10420 SRC 2 Ic Harm[14] Amps Source 2 phase C current sixteenth harmonic 10421 SRC 2 Ic Harm[15] Amps Source 2 phase C current seventeenth harmonic 10422 SRC 2 Ic Harm[16] Amps Source 2 phase C current seventeenth harmonic 10423 SRC 2 Ic Harm[16] Amps Source 2 phase C current eighteenth harmonic 10424 SRC 2 Ic Harm[17] Amps Source 2 phase C current ineteenth harmonic 10425 SRC 2 Ic Harm[18] Amps Source 2 phase C current twentieth harmonic 10426 SRC 2 Ic Harm[19] Amps Source 2 phase C current twenty-first harmonic 10427 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-first harmonic 10428 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-third harmonic 10429 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-third harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10500 Oscill Num Triggers — Oscillography number of triggers 10504 DCMA Inputs 1 Value MA dcmA input 1 actual value 10506 DCMA Inputs 2 Value MA dcmA input 2 actual value 10507 DCMA Inputs 4 Value MA dcmA input 3 actual value 10508 DCMA Inputs 5 Value MA dcmA input 4 actual value 10509 DCMA Inputs 5 Value MA dcmA input 4 actual value 10509 DCMA Inputs 6 Value MA dcmA input 3 actual value 10510 DCMA Inputs 6 Value MA dcmA input 3 actual value 10511 DCMA Inputs 8 Value MA dcmA input 3 actual value 10512 DCMA Inputs 8 Value MA dcmA input 3 actual value 10513 DCMA Inputs 9 Value MA dcmA input 3 actual value 10520 DCMA Inputs 1 Value MA dcmA input 3 actual value 10530 DCMA Inputs 10 Value MA dcmA input 13 actual value 10530 DCMA Inputs 11 Value MA dcmA input 13 actual value 10520 DCMA Inputs 11 Value MA dcmA input 13 actual value 10521 DCMA Inputs 11 Value MA dcmA input 13 actual value 10522 DCMA Inputs 11 Value MA dcmA input 11 actual value 10523 DCMA Inputs 11 Value MA dcmA input 11 actual value 10530 DCMA Inputs 11 Value MA dcmA input 11 actual value	10417	SRC 2 lc Harm[11]	Amps	Source 2 phase C current thirteenth harmonic
10420 SRC 2 lc Harm[14] Amps Source 2 phase C current sixteenth harmonic	10418	SRC 2 lc Harm[12]	Amps	Source 2 phase C current fourteenth harmonic
10421 SRC 2 Ic Harm[15] Amps Source 2 phase C current seventeenth harmonic 10422 SRC 2 Ic Harm[16] Amps Source 2 phase C current eighteenth harmonic 10423 SRC 2 Ic Harm[17] Amps Source 2 phase C current nineteenth harmonic 10424 SRC 2 Ic Harm[18] Amps Source 2 phase C current twenty-first harmonic 10425 SRC 2 Ic Harm[19] Amps Source 2 phase C current twenty-first harmonic 10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-second harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-second harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-first harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10360 Oscill Num Triggers — Oscillography number of triggers 10361 DCMA Inputs 1 Value MA dcmA input 1 actual value 10362 DCMA Inputs 3 Value MA dcmA input 2 actual value 103630 DCMA Inputs 3 Value MA dcmA input 3 actual value 103631 DCMA Inputs 4 Value MA dcmA input 4 actual value 10364 DCMA Inputs 5 Value MA dcmA input 5 actual value 10365 DCMA Inputs 5 Value MA dcmA input 6 actual value 10366 DCMA Inputs 8 Value MA dcmA input 7 actual value 10367 DCMA Inputs 9 Value MA dcmA input 8 actual value 10368 DCMA Inputs 9 Value MA dcmA input 8 actual value 10369 DCMA Inputs 9 Value MA dcmA input 1 actual value 10360 DCMA Inputs 9 Value MA dcmA input 1 actual value 10361 DCMA Inputs 1 Value MA dcmA input 1 actual value 10362 DCMA Inputs 10 Value MA dcmA input 1 actual value 103630 DCMA Inputs 11 Value MA dcmA input 11 actual value 103630 DCMA Inputs 11 Value MA dcmA input 13 actual value 103630 DCMA Inputs 15 Value MA dcmA input 13 actual value 103630 DCMA Inputs 15 Value MA dcmA input 15 actual value	10419	SRC 2 lc Harm[13]	Amps	Source 2 phase C current fifteenth harmonic
10422 SRC 2 Ic Harm[16] Amps Source 2 phase C current eighteenth harmonic 10423 SRC 2 Ic Harm[17] Amps Source 2 phase C current nineteenth harmonic 10424 SRC 2 Ic Harm[18] Amps Source 2 phase C current twentieth harmonic 10425 SRC 2 Ic Harm[19] Amps Source 2 phase C current twenty-first harmonic 10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-first harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-third harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-third harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-fourth	10420	SRC 2 lc Harm[14]	Amps	Source 2 phase C current sixteenth harmonic
10423 SRC 2 Ic Harm[17] Amps Source 2 phase C current nineteenth harmonic 10424 SRC 2 Ic Harm[18] Amps Source 2 phase C current twentieth harmonic 10425 SRC 2 Ic Harm[19] Amps Source 2 phase C current twenty-first harmonic 10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-second harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-third harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-florth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[24] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[25] Amps Source 2 phase C current twenty-flith harmonic 10429 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-flith harmonic 10420 SRC 2 Ic Harm[26] Amps Source 2 phase C current twenty-florth harmonic 10420 DCMA Inputs 3 Value mA dcmA input 4 actual value 10500 DCMA Inputs 10 Value mA dcmA input 10 actual value 10501 DCMA Inputs 11 Value mA dcmA input 11 actual value 10502 DCMA Inputs 12 Value mA dcmA input 12 actual value 10502 DCMA Inputs 13 Value mA dcmA input 13 actual value 10503 DCMA Inputs	10421	SRC 2 lc Harm[15]	Amps	Source 2 phase C current seventeenth harmonic
10424 SRC 2 Ic Harm[18] Amps Source 2 phase C current twentieth harmonic 10425 SRC 2 Ic Harm[19] Amps Source 2 phase C current twenty-first harmonic 10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-second harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-third harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value mA dcmA input 1 actual value 13508 DCMA Inputs 2 Value mA dcmA input 2 actual value 13510 DCMA Inputs 3 Value mA dcmA input 3 actual value 13512 DCMA Inputs 5 Value mA dcmA input 5 actual value 13514 DCMA Inputs 6 Value mA dcmA input 5 actual value 13515 DCMA Inputs 7 Value mA dcmA input 6 actual value 13518 DCMA Inputs 9 Value mA dcmA input 7 actual value 13520 DCMA Inputs 9 Value mA dcmA input 10 actual value 13524 DCMA Inputs 10 Value mA	10422	SRC 2 lc Harm[16]	Amps	Source 2 phase C current eighteenth harmonic
SRC 2 Ic Harm[19] Amps Source 2 phase C current twenty-first harmonic 10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-second harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-shird harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value MA dcmA input 1 actual value 13506 DCMA Inputs 2 Value MA dcmA input 2 actual value 13508 DCMA Inputs 3 Value MA dcmA input 4 actual value 13510 DCMA Inputs 4 Value MA dcmA input 5 actual value 13511 DCMA Inputs 5 Value MA dcmA input 5 actual value 13512 DCMA Inputs 6 Value MA dcmA input 6 actual value 13514 DCMA Inputs 7 Value MA dcmA input 8 actual value 13515 DCMA Inputs 8 Value MA dcmA input 8 actual value 13516 DCMA Inputs 8 Value MA dcmA input 9 actual value 13520 DCMA Inputs 9 Value MA dcmA input 9 actual value 13521 DCMA Inputs 10 Value MA dcmA input 10 actual value 13522 DCMA Inputs 11 Value MA dcmA input 11 actual value 13524 DCMA Inputs 12 Value MA dcmA input 12 actual value 13528 DCMA Inputs 13 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 14 actual value	10423	SRC 2 lc Harm[17]	Amps	Source 2 phase C current nineteenth harmonic
10426 SRC 2 Ic Harm[20] Amps Source 2 phase C current twenty-second harmonic 10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-third harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fourth harmonic 12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value MA dcmA input 1 actual value 13506 DCMA Inputs 2 Value MA dcmA input 2 actual value 13508 DCMA Inputs 3 Value MA dcmA input 3 actual value 13510 DCMA Inputs 4 Value MA dcmA input 5 actual value 13512 DCMA Inputs 5 Value MA dcmA input 5 actual value 13514 DCMA Inputs 6 Value MA dcmA input 6 actual value 13515 DCMA Inputs 7 Value MA dcmA input 7 actual value 13516 DCMA Inputs 8 Value MA dcmA input 8 actual value 13520 DCMA Inputs 9 Value MA dcmA input 9 actual value 13521 DCMA Inputs 10 Value MA dcmA input 10 actual value 13522 DCMA Inputs 11 Value MA dcmA input 11 actual value 13524 DCMA Inputs 12 Value MA dcmA input 11 actual value 13526 DCMA Inputs 13 Value MA dcmA input 12 actual value 13528 DCMA Inputs 13 Value MA dcmA input 14 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 14 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value	10424	SRC 2 lc Harm[18]	Amps	Source 2 phase C current twentieth harmonic
10427 SRC 2 Ic Harm[21] Amps Source 2 phase C current twenty-third harmonic 10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value mA dcmA input 1 actual value 13506 DCMA Inputs 2 Value mA dcmA input 2 actual value 13508 DCMA Inputs 3 Value mA dcmA input 3 actual value 13510 DCMA Inputs 5 Value mA dcmA input 4 actual value 13512 DCMA Inputs 5 Value mA dcmA input 5 actual value 13514 DCMA Inputs 6 Value mA dcmA input 6 actual value 13515 DCMA Inputs 7 Value mA dcmA input 7 actual value 13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13521 DCMA Inputs 10 Value mA dcmA input 10 actual value 13522 DCMA Inputs 11 Value mA dcmA input 11 actual value 13523 DCMA Inputs 12 Value mA dcmA input 11 actual value 13524 DCMA Inputs 13 Value mA dcmA input 11 actual value 13525 DCMA Inputs 13 Value mA dcmA input 11 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 13 actual value 13530 DCMA Inputs 15 Value mA dcmA input 14 actual value 13530 DCMA Inputs 15 Value mA dcmA input 15 actual value	10425	SRC 2 lc Harm[19]	Amps	Source 2 phase C current twenty-first harmonic
10428 SRC 2 Ic Harm[22] Amps Source 2 phase C current twenty-fourth harmonic 10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value MA dcmA input 1 actual value 13506 DCMA Inputs 2 Value MA dcmA input 2 actual value 13508 DCMA Inputs 3 Value MA dcmA input 3 actual value 13510 DCMA Inputs 4 Value MA dcmA input 5 actual value 13512 DCMA Inputs 5 Value MA dcmA input 6 actual value 13514 DCMA Inputs 6 Value MA dcmA input 7 actual value 13516 DCMA Inputs 8 Value MA dcmA input 8 actual value 13518 DCMA Inputs 9 Value MA dcmA input 9 actual value 13520 DCMA Inputs 10 Value MA dcmA input 9 actual value 13524 DCMA Inputs 11 Value MA dcmA input 11 actual value 13526 DCMA Inputs 12 Value MA dcmA input 12 actual value 13528 DCMA Inputs 13 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value	10426	SRC 2 lc Harm[20]	Amps	Source 2 phase C current twenty-second harmonic
10429 SRC 2 Ic Harm[23] Amps Source 2 phase C current twenty-fifth harmonic 12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value MA dcmA input 1 actual value 13506 DCMA Inputs 2 Value MA dcmA input 2 actual value 13508 DCMA Inputs 3 Value MA dcmA input 3 actual value 13510 DCMA Inputs 4 Value MA dcmA input 4 actual value 13512 DCMA Inputs 5 Value MA dcmA input 5 actual value 13514 DCMA Inputs 6 Value MA dcmA input 6 actual value 13516 DCMA Inputs 7 Value MA dcmA input 7 actual value 13518 DCMA Inputs 8 Value MA dcmA input 8 actual value 13520 DCMA Inputs 9 Value MA dcmA input 9 actual value 13522 DCMA Inputs 10 Value MA dcmA input 10 actual value 13524 DCMA Inputs 11 Value MA dcmA input 11 actual value 13526 DCMA Inputs 13 Value MA dcmA input 11 actual value 13528 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 14 actual value	10427	SRC 2 lc Harm[21]	Amps	Source 2 phase C current twenty-third harmonic
12306 Oscill Num Triggers Oscillography number of triggers 13504 DCMA Inputs 1 Value mA dcmA input 1 actual value 13506 DCMA Inputs 2 Value mA dcmA input 2 actual value 13508 DCMA Inputs 3 Value mA dcmA input 3 actual value 13510 DCMA Inputs 4 Value mA dcmA input 4 actual value 13512 DCMA Inputs 5 Value mA dcmA input 5 actual value 13514 DCMA Inputs 6 Value mA dcmA input 6 actual value 13516 DCMA Inputs 7 Value mA dcmA input 7 actual value 13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13525 DCMA Inputs 12 Value mA dcmA input 12 actual value 13526 DCMA Inputs 13 Value mA dcmA input 13 actual value 13528 DCMA Inputs 14 Value mA dcmA input 13 actual value 13530 DCMA Inputs 15 Value mA dcmA input 13 actual value 13530 DCMA Inputs 15 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	10428	SRC 2 Ic Harm[22]	Amps	Source 2 phase C current twenty-fourth harmonic
13504 DCMA Inputs 1 Value MA dcmA input 1 actual value 13508 DCMA Inputs 2 Value MA dcmA input 2 actual value 13508 DCMA Inputs 3 Value MA dcmA input 3 actual value 13510 DCMA Inputs 4 Value MA dcmA input 4 actual value 13512 DCMA Inputs 5 Value MA dcmA input 5 actual value 13514 DCMA Inputs 6 Value MA dcmA input 6 actual value 13516 DCMA Inputs 7 Value MA dcmA input 7 actual value 13518 DCMA Inputs 8 Value MA dcmA input 8 actual value 13520 DCMA Inputs 9 Value MA dcmA input 9 actual value 13522 DCMA Inputs 10 Value MA dcmA input 10 actual value 13524 DCMA Inputs 12 Value MA dcmA input 11 actual value 13525 DCMA Inputs 12 Value MA dcmA input 13 actual value 13526 DCMA Inputs 13 Value MA dcmA input 13 actual value 13528 DCMA Inputs 13 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 14 actual value 13530 DCMA Inputs 15 Value MA dcmA input 15 actual value	10429	SRC 2 lc Harm[23]	Amps	Source 2 phase C current twenty-fifth harmonic
13506 DCMA Inputs 2 Value MA dcmA input 2 actual value 13508 DCMA Inputs 3 Value MA dcmA input 3 actual value 13510 DCMA Inputs 4 Value MA dcmA input 4 actual value 13512 DCMA Inputs 5 Value MA dcmA input 5 actual value 13514 DCMA Inputs 6 Value MA dcmA input 6 actual value 13516 DCMA Inputs 7 Value MA dcmA input 8 actual value 13518 DCMA Inputs 8 Value MA dcmA input 8 actual value 13520 DCMA Inputs 9 Value MA dcmA input 9 actual value 13522 DCMA Inputs 10 Value MA dcmA input 10 actual value 13524 DCMA Inputs 11 Value MA dcmA input 11 actual value 13526 DCMA Inputs 12 Value MA dcmA input 12 actual value 13528 DCMA Inputs 13 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 14 actual value 13532 DCMA Inputs 15 Value MA dcmA input 15 actual value 13532 DCMA Inputs 15 Value MA dcmA input 15 actual value	12306	Oscill Num Triggers		Oscillography number of triggers
13508 DCMA Inputs 3 Value MA dcmA input 3 actual value 13510 DCMA Inputs 4 Value MA dcmA input 4 actual value 13512 DCMA Inputs 5 Value MA dcmA input 5 actual value 13514 DCMA Inputs 6 Value MA dcmA input 6 actual value 13516 DCMA Inputs 7 Value MA dcmA input 7 actual value 13518 DCMA Inputs 8 Value MA dcmA input 8 actual value 13520 DCMA Inputs 9 Value MA dcmA input 9 actual value 13522 DCMA Inputs 10 Value MA dcmA input 10 actual value 13524 DCMA Inputs 11 Value MA dcmA input 11 actual value 13526 DCMA Inputs 12 Value MA dcmA input 12 actual value 13528 DCMA Inputs 13 Value MA dcmA input 13 actual value 13530 DCMA Inputs 14 Value MA dcmA input 13 actual value 13530 DCMA Inputs 15 Value MA dcmA input 14 actual value 13532 DCMA Inputs 15 Value MA dcmA input 15 actual value	13504	DCMA Inputs 1 Value	mA	dcmA input 1 actual value
13510 DCMA Inputs 4 Value mA dcmA input 4 actual value 13512 DCMA Inputs 5 Value mA dcmA input 5 actual value 13514 DCMA Inputs 6 Value mA dcmA input 6 actual value 13516 DCMA Inputs 7 Value mA dcmA input 7 actual value 13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 13 actual value 13530 DCMA Inputs 15 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13506	DCMA Inputs 2 Value	mA	dcmA input 2 actual value
13512 DCMA Inputs 5 Value mA dcmA input 5 actual value 13514 DCMA Inputs 6 Value mA dcmA input 6 actual value 13516 DCMA Inputs 7 Value mA dcmA input 7 actual value 13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13531 DCMA Inputs 15 Value mA dcmA input 15 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13508	DCMA Inputs 3 Value	mA	dcmA input 3 actual value
13514 DCMA Inputs 6 Value mA dcmA input 6 actual value 13516 DCMA Inputs 7 Value mA dcmA input 7 actual value 13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13510	DCMA Inputs 4 Value	mA	dcmA input 4 actual value
13516 DCMA Inputs 7 Value mA dcmA input 7 actual value 13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13512	DCMA Inputs 5 Value	mA	dcmA input 5 actual value
13518 DCMA Inputs 8 Value mA dcmA input 8 actual value 13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13514	DCMA Inputs 6 Value	mA	dcmA input 6 actual value
13520 DCMA Inputs 9 Value mA dcmA input 9 actual value 13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13516	DCMA Inputs 7 Value	mA	dcmA input 7 actual value
13522 DCMA Inputs 10 Value mA dcmA input 10 actual value 13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13518	DCMA Inputs 8 Value	mA	dcmA input 8 actual value
13524 DCMA Inputs 11 Value mA dcmA input 11 actual value 13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13520	DCMA Inputs 9 Value	mA	dcmA input 9 actual value
13526 DCMA Inputs 12 Value mA dcmA input 12 actual value 13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13522	DCMA Inputs 10 Value	mA	dcmA input 10 actual value
13528 DCMA Inputs 13 Value mA dcmA input 13 actual value 13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13524	DCMA Inputs 11 Value	mA	dcmA input 11 actual value
13530 DCMA Inputs 14 Value mA dcmA input 14 actual value 13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13526	DCMA Inputs 12 Value	mA	dcmA input 12 actual value
13532 DCMA Inputs 15 Value mA dcmA input 15 actual value	13528	DCMA Inputs 13 Value	mA	dcmA input 13 actual value
	13530	DCMA Inputs 14 Value	mA	dcmA input 14 actual value
13534 DCMA Inputs 16 Value mA dcmA input 16 actual value	13532	DCMA Inputs 15 Value	mA	dcmA input 15 actual value
	13534	DCMA Inputs 16 Value	mA	dcmA input 16 actual value

Table A-1: FLEXANALOG DATA ITEMS (Sheet 13 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
13536	DCMA Inputs 17 Value	mA	dcmA input 17 actual value
13538	DCMA Inputs 18 Value	mA	dcmA input 18 actual value
13540	DCMA Inputs 19 Value	mA	dcmA input 19 actual value
13542	DCMA Inputs 20 Value	mA	dcmA input 20 actual value
13544	DCMA Inputs 21 Value	mA	dcmA input 21 actual value
13546	DCMA Inputs 22 Value	mA	dcmA input 22 actual value
13548	DCMA Inputs 23 Value	mA	dcmA input 23 actual value
13550	DCMA Inputs 24 Value	mA	dcmA input 24 actual value
13552	RTD Inputs 1 Value		RTD input 1 actual value
13553	RTD Inputs 2 Value		RTD input 2 actual value
13554	RTD Inputs 3 Value		RTD input 3 actual value
13555	RTD Inputs 4 Value		RTD input 4 actual value
13556	RTD Inputs 5 Value		RTD input 5 actual value
13557	RTD Inputs 6 Value		RTD input 6 actual value
13558	RTD Inputs 7 Value		RTD input 7 actual value
13559	RTD Inputs 8 Value		RTD input 8 actual value
13560	RTD Inputs 9 Value		RTD input 9 actual value
13561	RTD Inputs 10 Value		RTD input 10 actual value
13562	RTD Inputs 11 Value		RTD input 11 actual value
13563	RTD Inputs 12 Value		RTD input 12 actual value
13564	RTD Inputs 13 Value		RTD input 13 actual value
13565	RTD Inputs 14 Value		RTD input 14 actual value
13566	RTD Inputs 15 Value		RTD input 15 actual value
13567	RTD Inputs 16 Value		RTD input 16 actual value
13568	RTD Inputs 17 Value		RTD input 17 actual value
13569	RTD Inputs 18 Value		RTD input 18 actual value
13570	RTD Inputs 19 Value		RTD input 19 actual value
13571	RTD Inputs 20 Value		RTD input 20 actual value
13572	RTD Inputs 21 Value		RTD input 21 actual value
13573	RTD Inputs 22 Value		RTD input 22 actual value
13574	RTD Inputs 23 Value		RTD input 23 actual value
13575	RTD Inputs 24 Value		RTD input 24 actual value
13576	RTD Inputs 25 Value		RTD input 25 actual value
13577	RTD Inputs 26 Value		RTD input 26 actual value
13578	RTD Inputs 27 Value		RTD input 27 actual value
13579	RTD Inputs 28 Value		RTD input 28 actual value
13580	RTD Inputs 29 Value		RTD input 29 actual value
13581	RTD Inputs 30 Value		RTD input 30 actual value
13582	RTD Inputs 31 Value		RTD input 31 actual value
13583	RTD Inputs 32 Value		RTD input 32 actual value
13584	RTD Inputs 33 Value		RTD input 33 actual value
13585	RTD Inputs 34 Value		RTD input 34 actual value
13586	RTD Inputs 35 Value		RTD input 35 actual value
13587	RTD Inputs 36 Value		RTD input 36 actual value
13588	RTD Inputs 37 Value		RTD input 37 actual value
13589	RTD Inputs 38 Value		RTD input 38 actual value
13590	RTD Inputs 39 Value		RTD input 39 actual value

Table A-1: FLEXANALOG DATA ITEMS (Sheet 14 of 16)

15591	ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
13593	13591	RTD Inputs 40 Value		RTD input 40 actual value
13594 RTD Inputs 43 Value	13592	RTD Inputs 41 Value		RTD input 41 actual value
13595 RTD Inputs 44 Value	13593	RTD Inputs 42 Value		RTD input 42 actual value
13596 RTD Inputs 45 Value	13594	RTD Inputs 43 Value		RTD input 43 actual value
13597 RTD Inputs 46 Value	13595	RTD Inputs 44 Value		RTD input 44 actual value
13598 RTD Inputs 47 Value	13596	RTD Inputs 45 Value		RTD input 45 actual value
13599 RTD Inputs 48 Value	13597	RTD Inputs 46 Value		RTD input 46 actual value
13600	13598	RTD Inputs 47 Value		RTD input 47 actual value
13601 Ohm Inputs 2 Value Ohms Ohm inputs 2 value 14189 PTP-IRIG-B Delta ns PTB time minus IRIG-B time 24447 Active Setting Group	13599	RTD Inputs 48 Value		RTD input 48 actual value
14189	13600	Ohm Inputs 1 Value	Ohms	Ohm inputs 1 value
24447 Active Setting Group — Current setting group 32768 Tracking Frequency Hz Tracking frequency 39168 FlexElement 1 Value — FlexElement 1 actual value 39170 FlexElement 2 Value — FlexElement 2 actual value 39174 FlexElement 4 Value — FlexElement 3 actual value 39176 FlexElement 6 Value — FlexElement 6 actual value 39178 FlexElement 6 Value — FlexElement 6 actual value 39180 FlexElement 7 Value — FlexElement 7 actual value 39181 FlexElement 9 Value — FlexElement 9 actual value 39182 FlexElement 9 Value — FlexElement 9 actual value 39184 FlexElement 10 Value — FlexElement 9 actual value 39186 FlexElement 11 Value — FlexElement 10 actual value 39190 FlexElement 13 Value — FlexElement 13 actual value 39192 FlexElement 14 Value — FlexElement 13 actual value 41132 VTF 7 V0 3rd Harm	13601	Ohm Inputs 2 Value	Ohms	Ohm inputs 2 value
32768 Tracking Frequency Hz Tracking frequency 39168 FlexElement 1 Value	14189	PTP-IRIG-B Delta	ns	PTP time minus IRIG-B time
Separate	24447	Active Setting Group		Current setting group
PlexElement 2 Value FlexElement 3 value FlexElement 3 actual value FlexElement 3 actual value FlexElement 4 Value FlexElement 4 Value FlexElement 4 Value FlexElement 5 actual value FlexElement 6 FlexElement 6 FlexElement 6 FlexElement 6 actual value FlexElement 7 Value FlexElement 6 actual value FlexElement 7 Value FlexElement 7 actual value FlexElement 7 Value FlexElement 7 actual value FlexElement 8 Value FlexElement 8 Value FlexElement 8 Value FlexElement 8 Value FlexElement 9 actual value FlexElement 10 Value FlexElement 9 Value FlexElement 9 Value FlexElement 9 Value FlexElement 10 Value FlexElement 10 Value FlexElement 10 Value FlexElement 11 Value FlexElement 12 Value FlexElement 12 Value FlexElement 12 Value FlexElement 13 Value FlexElement 13 Value FlexElement 14 Value FlexElement 15 Value FlexElement 15 Value FlexElement 15 Value FlexElement 16 Value FlexElement 16 Value FlexElement 16 Value FlexElement 16 Value FlexElement 15 Value FlexElement 16	32768	Tracking Frequency	Hz	Tracking frequency
FlexElement 3 Value	39168	FlexElement 1 Value		FlexElement 1 actual value
FiexElement 4 Value	39170	FlexElement 2 Value		FlexElement 2 actual value
September Sept	39172	FlexElement 3 Value		FlexElement 3 actual value
39178 FlexElement 6 Value	39174	FlexElement 4 Value		FlexElement 4 actual value
39180 FlexElement 7 Value	39176	FlexElement 5 Value		FlexElement 5 actual value
39182 FlexElement 8 Value	39178	FlexElement 6 Value		FlexElement 6 actual value
39184 FlexElement 9 Value	39180	FlexElement 7 Value		FlexElement 7 actual value
39186 FlexElement 10 Value FlexElement 10 actual value 39188 FlexElement 11 Value FlexElement 11 actual value 39190 FlexElement 12 Value FlexElement 12 actual value 39192 FlexElement 13 Value FlexElement 13 actual value 39194 FlexElement 14 Value FlexElement 14 actual value 39196 FlexElement 15 Value FlexElement 15 actual value 39198 FlexElement 16 Value FlexElement 16 actual value 41132 VTFF 1 VO 3rd Harmonic V0 3rd Harmonic 1 41134 VTFF 2 VO 3rd Harmonic V0 3rd Harmonic 3 41136 VTFF 3 VO 3rd Harmonic V0 3rd Harmonic 3 41140 VTFF 5 VO 3rd Harmonic V0 3rd Harmonic 6 41142 VTFF 6 VO 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 3 45590	39182	FlexElement 8 Value		FlexElement 8 actual value
39188 FlexElement 11 Value	39184	FlexElement 9 Value		FlexElement 9 actual value
39190 FlexElement 12 Value FlexElement 13 actual value 39192 FlexElement 13 Value FlexElement 13 actual value 39194 FlexElement 14 Value FlexElement 14 actual value 39196 FlexElement 15 Value FlexElement 15 actual value 39198 FlexElement 16 Value FlexElement 16 actual value 41132 VTFF 1 VO 3rd Harmonic V0 3rd Harmonic 1 41134 VTFF 2 VO 3rd Harmonic V0 3rd Harmonic 2 41136 VTFF 3 VO 3rd Harmonic V0 3rd Harmonic 3 41140 VTFF 5 VO 3rd Harmonic V0 3rd Harmonic 4 41140 VTFF 5 VO 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 VO 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45589 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45599 GOOS	39186	FlexElement 10 Value		FlexElement 10 actual value
39192 FlexElement 13 Value FlexElement 13 actual value 39194 FlexElement 14 Value FlexElement 14 actual value 39196 FlexElement 15 Value FlexElement 15 actual value 39198 FlexElement 16 Value FlexElement 16 actual value 41132 VTFF 1 VO 3rd Harmonic VO 3rd Harmonic 1 41134 VTFF 2 VO 3rd Harmonic VO 3rd Harmonic 2 41136 VTFF 3 VO 3rd Harmonic VO 3rd Harmonic 3 41138 VTFF 4 VO 3rd Harmonic VO 3rd Harmonic 4 41140 VTFF 5 VO 3rd Harmonic VO 3rd Harmonic 5 41142 VTFF 6 VO 3rd Harmonic VO 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 3 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 <t< td=""><td>39188</td><td>FlexElement 11 Value</td><td></td><td>FlexElemen 11 actual value</td></t<>	39188	FlexElement 11 Value		FlexElemen 11 actual value
39194 FlexElement 14 Value	39190	FlexElement 12 Value		FlexElement 12 actual value
39196 FlexElement 15 Value FlexElement 15 actual value 39198 FlexElement 16 Value FlexElement 16 actual value 41132 VTFF 1 V0 3rd Harmonic V0 3rd Harmonic 1 41134 VTFF 2 V0 3rd Harmonic V0 3rd Harmonic 2 41136 VTFF 3 V0 3rd Harmonic V0 3rd Harmonic 3 41138 VTFF 4 V0 3rd Harmonic V0 3rd Harmonic 5 41140 VTFF 5 V0 3rd Harmonic	39192	FlexElement 13 Value		FlexElement 13 actual value
39198 FlexElement 16 Value FlexElement 16 actual value 41132 VTFF 1 V0 3rd Harmonic V0 3rd Harmonic 1 41134 VTFF 2 V0 3rd Harmonic V0 3rd Harmonic 2 41136 VTFF 3 V0 3rd Harmonic V0 3rd Harmonic 3 41138 VTFF 4 V0 3rd Harmonic V0 3rd Harmonic 4 41140 VTFF 5 V0 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOS	39194	FlexElement 14 Value		FlexElement 14 actual value
41132 VTFF 1 V0 3rd Harmonic V0 3rd Harmonic 1 41134 VTFF 2 V0 3rd Harmonic V0 3rd Harmonic 2 41136 VTFF 3 V0 3rd Harmonic V0 3rd Harmonic 3 41138 VTFF 4 V0 3rd Harmonic V0 3rd Harmonic 4 41140 VTFF 5 V0 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45600 GOOS	39196	FlexElement 15 Value		FlexElement 15 actual value
41134 VTFF 2 V0 3rd Harmonic V0 3rd Harmonic 2 41136 VTFF 3 V0 3rd Harmonic V0 3rd Harmonic 3 41138 VTFF 4 V0 3rd Harmonic V0 3rd Harmonic 4 41140 VTFF 5 V0 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45598 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602	39198	FlexElement 16 Value		FlexElement 16 actual value
41136 VTFF 3 V0 3rd Harmonic V0 3rd Harmonic 3 41138 VTFF 4 V0 3rd Harmonic V0 3rd Harmonic 4 41140 VTFF 5 V0 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	41132			V0 3rd Harmonic 1
41138 VTFF 4 V0 3rd Harmonic V0 3rd Harmonic 4 41140 VTFF 5 V0 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45598 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	41134	VTFF 2 V0 3rd Harmonic		V0 3rd Harmonic 2
41140 VTFF 5 V0 3rd Harmonic V0 3rd Harmonic 5 41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	41136	VTFF 3 V0 3rd Harmonic		V0 3rd Harmonic 3
41142 VTFF 6 V0 3rd Harmonic V0 3rd Harmonic 6 45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	41138	VTFF 4 V0 3rd Harmonic		V0 3rd Harmonic 4
45584 GOOSE Analog In 1 IEC 61850 GOOSE analog input 1 45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	41140	VTFF 5 V0 3rd Harmonic		V0 3rd Harmonic 5
45586 GOOSE Analog In 2 IEC 61850 GOOSE analog input 2 45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	41142	VTFF 6 V0 3rd Harmonic		V0 3rd Harmonic 6
45588 GOOSE Analog In 3 IEC 61850 GOOSE analog input 3 45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45584	GOOSE Analog In 1		IEC 61850 GOOSE analog input 1
45590 GOOSE Analog In 4 IEC 61850 GOOSE analog input 4 45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45586	GOOSE Analog In 2		IEC 61850 GOOSE analog input 2
45592 GOOSE Analog In 5 IEC 61850 GOOSE analog input 5 45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45588	GOOSE Analog In 3		IEC 61850 GOOSE analog input 3
45594 GOOSE Analog In 6 IEC 61850 GOOSE analog input 6 45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45590	GOOSE Analog In 4		- 1
45596 GOOSE Analog In 7 IEC 61850 GOOSE analog input 7 45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45592	GOOSE Analog In 5		IEC 61850 GOOSE analog input 5
45598 GOOSE Analog In 8 IEC 61850 GOOSE analog input 8 45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45594	GOOSE Analog In 6		IEC 61850 GOOSE analog input 6
45600 GOOSE Analog In 9 IEC 61850 GOOSE analog input 9 45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45596	GOOSE Analog In 7		IEC 61850 GOOSE analog input 7
45602 GOOSE Analog In 10 IEC 61850 GOOSE analog input 10	45598	GOOSE Analog In 8		IEC 61850 GOOSE analog input 8
0 1	45600	GOOSE Analog In 9		IEC 61850 GOOSE analog input 9
45604 GOOSE Analog In 11 IEC 61850 GOOSE analog input 11		GOOSE Analog In 10		<u> </u>
	45604	GOOSE Analog In 11		IEC 61850 GOOSE analog input 11

APPENDIX A A.1 PARAMETER LISTS

Table A-1: FLEXANALOG DATA ITEMS (Sheet 15 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
45606	GOOSE Analog In 12		IEC 61850 GOOSE analog input 12
45608	GOOSE Analog In 13		IEC 61850 GOOSE analog input 13
45610	GOOSE Analog In 14		IEC 61850 GOOSE analog input 14
45612	GOOSE Analog In 15		IEC 61850 GOOSE analog input 15
45614	GOOSE Analog In 16		IEC 61850 GOOSE analog input 16
61439	PMU Num Triggers		Phasor measurement unit recording number of triggers
63236	HZ la RMS	Volts	HIZ la RMS current
63238	HZ Ib RMS	Volts	HIZ Ib RMS current
63240	HZ lc RMS	Volts	HIZ Ic RMS current
63242	HZ In RMS	Volts	HIZ In RMS current
63244	HZ la Odd Harmonics	Volts	HIZ la odd harmonics
63246	HZ lb Odd Harmonics	Volts	HIZ Ib odd harmonics
63248	HZ Ic Odd Harmonics	Volts	HIZ Ic odd harmonics
63250	HZ Ig Odd Harmonics	Volts	HIZ Ig odd harmonics
63252	HZ la Even Harmonics	Volts	HIZ la even harmonics
63254	HZ lb Even Harmonics	Volts	HIZ Ib even harmonics
63256	HZ Ic Even Harmonics	Volts	HIZ Ic even harmonics
63258	HZ Ig Even Harmonics	Volts	HIZ Ig even harmonics
63260	HZ la Non Harmonics	Volts	HIZ la non harmonics
63262	HZ lb Non Harmonics	Volts	HIZ Ib non harmonics
63264	HZ Ic Non Harmonics	Volts	HIZ Ic non harmonics
63266	HZ Ig Non Harmonics	Volts	HIZ Ig non harmonics
63268	HZ Ig Harmonics[1]	Volts	HIZ Ig harmonics 1
63269	HZ Ig Harmonics[2]	Volts	HIZ Ig harmonics 2
63270	HZ Ig Harmonics[3]	Volts	HIZ Ig harmonics 3
63271	HZ Ig Harmonics[4]	Volts	HIZ Ig harmonics 4
63272	HZ Ig Harmonics[5]	Volts	HIZ Ig harmonics 5
63273	HZ Ig Harmonics[6]	Volts	HIZ Ig harmonics 6
63274	HZ Ig Harmonics[7]	Volts	HIZ Ig harmonics 7
63275	HZ Ig Harmonics[8]	Volts	HIZ Ig harmonics 8
63276	HZ Ig Harmonics[9]	Volts	HIZ Ig harmonics 9
63277	HZ Ig Harmonics[10]	Volts	HIZ Ig harmonics 10
63278	HZ Ig Harmonics[11]	Volts	HIZ Ig harmonics 11
63279	HZ Ig Harmonics[12]	Volts	HIZ Ig harmonics 12
63280	HZ Ig Harmonics[13]	Volts	HIZ Ig harmonics 13
63281	HZ Ig Harmonics[14]	Volts	HIZ Ig harmonics 14
63282	HZ Ig Harmonics[15]	Volts	HIZ Ig harmonics 15
63283	HZ Ig Harmonics[16]	Volts	HIZ Ig harmonics 16
63284	HZ Ig Harmonics[17]	Volts	HIZ Ig harmonics 17
63285	HZ Ig Harmonics[18]	Volts	HIZ Ig harmonics 18
63286	HZ Ig Harmonics[19]	Volts	HIZ Ig harmonics 19
63287	HZ Ig Harmonics[20]	Volts	HIZ Ig harmonics 20
63288	HZ Ig Harmonics[21]	Volts	HIZ Ig harmonics 21
63289	HZ Ig Harmonics[22]	Volts	HIZ Ig harmonics 22
63290	HZ Ig Harmonics[23]	Volts	HIZ Ig harmonics 23
63291	HZ Ig Harmonics[24]	Volts	HIZ Ig harmonics 24
63292	HZ Ig Harmonics[25]	Volts	HIZ Ig harmonics 25

Table A-1: FLEXANALOG DATA ITEMS (Sheet 16 of 16)

ADDRESS	FLEXANALOG NAME	UNITS	DESCRIPTION
63293	HZ Ig Harmonics[26]	Volts	HIZ Ig harmonics 26
63294	HZ Ig Harmonics[27]	Volts	HIZ Ig harmonics 27
63295	HZ Ig Harmonics[28]	Volts	HIZ Ig harmonics 28
63296	HZ Ig Harmonics[29]	Volts	HIZ Ig harmonics 29
63297	HZ Ig Harmonics[30]	Volts	HIZ Ig harmonics 30
63298	HZ Ig Harmonics[31]	Volts	HIZ Ig harmonics 31
63299	HZ Ig Harmonics[32]	Volts	HIZ Ig harmonics 32
63300	HZ Ig Harmonics[33]	Volts	HIZ Ig harmonics 33
63301	HZ Ig Harmonics[34]	Volts	HIZ Ig harmonics 34
63302	HZ Ig Harmonics[35]	Volts	HIZ Ig harmonics 35
63303	HZ Ig Harmonics[36]	Volts	HIZ Ig harmonics 36
63304	HZ Ig Harmonics[37]	Volts	HIZ Ig harmonics 37
63305	HZ Ig Harmonics[38]	Volts	HIZ Ig harmonics 38
63306	HZ Ig Harmonics[39]	Volts	HIZ Ig harmonics 39
63307	HZ Ig Harmonics[40]	Volts	HIZ Ig harmonics 40
63308	HZ Ig Harmonics[41]	Volts	HIZ Ig harmonics 41
63309	HZ Ig Harmonics[42]	Volts	HIZ Ig harmonics 42
63310	HZ Ig Harmonics[43]	Volts	HIZ Ig harmonics 43
63311	HZ Ig Harmonics[44]	Volts	HIZ Ig harmonics 44
63312	HZ Ig Harmonics[45]	Volts	HIZ Ig harmonics 45
63313	HZ Ig Harmonics[46]	Volts	HIZ Ig harmonics 46
63314	HZ Ig Harmonics[47]	Volts	HIZ Ig harmonics 47
63315	HZ Ig Harmonics[48]	Volts	HIZ Ig harmonics 48
63316	HZ Ig Harmonics[49]	Volts	HIZ Ig harmonics 49
63317	HZ Ig Harmonics[50]	Volts	HIZ Ig harmonics 50
63318	HZ Ig Harmonics[51]	Volts	HIZ Ig harmonics 51
63319	HZ Ig Harmonics[52]	Volts	HIZ Ig harmonics 52
63320	HZ Ig Harmonics[53]	Volts	HIZ Ig harmonics 53
63321	HZ Ig Harmonics[54]	Volts	HIZ Ig harmonics 54
63322	HZ Ig Harmonics[55]	Volts	HIZ Ig harmonics 55
63323	HZ Ig Harmonics[56]	Volts	HIZ Ig harmonics 56
63324	HZ Ig Harmonics[57]	Volts	HIZ Ig harmonics 57
63325	HZ Ig Harmonics[58]	Volts	HIZ Ig harmonics 58
63326	HZ Ig Harmonics[59]	Volts	HIZ Ig harmonics 59
63327	HZ Ig Harmonics[60]	Volts	HIZ Ig harmonics 60
63328	HZ Ig Harmonics[61]	Volts	HIZ Ig harmonics 61
63329	HZ Ig Harmonics[62]	Volts	HIZ Ig harmonics 62
63330	HZ Ig Harmonics[63]	Volts	HIZ Ig harmonics 63
63331	HZ Ig Harmonics[64]	Volts	HIZ Ig harmonics 64

A.1.2 FLEXINTEGER ITEMS

FlexInteger items are also viewable in a web browser. In the browser, enter the IP address of the UR, access the **Device Information Menu** option, then the **FlexInteger Parameter Listing** option.

Table A-2: FLEXINTEGER DATA ITEMS

ADDRESS	FLEXINTEGER NAME	UNITS	DESCRIPTION
9968	GOOSE UInt Input 1		IEC61850 GOOSE UInteger input 1
9970	GOOSE UInt Input 2		IEC61850 GOOSE UInteger input 2
9972	GOOSE UInt Input 3		IEC61850 GOOSE UInteger input 3
9974	GOOSE UInt Input 4		IEC61850 GOOSE UInteger input 4
9976	GOOSE UInt Input 5		IEC61850 GOOSE UInteger input 5
9978	GOOSE UInt Input 6		IEC61850 GOOSE UInteger input 6
9980	GOOSE UInt Input 7		IEC61850 GOOSE UInteger input 7
9982	GOOSE UInt Input 8		IEC61850 GOOSE UInteger input 8
9984	GOOSE UInt Input 9		IEC61850 GOOSE UInteger input 9
9986	GOOSE UInt Input 10		IEC61850 GOOSE UInteger input 10
9988	GOOSE UInt Input 11		IEC61850 GOOSE UInteger input 11
9990	GOOSE UInt Input 12		IEC61850 GOOSE UInteger input 12
9992	GOOSE UInt Input 13		IEC61850 GOOSE UInteger input 13
9994	GOOSE UInt Input 14		IEC61850 GOOSE UInteger input 14
9996	GOOSE UInt Input 15		IEC61850 GOOSE UInteger input 15
9998	GOOSE UInt Input 16		IEC61850 GOOSE UInteger input 16

A

B.1.1 INTRODUCTION

The UR-series relays support a number of communications protocols to allow connection to equipment such as personal computers, RTUs, SCADA masters, and programmable logic controllers. The Modicon Modbus RTU protocol is the most basic protocol supported by the UR. Modbus is available via RS232 or RS485 serial links or via ethernet (using the Modbus/TCP specification). The following description is intended primarily for users who wish to develop their own master communication drivers and applies to the serial Modbus RTU protocol. Note that:

- The UR always acts as a slave device, meaning that it never initiates communications; it only listens and responds to requests issued by a master computer.
- For Modbus, a subset of the Remote Terminal Unit (RTU) protocol format is supported that allows extensive monitoring, programming, and control functions using read and write register commands.

B.1.2 PHYSICAL LAYER

The Modbus RTU protocol is hardware-independent so that the physical layer can be any of a variety of standard hardware configurations including RS232 and RS485. The relay includes a faceplate (front panel) RS232 port and two rear terminal communications ports that may be configured as RS485, fiber optic, 10Base-T, or 10Base-F. Data flow is half-duplex in all configurations. See chapter 3 for communications wiring.

Each data byte is transmitted in an asynchronous format consisting of 1 start bit, 8 data bits, 1 stop bit, and possibly 1 parity bit. This produces a 10 or 11 bit data frame. This can be important for transmission through modems at high bit rates (11 bit data frames are not supported by many modems at baud rates greater than 300).

The baud rate and parity are independently programmable for each communications port. Baud rates of 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600, or 115200 bps are available. Even, odd, and no parity are available. See the *Communications* section of chapter 5 for details.

The master device in any system must know the address of the slave device with which it is to communicate. The relay will not act on a request from a master if the address in the request does not match the relay's slave address (unless the address is the broadcast address – see below).

A single setting selects the slave address used for all ports, with the exception that for the faceplate port, the relay will accept any address when the Modbus RTU protocol is used.

B.1.3 DATA LINK LAYER

Communications takes place in packets which are groups of asynchronously framed byte data. The master transmits a packet to the slave and the slave responds with a packet. The end of a packet is marked by *dead-time* on the communications line. The following describes general format for both transmit and receive packets. For exact details on packet formatting, refer to subsequent sections describing each function code.

Table B-1: MODBUS PACKET FORMAT

DESCRIPTION	SIZE
SLAVE ADDRESS	1 byte
FUNCTION CODE	1 byte
DATA	N bytes
CRC	2 bytes
DEAD TIME	3.5 bytes transmission time

• SLAVE ADDRESS: This is the address of the slave device that is intended to receive the packet sent by the master and to perform the desired action. Each slave device on a communications bus must have a unique address to prevent bus contention. All of the relay's ports have the same address which is programmable from 1 to 254; see chapter 5 for details. Only the addressed slave will respond to a packet that starts with its address. Note that the faceplate port is an exception to this rule; it will act on a message containing any slave address.

A master transmit packet with slave address 0 indicates a broadcast command. All slaves on the communication link take action based on the packet, but none respond to the master. Broadcast mode is only recognized when associated with function code 05h. For any other function code, a packet with broadcast mode slave address 0 will be ignored.

- FUNCTION CODE: This is one of the supported functions codes of the unit which tells the slave what action to perform. See the Supported Function Codes section for details. An exception response from the slave is indicated by setting the high order bit of the function code in the response packet. See the Exception Responses section for details.
- **DATA:** This will be a variable number of bytes depending on the function code. This may include actual values, settings, or addresses sent by the master to the slave or by the slave to the master.
- **CRC:** This is a two byte error checking code. The RTU version of Modbus includes a 16-bit cyclic redundancy check (CRC-16) with every packet which is an industry standard method used for error detection. If a Modbus slave device receives a packet in which an error is indicated by the CRC, the slave device will not act upon or respond to the packet thus preventing any erroneous operations. See the *CRC-16 Algorithm* section for details on calculating the CRC.
- **DEAD TIME:** A packet is terminated when no data is received for a period of 3.5 byte transmission times (about 15 ms at 2400 bps, 2 ms at 19200 bps, and 300 µs at 115200 bps). Consequently, the transmitting device must not allow gaps between bytes longer than this interval. Once the dead time has expired without a new byte transmission, all slaves start listening for a new packet from the master except for the addressed slave.

B.1.4 CRC-16 ALGORITHM

The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (1100000000000101B). The 16-bit remainder of the division is appended to the end of the packet, MSByte first. The resulting packet including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. This algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder.

A C programming language implementation of the CRC algorithm will be provided upon request.

Table B-2: CRC-16 ALGORITHM

1 .

OVARDOLO

>			
Α	16 bit working register		
Alow	low order byte of A		
Ahigh	high order byte of A		
CRC	16 bit CRC-16 result		
i,j	loop counters		
(+)	logical EXCLUSIVE-OR operator		
N	total number of data bytes		
Di	i-th data byte (i = 0 to N-1)		
G	16 bit characteristic polynomial = 10100000000000001 (binary) with MSbit dropped and bit order reversed		
shr (x)	right shift operator (th LSbit of x is shifted into a carry flag, a '0' is shifted into the MSbit of x, all other bits are shifted right one location)		
1.	FFFF (hex)> A		
2.	0> i		
3.	0> j		
4.	Di (+) Alow> Alow		
5.	j+1>j		
6.	shr (A)		
7.	Is there a carry?	No: go to 8; Yes: G (+) A> A and continue.	
8.	Is j = 8?	No: go to 5; Yes: continue	
9.	i+1>i		
10.	Is i = N?	No: go to 3; Yes: continue	
11.	A> CRC		
	A Alow Ahigh CRC i,j (+) N Di G shr (x) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	A 16 bit working register Alow low order byte of A Ahigh high order byte of A CRC 16 bit CRC-16 result i,j loop counters (+) logical EXCLUSIVE-OR o N total number of data bytes Di i-th data byte (i = 0 to N-1 G 16 bit characteristic polyn shr (x) right shift operator (th LSt are shifted right one locati 1. FFFF (hex)> A 2. 0> i 3. 0> j 4. Di (+) Alow> Alow 5. j + 1> j 6. shr (A) 7. Is there a carry? 8. Is j = 8? 9. i + 1> i 10. Is i = N?	

B.2.1 SUPPORTED FUNCTION CODES

Modbus officially defines function codes from 1 to 127 though only a small subset is generally needed. The relay supports some of these functions, as summarized in the following table. Subsequent sections describe each function code in detail.

FUNCTION CODE		MODBUS DEFINITION	GE MULTILIN DEFINITION
HEX	DEC		
03	3	Read holding registers	Read actual values or settings
04	4	Read holding registers	Read actual values or settings
05	5	Force single coil	Execute operation
06	6	Preset single register	Store single setting
10	16	Preset multiple registers	Store multiple settings

B.2.2 READ ACTUAL VALUES OR SETTINGS (FUNCTION CODE 03/04H)

This function code allows the master to read one or more consecutive data registers (actual values or settings) from a relay. Data registers are always 16-bit (two-byte) values transmitted with high order byte first. The maximum number of registers that can be read in a single packet is 125. See the *Modbus memory map* table for exact details on the data registers.

Since some PLC implementations of Modbus only support one of function codes 03h and 04h. The F60 interpretation allows either function code to be used for reading one or more consecutive data registers. The data starting address will determine the type of data being read. Function codes 03h and 04h are therefore identical.

The following table shows the format of the master and slave packets. The example shows a master device requesting three register values starting at address 4050h from slave device 11h (17 decimal); the slave device responds with the values 40, 300, and 0 from registers 4050h, 4051h, and 4052h, respectively.

Table B-3: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION			
PACKET FORMAT	EXAMPLE (HEX)		
SLAVE ADDRESS	11		
FUNCTION CODE	04		
DATA STARTING ADDRESS - high	40		
DATA STARTING ADDRESS - low	50		
NUMBER OF REGISTERS - high	00		
NUMBER OF REGISTERS - low	03		
CRC - low	A7		
CRC - high	4A		

SLAVE RESPONSE		
PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	
FUNCTION CODE	04	
BYTE COUNT	06	
DATA #1 - high	00	
DATA #1 - low	28	
DATA #2 - high	01	
DATA #2 - low	2C	
DATA #3 - high	00	
DATA #3 - low	00	
CRC - low	0D	
CRC - high	60	

B.2.3 EXECUTE OPERATION (FUNCTION CODE 05H)

This function code allows the master to perform various operations in the relay. Available operations are shown in the *Summary of operation codes* table below.

The following table shows the format of the master and slave packets. The example shows a master device requesting the slave device 11h (17 decimal) to perform a reset. The high and low code value bytes always have the values "FF" and "00" respectively and are a remnant of the original Modbus definition of this function code.

Table B-4: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION		
PACKET FORMAT	EXAMPLE (HEX)	
SLAVE ADDRESS	11	
FUNCTION CODE	05	
OPERATION CODE - high	00	
OPERATION CODE - low	01	
CODE VALUE - high	FF	
CODE VALUE - low	00	
CRC - low	DF	
CRC - high	6A	

SLAVE RESPONSE			
PACKET FORMAT	EXAMPLE (HEX)		
SLAVE ADDRESS	11		
FUNCTION CODE	05		
OPERATION CODE - high	00		
OPERATION CODE - low	01		
CODE VALUE - high	FF		
CODE VALUE - low	00		
CRC - low	DF		
CRC - high	6A		

Table B-5: SUMMARY OF OPERATION CODES FOR FUNCTION 05H

OPERATION CODE (HEX)	DEFINITION	DESCRIPTION
0000	NO OPERATION	Does not do anything.
0001	RESET	Performs the same function as the faceplate RESET key.
0005	CLEAR EVENT RECORDS	Performs the same function as the faceplate CLEAR EVENT RECORDS menu command.
0006	CLEAR OSCILLOGRAPHY	Clears all oscillography records.
1000 to 103F	VIRTUAL IN 1 to 64 ON/OFF	Sets the states of Virtual Inputs 1 to 64 either "ON" or "OFF".

B.2.4 STORE SINGLE SETTING (FUNCTION CODE 06H)

This function code allows the master to modify the contents of a single setting register in an relay. Setting registers are always 16 bit (two byte) values transmitted high order byte first. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h to slave device 11h (17 dec).

Table B-6: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION			
PACKET FORMAT	EXAMPLE (HEX)		
SLAVE ADDRESS	11		
FUNCTION CODE	06		
DATA STARTING ADDRESS - high	40		
DATA STARTING ADDRESS - low	51		
DATA - high	00		
DATA - low	C8		
CRC - low	CE		
CRC - high	DD		

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	06
DATA STARTING ADDRESS - high	40
DATA STARTING ADDRESS - low	51
DATA - high	00
DATA - low	C8
CRC - low	CE
CRC - high	DD

B.2.5 STORE MULTIPLE SETTINGS (FUNCTION CODE 10H)

This function code allows the master to modify the contents of a one or more consecutive setting registers in a relay. Setting registers are 16-bit (two byte) values transmitted high order byte first. The maximum number of setting registers that can be stored in a single packet is 60. The following table shows the format of the master and slave packets. The example shows a master device storing the value 200 at memory map address 4051h, and the value 1 at memory map address 4052h to slave device 11h (17 decimal).

Table B-7: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION						
PACKET FORMAT	EXAMPLE (HEX)					
SLAVE ADDRESS	11					
FUNCTION CODE	10					
DATA STARTING ADDRESS - hi	40					
DATA STARTING ADDRESS - Io	51					
NUMBER OF SETTINGS - hi	00					
NUMBER OF SETTINGS - Io	02					
BYTE COUNT	04					
DATA #1 - high order byte	00					
DATA #1 - low order byte	C8					
DATA #2 - high order byte	00					
DATA #2 - low order byte	01					
CRC - low order byte	12					
CRC - high order byte	62					

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	10
DATA STARTING ADDRESS - hi	40
DATA STARTING ADDRESS - Io	51
NUMBER OF SETTINGS - hi	00
NUMBER OF SETTINGS - Io	02
CRC - Io	07
CRC - hi	64

B.2.6 EXCEPTION RESPONSES

Programming or operation errors usually happen because of illegal data in a packet. These errors result in an exception response from the slave. The slave detecting one of these errors sends a response packet to the master with the high order bit of the function code set to 1.

The following table shows the format of the master and slave packets. The example shows a master device sending the unsupported function code 39h to slave device 11.

Table B-8: MASTER AND SLAVE DEVICE PACKET TRANSMISSION EXAMPLE

MASTER TRANSMISSION	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	39
CRC - low order byte	CD
CRC - high order byte	F2

SLAVE RESPONSE	
PACKET FORMAT	EXAMPLE (HEX)
SLAVE ADDRESS	11
FUNCTION CODE	В9
ERROR CODE	01
CRC - low order byte	93
CRC - high order byte	95

a) **DESCRIPTION**

The UR relay has a generic file transfer facility, meaning that you use the same method to obtain all of the different types of files from the unit. The Modbus registers that implement file transfer are found in the "Modbus File Transfer (Read/Write)" and "Modbus File Transfer (Read Only)" modules, starting at address 3100 in the Modbus Memory Map. To read a file from the UR relay, use the following steps:

- Write the filename to the "Name of file to read" register using a write multiple registers command. If the name is shorter than 80 characters, you may write only enough registers to include all the text of the filename. Filenames are not case sensitive.
- 2. Repeatedly read all the registers in "Modbus File Transfer (Read Only)" using a read multiple registers command. It is not necessary to read the entire data block, since the UR relay will remember which was the last register you read. The "position" register is initially zero and thereafter indicates how many bytes (2 times the number of registers) you have read so far. The "size of..." register indicates the number of bytes of data remaining to read, to a maximum of 244.
- 3. Keep reading until the "size of..." register is smaller than the number of bytes you are transferring. This condition indicates end of file. Discard any bytes you have read beyond the indicated block size.
- 4. If you need to re-try a block, read only the "size of.." and "block of data", without reading the position. The file pointer is only incremented when you read the position register, so the same data block will be returned as was read in the previous operation. On the next read, check to see if the position is where you expect it to be, and discard the previous block if it is not (this condition would indicate that the UR relay did not process your original read request).

The UR relay retains connection-specific file transfer information, so files may be read simultaneously on multiple Modbus connections.

b) OTHER PROTOCOLS

All the files available via Modbus may also be retrieved using the standard file transfer mechanisms in other protocols (for example, TFTP or MMS).

c) COMTRADE, OSCILLOGRAPHY, AND DATA LOGGER FILES

Oscillography and data logger files are formatted using the COMTRADE file format per IEEE C37.111-1999 Standard Common Format for Transient Data Exchange (COMTRADE) for Power Systems. The files can be obtained in either text or binary COMTRADE format.

d) READING OSCILLOGRAPHY FILES

Familiarity with the oscillography feature is required to understand the following description. See the *Oscillography* section in chapter 5 for details.

The Oscillography Number of Triggers register increments by one every time a new oscillography file is triggered (captured) and cleared to zero when oscillography data is cleared. When a new trigger occurs, the associated oscillography file is assigned a file identifier number equal to the incremented value of this register; the newest file number is equal to the Oscillography_Number_of_Triggers register. This register can be used to determine if any new data has been captured by periodically reading it to see if the value has changed; if the number has increased then new data is available.

The Oscillography Number of Records register specifies the maximum number of files (and the number of cycles of data per file) that can be stored in memory of the relay. The Oscillography Available Records register specifies the actual number of files that are stored and still available to be read out of the relay.

Writing "Yes" (i.e. the value 1) to the Oscillography Clear Data register clears oscillography data files, clears both the Oscillography Number of Triggers and Oscillography Available Records registers to zero, and sets the Oscillography Last Cleared Date to the present date and time.

To read binary COMTRADE oscillography files, read the following filenames:

OSCnnnn.CFG and OSCnnn.DAT

Replace "nnn" with the desired oscillography trigger number. For ASCII format, use the following file names

OSCAnnnn.CFG and OSCAnnn.DAT

e) READING DATA LOGGER FILES

Familiarity with the data logger feature is required to understand this description. Refer to the Data Logger section of Chapter 5 for details. To read the entire data logger in binary COMTRADE format, read the following files.

```
datalog.cfg and datalog.dat
```

To read the entire data logger in ASCII COMTRADE format, read the following files.

```
dataloga.cfg and dataloga.dat
```

To limit the range of records to be returned in the COMTRADE files, append the following to the filename before writing it:

- To read from a specific time to the end of the log: <space> startTime
- To read a specific range of records: <space> startTime <space> endTime
- · Replace <startTime> and <endTime> with Julian dates (seconds since Jan. 1 1970) as numeric text.

f) READING EVENT RECORDER FILES

To read the entire event recorder contents in ASCII format (the only available format), use the following filename:

```
EVT.TXT
```

To read from a specific record to the end of the log, use the following filename:

```
EVTnnn.TXT (replace nnn with the desired starting record number)
```

To read from a specific record to another specific record, use the following filename:

EVT.TXT xxxxx yyyyy (replace xxxxx with the starting record number and yyyyy with the ending record number)

g) READING FAULT REPORT FILES

Fault report data has been available via the F60 file retrieval mechanism since UR firmware version 2.00. The file name is faultReport######.htm. The ###### refers to the fault report record number. The fault report number is a counter that indicates how many fault reports have ever occurred. The counter rolls over at a value of 65535. Only the last ten fault reports are available for retrieval; a request for a non-existent fault report file will yield a null file. The current value fault report counter is available in "Number of Fault Reports" Modbus register at location 0x3020.

For example, if 14 fault reports have occurred then the files faultReport5.htm, faultReport6.htm, up to faultReport14.htm are available to be read. The expected use of this feature has an external master periodically polling the "Number of Fault Reports' register. If the value changes, then the master reads all the new files.

The contents of the file is in standard HTML notation and can be viewed via any commercial browser.

The F60 supports password entry from a local or remote connection.

Local access is defined as any access to settings or commands via the faceplate interface. This includes both keypad entry and the faceplate RS232 connection. Remote access is defined as any access to settings or commands via any rear communications port. This includes both Ethernet and RS485 connections. Any changes to the local or remote passwords enables this functionality.

When entering a settings or command password via EnerVista or any serial interface, the user must enter the corresponding connection password. If the connection is to the back of the F60, the remote password must be used. If the connection is to the RS232 port of the faceplate, the local password must be used.

The command password is set up at memory location 4000. Command security is required to change the command password. Similarly, the setting password is set up at memory location 4002. These are the same settings found in the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow **PASSWORD SECURITY** menu via the keypad. Enabling password security for the faceplate display will also enable it for Modbus, and *vice-versa*.

To gain command level security access, the command password must be entered at memory location 4008. To gain setting level security access, the setting password must be entered at memory location 400A. The entered setting password must match the current setting password setting, or must be zero, to change settings or download firmware.

Command and setting passwords each have a 30 minute timer. Each timer starts when you enter the particular password, and is re-started whenever you *use* it. For example, writing a setting re-starts the setting password timer and writing a command register or forcing a coil re-starts the command password timer. The value read at memory location 4010 can be used to confirm whether a command password is enabled or disabled (a value of 0 represents disabled). The value read at memory location 4011 can be used to confirm whether a setting password is enabled or disabled.

Command or setting password security access is restricted to the particular port or particular TCP/IP connection on which the entry was made. Passwords must be entered when accessing the relay through other ports or connections, and the passwords must be re-entered after disconnecting and re-connecting on TCP/IP.

B.4.1 MODBUS MEMORY MAP

The map is also viewable in a web browser. In the browser, enter the IP address of the UR and click the option.

Table B-9: MODBUS MEMORY MAP (Sheet 1 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Product I	nformation (Read Only)					
0000	UR Product Type	0 to 65535		1	F001	0
0002	Product Version	0 to 655.35		0.01	F001	1
0003	Boot Configuration Register	0 to 65535		1	F001	0
Product I	nformation (Read Only Written by Factory)		•	•		•
0010	Serial Number				F203	"0"
0020	Manufacturing Date	0 to 4294967295		1	F050	0
0022	Modification Number	0 to 65535		1	F001	0
0040	Order Code				F204	"Order Code x"
0090	Ethernet MAC Address				F072	0
0093	Reserved (13 items)				F001	0
00A0	CPU Module Serial Number				F203	(none)
00B0	CPU Supplier Serial Number				F203	(none)
00C0	Ethernet Sub Module Serial Number (8 items)				F203	(none)
Product I	nformation (Read Only Written by Factory)			•	<u> </u>	
0110	FPGA Version				F206	(none)
0113	FPGA Date	0 to 4294967295		1	F050	0
Product I	nformation (Read/Write)			•	<u> </u>	
0120	Undefined	0 to 1		1	F102	0
Self Test	Targets (Read Only)			•	<u> </u>	
0200	Self Test States (4 items)	0 to 4294967295	0	1	F143	0
Front Pan	nel (Read Only)		*	•	•	
0208	LED Column n State, $n = 1$ to 10 (10 items)	0 to 65535		1	F501	0
0220	Display Message				F204	(none)
0248	Last Key Pressed	0 to 47		1	F530	0 (None)
Keypress	Emulation (Read/Write)			•	<u> </u>	
0280	Simulated keypress write zero before each keystroke	0 to 46		1	F190	0 (No key use between real keys)
Virtual Inp	put Commands (Read/Write Command) (64 Modules)					
0400	Virtual Input 1 State	0 to 1		1	F108	0 (Off)
0401	Virtual Input 2 State	0 to 1		1	F108	0 (Off)
0402	Virtual Input 3 State	0 to 1		1	F108	0 (Off)
0403	Virtual Input 4 State	0 to 1		1	F108	0 (Off)
0404	Virtual Input 5 State	0 to 1		1	F108	0 (Off)
0405	Virtual Input 6 State	0 to 1		1	F108	0 (Off)
0406	Virtual Input 7 State	0 to 1		1	F108	0 (Off)
0407	Virtual Input 8 State	0 to 1		1	F108	0 (Off)
0408	Virtual Input 9 State	0 to 1		1	F108	0 (Off)
0409	Virtual Input 10 State	0 to 1		1	F108	0 (Off)
040A	Virtual Input 11 State	0 to 1		1	F108	0 (Off)
040B	Virtual Input 12 State	0 to 1		1	F108	0 (Off)
040C	Virtual Input 13 State	0 to 1		1	F108	0 (Off)
040D	Virtual Input 14 State	0 to 1		1	F108	0 (Off)
040E	Virtual Input 15 State	0 to 1		1	F108	0 (Off)
040F	Virtual Input 16 State	0 to 1		1	F108	0 (Off)
0410	Virtual Input 17 State	0 to 1		1	F108	0 (Off)
			1		E400	0 (Off)
0411	Virtual Input 18 State	0 to 1		1	F108	0 (011)
0411 0412	Virtual Input 18 State Virtual Input 19 State	0 to 1 0 to 1		1	F108	0 (Off)

Table B-9: MODBUS MEMORY MAP (Sheet 2 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
0414	Virtual Input 21 State	0 to 1		1	F108	0 (Off)
0415	Virtual Input 22 State	0 to 1		1	F108	0 (Off)
0416	Virtual Input 23 State	0 to 1		1	F108	0 (Off)
0417	Virtual Input 24 State	0 to 1		1	F108	0 (Off)
0418	Virtual Input 25 State	0 to 1		1	F108	0 (Off)
0419	Virtual Input 26 State	0 to 1		1	F108	0 (Off)
041A	Virtual Input 27 State	0 to 1		1	F108	0 (Off)
041B	Virtual Input 28 State	0 to 1		1	F108	0 (Off)
041C	Virtual Input 29 State	0 to 1		1	F108	0 (Off)
041D	Virtual Input 30 State	0 to 1		1	F108	0 (Off)
041E	Virtual Input 31 State	0 to 1		1	F108	0 (Off)
041F	Virtual Input 32 State	0 to 1		1	F108	0 (Off)
0420	Virtual Input 33 State	0 to 1		1	F108	0 (Off)
0421	Virtual Input 34 State	0 to 1		1	F108	0 (Off)
0422	Virtual Input 35 State	0 to 1		1	F108	0 (Off)
0423	Virtual Input 36 State	0 to 1		1	F108	0 (Off)
0424	Virtual Input 37 State	0 to 1		1	F108	0 (Off)
0425	Virtual Input 38 State	0 to 1		1	F108	0 (Off)
0426	Virtual Input 39 State	0 to 1		1	F108	0 (Off)
0427	Virtual Input 40 State	0 to 1		1	F108	0 (Off)
0428	Virtual Input 41 State	0 to 1		1	F108	0 (Off)
0429	Virtual Input 42 State	0 to 1		1	F108	0 (Off)
042A	Virtual Input 43 State	0 to 1		1	F108	0 (Off)
042B	Virtual Input 44 State	0 to 1		1	F108	0 (Off)
042C	Virtual Input 45 State	0 to 1		1	F108	0 (Off)
042D	Virtual Input 46 State	0 to 1		1	F108	0 (Off)
042E	Virtual Input 47 State	0 to 1		1	F108	0 (Off)
042F	Virtual Input 48 State	0 to 1		1	F108	0 (Off)
0430	Virtual Input 49 State	0 to 1		1	F108	0 (Off)
0431	Virtual Input 50 State	0 to 1		1	F108	0 (Off)
0432	Virtual Input 51 State	0 to 1		1	F108	0 (Off)
0433	Virtual Input 52 State	0 to 1		1	F108	0 (Off)
0434	Virtual Input 53 State	0 to 1		1	F108	0 (Off)
0435	Virtual Input 54 State	0 to 1		1	F108	0 (Off)
0436	Virtual Input 55 State	0 to 1		1	F108	0 (Off)
0437	Virtual Input 56 State	0 to 1		1	F108	0 (Off)
0438	Virtual Input 57 State	0 to 1		1	F108	0 (Off)
0439	Virtual Input 58 State	0 to 1		1	F108	0 (Off)
043A	Virtual Input 59 State	0 to 1		1	F108	0 (Off)
043B	Virtual Input 60 State	0 to 1		1	F108	0 (Off)
043C	Virtual Input 61 State	0 to 1		1	F108	0 (Off)
043D	Virtual Input 62 State	0 to 1		1	F108	0 (Off)
043E	Virtual Input 63 State	0 to 1		1	F108	0 (Off)
043F	Virtual Input 64 State	0 to 1		1	F108	0 (Off)
	rotocol Settings (Read/Write Setting)	0.1.7-1			Fa-:	
0582	IEC103 Common ASDU Address	0 to 254		1	F001	0
0583	IEC103 Sync Timeout	1 to 1440	min	1	F001	1
	inary Inputs (Read/Write Setting) (96 Modules)	0.1.055			F004	
0584	IEC103 Binary Input 1 FUN	0 to 255		1	F001	0
0585	IEC103 Binary Input 1 INF	0 to 255		1	F001	0
0586	IEC103 Binary Input 1 Operand	0 to 4294967295		1	F300	0
0588	Repeated for Binary Input 2					
058C	Repeated for Binary Input 3					
0590	Repeated for Binary Input 4					

Table B-9: MODBUS MEMORY MAP (Sheet 3 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
0594	Repeated for Binary Input 5					
0598	Repeated for Binary Input 6					
059C	Repeated for Binary Input 7					
05A0	Repeated for Binary Input 8					
05A4	Repeated for Binary Input 9					
05A8	Repeated for Binary Input 10					
05AC	Repeated for Binary Input 11					
05B0	Repeated for Binary Input 12					
05B4	Repeated for Binary Input 13					
05B8	Repeated for Binary Input 14					
05BC	Repeated for Binary Input 15					
05C0	Repeated for Binary Input 16					
05C4	Repeated for Binary Input 17					
05C8	Repeated for Binary Input 18					
05CC	Repeated for Binary Input 19					
05D0	Repeated for Binary Input 20					
05D4	Repeated for Binary Input 21					
05D8	Repeated for Binary Input 22					
05DC	Repeated for Binary Input 23					
05E0	Repeated for Binary Input 24					
05E4	Repeated for Binary Input 25					
05E8	Repeated for Binary Input 26					
05EC	Repeated for Binary Input 27					
05F0	Repeated for Binary Input 28					
05F4	Repeated for Binary Input 29					
05F8	Repeated for Binary Input 30					
05FC	Repeated for Binary Input 31					
0600	Repeated for Binary Input 32					
0604	Repeated for Binary Input 33					
0608	Repeated for Binary Input 34					
060C	Repeated for Binary Input 35					
0610	Repeated for Binary Input 36					
0614	Repeated for Binary Input 37					
0618	Repeated for Binary Input 38					
061C	Repeated for Binary Input 39					
0620	Repeated for Binary Input 40					
0624	Repeated for Binary Input 41					
0628	Repeated for Binary Input 42					
062C	Repeated for Binary Input 43					
0630	Repeated for Binary Input 44					
0634	Repeated for Binary Input 45					
0638	Repeated for Binary Input 46					
063C	Repeated for Binary Input 47					
0640	Repeated for Binary Input 48					
0644	Repeated for Binary Input 49					
0648	Repeated for Binary Input 50					
064C	Repeated for Binary Input 51					
0650	Repeated for Binary Input 52					
0654	Repeated for Binary Input 53					
0658	Repeated for Binary Input 54					
065C	Repeated for Binary Input 55					
0660	Repeated for Binary Input 56					
0664	Repeated for Binary Input 57					
0668	Repeated for Binary Input 58					
0000	operation for billiary impact of					

Table B-9: MODBUS MEMORY MAP (Sheet 4 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
066C	Repeated for Binary Input 59					
0670	Repeated for Binary Input 60					
0674	Repeated for Binary Input 61					
0678	Repeated for Binary Input 62					
067C	Repeated for Binary Input 63					
0680	Repeated for Binary Input 64					
0684	Repeated for Binary Input 65					
0688	Repeated for Binary Input 66					
068C	Repeated for Binary Input 67					
0690	Repeated for Binary Input 68					
0694	Repeated for Binary Input 69					
0698	Repeated for Binary Input 70					
069C	Repeated for Binary Input 71					
06A0	Repeated for Binary Input 72					
06A4	Repeated for Binary Input 73					
06A8	Repeated for Binary Input 74					
06AC	Repeated for Binary Input 75					
06B0	Repeated for Binary Input 76					
06B4	Repeated for Binary Input 77					
06B8	Repeated for Binary Input 78					
06BC	Repeated for Binary Input 79					
06C0	Repeated for Binary Input 80					
06C4	Repeated for Binary Input 81					
06C8	Repeated for Binary Input 82					
06CC	Repeated for Binary Input 83					
06D0	Repeated for Binary Input 84					
06D4	Repeated for Binary Input 85					
06D8	Repeated for Binary Input 86					
06DC	Repeated for Binary Input 87					
06E0	Repeated for Binary Input 88					
06E4	Repeated for Binary Input 89					
06E8	Repeated for Binary Input 90					
06EC	Repeated for Binary Input 91					
06F0	Repeated for Binary Input 92					
06F4	Repeated for Binary Input 93					
06F8	Repeated for Binary Input 94					
06FC	Repeated for Binary Input 95					
0700	Repeated for Binary Input 96					
IEC103 A	SDU Settings (Read/Write Setting) (4 Modules)					
0704	IEC103 ASDU1 TYP	0 to 1		1	F630	1(9)
0705	IEC103 ASDU 1 FUN	0 to 255		1	F001	0
0706	IEC103 ASDU 1 INF	0 to 255		1	F001	0
0707	IEC103 ASDU 1 Scan Timeout	0 to 1000		1	F001	0
0708	IEC103 ASDU 1 Analog Param 1	0 to 65535		1	F600	0
0709	IEC103 ASDU 1 Analog Factor 1	0 to 65.535		0.001	F001	1000
070A	IEC103 ASDU 1 Analog Offset 1	-32768 to 32767		1	F002	0
070B	IEC103 ASDU 1 Analog Param 2	0 to 65535		1	F600	0
070C	IEC103 ASDU 1 Analog Factor 2	0 to 65.535		0.001	F001	1000
070D	IEC103 ASDU 1 Analog Offset 2	-32768 to 32767		1	F002	0
070E	IEC103 ASDU 1 Analog Param 3	0 to 65535		1	F600	0
070F	IEC103 ASDU 1 Analog Factor 3	0 to 65.535		1	F001	1000
0710	IEC103 ASDU 1 Analog Offset 3	-32768 to 32767		1	F002	0
0711	IEC103 ASDU 1 Analog Param 4	0 to 65535		1	F600	0
0712	IEC103 ASDU 1 Analog Factor 4	0 to 65.535		0.001	F001	1000

Table B-9: MODBUS MEMORY MAP (Sheet 5 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
0713	IEC103 ASDU 1 Analog Offset 4	-32768 to 32767		1	F002	0
0714	IEC103 ASDU 1 Analog Param 5	0 to 65535		1	F600	0
0715	IEC103 ASDU 1 Analog Factor 5	0 to 65.535		0.001	F001	1000
0716	IEC103 ASDU 1 Analog Offset 5	-32768 to 32767		1	F002	0
0717	IEC103 ASDU 1 Analog Param 6	0 to 65535		1	F600	0
0718	IEC103 ASDU 1 Analog Factor 6	0 to 65.535		0.001	F001	1000
0719	IEC103 ASDU 1 Analog Offset 6	-32768 to 32767		1	F002	0
071A	IEC103 ASDU 1 Analog Param 7	0 to 65535		1	F600	0
071B	IEC103 ASDU 1 Analog Factor 7	0 to 65.535		0.001	F001	1000
071C	IEC103 ASDU 1 Analog Offset 7	-32768 to 32767		1	F002	0
071D	IEC103 ASDU 1 Analog Param 8	0 to 65535		1	F600	0
071E	IEC103 ASDU 1 Analog Factor 8	0 to 65.535		0.001	F001	1000
071F	IEC103 ASDU 1 Analog Offset 8	-32768 to 32767		1	F002	0
0720	IEC103 ASDU 1 Analog Param 9	0 to 65535		1	F600	0
0721	IEC103 ASDU 1 Analog Factor 9	0 to 65.535		0.001	F001	1000
0722	IEC103 ASDU 1 Analog Offset 9	-32768 to 32767		1	F002	0
0723	Repeated for IEC103 ASDU 2	021.00.00.021.01				
0742	Repeated for IEC103 ASDU 3		1			
0761	Repeated for IEC103 ASDU 4					
	ommands (Read/Write Setting) (32 Modules)		I	l .		
0780	IEC103 Command 1 FUN	0 to 255		1	F001	0
0781	IEC103 Command 1 INF	0 to 255		1	F001	0
0782	IEC103 Command 1 Param ON	0 to 64		1	F631	0 (OFF)
0783	IEC103 Command 1 Param OFF	0 to 64		1	F631	0 (OFF)
0784	Repeated for IEC103 Command 2	0.00.				0 (0.1)
0788	Repeated for IEC103 Command 3					
078C	Repeated for IEC103 Command 4					
0790	Repeated for IEC103 Command 5					
0794	Repeated for IEC103 Command 6					
0798	Repeated for IEC103 Command 7					
079C	Repeated for IEC103 Command 8					
07A0	Repeated for IEC103 Command 9					
07A4	Repeated for IEC103 Command 10					
07A8	Repeated for IEC103 Command 11					
07AC	Repeated for IEC103 Command 12					
07B0	Repeated for IEC103 Command 13					
07B4	Repeated for IEC103 Command 14					
07B8	Repeated for IEC103 Command 15					
07BC	Repeated for IEC103 Command 16					
07C0	Repeated for IEC103 Command 17					
07C4	Repeated for IEC103 Command 18					
07C8	Repeated for IEC103 Command 19					
07CC	Repeated for IEC103 Command 20					
07D0	Repeated for IEC103 Command 21					
07D4	Repeated for IEC103 Command 22					
07D8	Repeated for IEC103 Command 23					
07DC	Repeated for IEC103 Command 24					
07E0	Repeated for IEC103 Command 25					
07E4	Repeated for IEC103 Command 26					
07E8	Repeated for IEC103 Command 27					
07EC	Repeated for IEC103 Command 28		1			
07F0	Repeated for IEC103 Command 29					
07F4	Repeated for IEC103 Command 30			-		
07F8	Repeated for IEC103 Command 31					
3,10		l .	1	1		

Table B-9: MODBUS MEMORY MAP (Sheet 6 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT	
07FC	Repeated for IEC103 Command 32						
Digital Counter States (Read Only Non-Volatile) (8 Modules)							
0800	Digital Counter 1 Value	-2147483647 to		1	F004	0	
0802	Digital Counter 1 Frozen	2147483647 -2147483647 to		1	F004	0	
0804	Digital Counter 1 Frozen Time Stamp	2147483647 0 to 4294967295		1	F050	0	
0806	Digital Counter 1 Frozen Time Stamp us	0 to 4294967295		1	F003	0	
0808	Repeated for Digital Counter 2	0 10 4204001 200			1 000	-	
0810	Repeated for Digital Counter 3						
0818	Repeated for Digital Counter 4						
0820	Repeated for Digital Counter 5						
0828	Repeated for Digital Counter 6						
0830	Repeated for Digital Counter 7						
0838	Repeated for Digital Counter 8						
	s (Read Only)						
0900	FlexState Bits (16 items)	0 to 65535		1	F001	0	
	States (Read Only)	0 10 00000			1 00 1	Ü	
1000	Element Operate States (64 items)	0 to 65535		1	F502	0	
	plays Actuals (Read Only)	0 10 00000		<u>'</u>	1 002	Ü	
1080	Formatted user-definable displays (16 items)				F200	(none)	
	Jser Map Actuals (Read Only)				1 200	(Horio)	
1200	User Map Values (256 items)	0 to 65535		1	F001	0	
	Fargets (Read Only)	0 10 00000		<u>'</u>	1 001	Ü	
14E0	Target Sequence	0 to 65535		1	F001	0	
14E1	Number of Targets	0 to 65535		1	F001	0	
	Fargets (Read/Write)	0 10 00000		<u>'</u>	1 00 1	Ū	
14E2	Target to Read	0 to 65535	T	1	F001	0	
	Fargets (Read Only)	0 10 00000			1 00 1	Ü	
14E3	Target Message				F200	u n	
	out/Output States (Read Only)				. 200	·	
1500	Contact Input States (6 items)	0 to 65535		1	F500	0	
1508	Virtual Input States (8 items)	0 to 65535		1	F500	0	
1510	Contact Output States (4 items)	0 to 65535		1	F500	0	
1518	Contact Output Current States (4 items)	0 to 65535		1	F500	0	
1520	Contact Output Voltage States (4 items)	0 to 65535		1	F500	0	
1528	Virtual Output States (6 items)	0 to 65535		1	F500	0	
1530	Contact Output Detectors (4 items)	0 to 65535		1	F500	0	
	tput States (Read Only)						
1540	Remote Device States (2 items)	0 to 65535		1	F500	0	
1542	Remote Input States (4 items)	0 to 65535		1	F500	0	
1550	Remote Devices Online	0 to 1		1	F126	0 (No)	
1551	Remote Double-Point Status Input 1 State	0 to 3		1	F605	3 (Bad)	
1552	Remote Double-Point Status Input 2 State	0 to 3		1	F605	3 (Bad)	
1553	Remote Double-Point Status Input 3 State	0 to 3		1	F605	3 (Bad)	
1554	Remote Double-Point Status Input 4 State	0 to 3		1	F605	3 (Bad)	
1555	Remote Double-Point Status Input 5 State	0 to 3		1	F605	3 (Bad)	
	Direct Input/Output States (Read Only)					,,	
15C0	Direct Input States (6 items)	0 to 65535		1	F500	0	
15C8	Direct Outputs Average Message Return Time 1	0 to 65535	ms	1	F001	0	
15C9	Direct Outputs Average Message Return Time 2	0 to 65535	ms	1	F001	0	
15CA	Direct Inputs/Outputs Unreturned Message Count - Ch. 1	0 to 65535		1	F001	0	
15CB	Direct Inputs/Outputs Unreturned Message Count - Ch. 2	0 to 65535		1	F001	0	
15D0	Direct Device States	0 to 65535		1	F500	0	
15D1	Reserved	0 to 65535		1	F001	0	
.051		3 10 00000	1	<u> </u>	. 001	v	

Table B-9: MODBUS MEMORY MAP (Sheet 7 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
15D2	Direct Inputs/Outputs CRC Fail Count 1	0 to 65535		1	F001	0
15D3	Direct Inputs/Outputs CRC Fail Count 2	0 to 65535		1	F001	0
Field Unit	Input/Output States (Read Only)		I.			
15E0	Field Unit Contact Input States (3 items)	0 to 65535		1	F500	0
15E3	Field Unit Contact Input Output Operand States (8 items)	0 to 65535		1	F500	0
15EB	Field Contact Output Physical States (8 items)	0 to 65535		1	F500	0
15F3	Field Contact Output Current States (8 items)	0 to 65535		1	F500	0
15FB	Field Contact Output Physical States (8 items)	0 to 65535		1	F500	0
1603	Field Shared Input States	0 to 65535		1	F500	0
1604	Field Shared Input Channel States	0 to 65535		1	F500	0
1605	Field Shared Input Test States	0 to 65535		1	F500	0
1606	Field Shared Output Operand States	0 to 65535		1	F500	0
1607	Field Latching Output Open Operand States	0 to 65535		1	F500	0
1608	Field Latching Output Close Operand States	0 to 65535		1	F500	0
1609	Field Latching Output Open Driver States	0 to 65535		1	F500	0
160A	Field Latching Output Close Driver States	0 to 65535		1	F500	0
160B	Field Latching Output Physical States	0 to 65535		1	F500	0
160C	Field Unit Online/Offline States	0 to 65535		1	F500	0
160D	Field RTD Input Trouble States	0 to 65535		1	F500	0
160E	Field Transducer Input Trouble States	0 to 65535		1	F500	0
	Fibre Channel Status (Read/Write)					
1610	Ethernet Primary Fibre Channel Status	0 to 2		1	F134	0 (Fail)
1611	Ethernet Secondary Fibre Channel Status	0 to 2		1	F134	0 (Fail)
1612	Ethernet Tertiary Fibre Channel Status	0 to 2		1	F134	0 (Fail)
	ger Actuals (Read Only)	1				
1618	Data Logger Channel Count	0 to 16	channel	1	F001	0
1619	Time of Oldest Available Samples	0 to 4294967295	seconds	1	F050	0
161B	Time of Newest Available Samples	0 to 4294967295	seconds	1	F050	0
161D	Data Logger Duration	0 to 999.9	days	0.1	F001	0
	Directional Power Actuals (Read Only) (2 Modules)	-2147483647 to 2147483647	١٨/	1 1	F060	0
1680 1682	Sensitive Directional Power 1 Power Sensitive Directional Power 2 Power	-2147483647 to 2147483647	W	1	F060 F060	0
	RTD Actuals (Read Only) (8 Modules)	-2147403047 (0 2147403047	VV	'	F000	U
16C0	Field RTD x Value	-32768 to 32767	°C	1 1	F002	0
16C1	Repeated for module number 2	-32700 10 32707		'	1 002	0
16C2	Repeated for module number 3					
16C3	Repeated for module number 4					
16C4	Repeated for module number 5					
16C5	Repeated for module number 6					
16C6	Repeated for module number 7					
16C7	Repeated for module number 8					
	Transducer Actuals (Read Only) (8 Modules)			l.		
16C8	Field Transducer x Value	-32.768 to 32.767		0.001	F004	0
16CA	Repeated for module number 2					
16CC	Repeated for module number 3					
16CE	Repeated for module number 4					
16D0	Repeated for module number 5					
16D2	Repeated for module number 6					
16D4	Repeated for module number 7					
16D6	Repeated for module number 8					
Frequenc	y Rate of Change Actuals (Read Only) (4 Modules)					
16E0	Frequency Rate of Change 1	-327.67 to 327.67	Hz/s	0.01	F002	0
16E1	Reserved (3 items)	0 to 65535		1	F001	0
16E4	Repeated for Frequency Rate of Change 2					
		•	•	•		

Table B-9: MODBUS MEMORY MAP (Sheet 8 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
16E8	Repeated for Frequency Rate of Change 3					
16EC	Repeated for Frequency Rate of Change 4					
Source C	urrent (Read Only) (6 Modules)					
1800	Source 1 Phase A Current RMS	0 to 999999.999	Α	0.001	F060	0
1802	Source 1 Phase B Current RMS	0 to 999999.999	Α	0.001	F060	0
1804	Source 1 Phase C Current RMS	0 to 999999.999	Α	0.001	F060	0
1806	Source 1 Neutral Current RMS	0 to 999999.999	Α	0.001	F060	0
1808	Source 1 Phase A Current Magnitude	0 to 999999.999	Α	0.001	F060	0
180A	Source 1 Phase A Current Angle	-359.9 to 0	degrees	0.1	F002	0
180B	Source 1 Phase B Current Magnitude	0 to 999999.999	Α	0.001	F060	0
180D	Source 1 Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0
180E	Source 1 Phase C Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1810	Source 1 Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0
1811	Source 1 Neutral Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1813	Source 1 Neutral Current Angle	-359.9 to 0	degrees	0.1	F002	0
1814	Source 1 Ground Current RMS	0 to 999999.999	Α	0.001	F060	0
1816	Source 1 Ground Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1818	Source 1 Ground Current Angle	-359.9 to 0	degrees	0.1	F002	0
1819	Source 1 Zero Sequence Current Magnitude	0 to 999999.999	Α	0.001	F060	0
181B	Source 1 Zero Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
181C	Source 1 Positive Sequence Current Magnitude	0 to 999999.999	Α	0.001	F060	0
181E	Source 1 Positive Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
181F	Source 1 Negative Sequence Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1821	Source 1 Negative Sequence Current Angle	-359.9 to 0	degrees	0.1	F002	0
1822	Source 1 Differential Ground Current Magnitude	0 to 999999.999	Α	0.001	F060	0
1824	Source 1 Differential Ground Current Angle	-359.9 to 0	degrees	0.1	F002	0
1825	Reserved (27 items)				F001	0
1840	Repeated for Source 2					
1880	Repeated for Source 3					
18C0	Repeated for Source 4					
1900	Repeated for Source 5					
1940	Repeated for Source 6					
	Ditage (Read Only) (6 Modules)	0 to 000000 000	1 \/	0.001	F060	0
1A00	Source 1 Phase AG Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A02 1A04	Source 1 Phase BG Voltage RMS Source 1 Phase CG Voltage RMS	0 to 999999.999	V	0.001	F060	0
	Source 1 Phase CG Voltage RMS Source 1 Phase AG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A06	9 0	0 to 999999.999	-	0.001	F060	_
1A08 1A09	Source 1 Phase AG Voltage Angle Source 1 Phase BG Voltage Magnitude	-359.9 to 0 0 to 999999.999	degrees	0.1	F002 F060	0
1A09	Source 1 Phase BG Voltage Magnitude Source 1 Phase BG Voltage Angle	-359.9 to 0	degrees	0.001	F000 F002	0
1A0C	Source 1 Phase GG Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A0E	Source 1 Phase CG Voltage Magnitude Source 1 Phase CG Voltage Angle	-359.9 to 0	degrees	0.001	F000	0
1A0F	Source 1 Phase CG Voltage Angle Source 1 Phase AB or AC Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A11	Source 1 Phase BC or BA Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A13	Source 1 Phase CA or CB Voltage RMS	0 to 999999.999	V	0.001	F060	0
1A15	Source 1 Phase AB or AC Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A17	Source 1 Phase AB or AC Voltage Angle	-359.9 to 0	degrees	0.001	F002	0
1A18	Source 1 Phase BC or BA Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A1A	Source 1 Phase BC or BA Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A1B	Source 1 Phase CA or CB Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A1D	Source 1 Phase CA or CB Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A1E	Source 1 Auxiliary Voltage RMS	123.0 10 0	V		F060	0
1A20	Source 1 Auxiliary Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A22	Source 1 Auxiliary Voltage Angle	-359.9 to 0	degrees	0.001	F002	0
17 \	Source Franking, Voltage Filigio	303.3 10 0	augicus	V. 1	. 502	,

Table B-9: MODBUS MEMORY MAP (Sheet 9 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1A23	Source 1 Zero Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A25	Source 1 Zero Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A26	Source 1 Positive Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A28	Source 1 Positive Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A29	Source 1 Negative Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
1A2B	Source 1 Negative Sequence Voltage Angle	-359.9 to 0	degrees	0.1	F002	0
1A2C	Reserved (20 items)				F001	0
1A40	Repeated for Source 2					
1A80	Repeated for Source 3					
1AC0	Repeated for Source 4					
1B00	Repeated for Source 5					
1B40	Repeated for Source 6					
Source Po	ower (Read Only) (6 Modules)					
1C00	Source 1 Three Phase Real Power	-1000000000000 to 1000000000000	W	0.001	F060	0
1C02	Source 1 Phase A Real Power	-1000000000000 to 1000000000000	W	0.001	F060	0
1C04	Source 1 Phase B Real Power	-1000000000000 to 100000000000	W	0.001	F060	0
1C06	Source 1 Phase C Real Power	-1000000000000 to 1000000000000	W	0.001	F060	0
1C08	Source 1 Three Phase Reactive Power	-1000000000000 to 100000000000	var	0.001	F060	0
1C0A	Source 1 Phase A Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C0C	Source 1 Phase B Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C0E	Source 1 Phase C Reactive Power	-1000000000000 to 1000000000000	var	0.001	F060	0
1C10	Source 1 Three Phase Apparent Power	-1000000000000 to 100000000000	VA	0.001	F060	0
1C12	Source 1 Phase A Apparent Power	-1000000000000 to 100000000000	VA	0.001	F060	0
1C14	Source 1 Phase B Apparent Power	-1000000000000 to 100000000000	VA	0.001	F060	0
1C16	Source 1 Phase C Apparent Power	-1000000000000 to 1000000000000	VA	0.001	F060	0
1C18	Source 1 Three Phase Power Factor	-0.999 to 1		0.001	F013	0
1C19	Source 1 Phase A Power Factor	-0.999 to 1		0.001	F013	0
1C1A	Source 1 Phase B Power Factor	-0.999 to 1		0.001	F013	0
1C1B	Source 1 Phase C Power Factor	-0.999 to 1		0.001	F013	0
1C1C	Reserved (4 items)				F001	0
1C20	Repeated for Source 2					
1C40	Repeated for Source 3					
1C60	Repeated for Source 4					
1C80	Repeated for Source 5					
1CA0	Repeated for Source 6					
	nergy (Read Only Non-Volatile) (6 Modules)					
1D00	Source 1 Positive Watthour	0 to 100000000000	Wh	0.001	F060	0
1D02	Source 1 Negative Watthour	0 to 1000000000000	Wh	0.001	F060	0
1D04	Source 1 Positive Varhour	0 to 100000000000	varh	0.001	F060	0
1D06	Source 1 Negative Varhour	0 to 100000000000	varh	0.001	F060	0
1D08	Reserved (8 items)				F001	0
1D10	Repeated for Source 2					
1D20	Repeated for Source 3					
1D30	Repeated for Source 4					
1D40	Repeated for Source 5					
1D50	Repeated for Source 6					

Table B-9: MODBUS MEMORY MAP (Sheet 10 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Energy Co	ommands (Read/Write Command)					
1D60	Energy Clear Command	0 to 1		1	F126	0 (No)
Source Fr	requency (Read Only) (6 Modules)					
1D80	Frequency for Source 1	2 to 90	Hz	0.001	F003	0
1D82	Frequency for Source 2	2 to 90	Hz	0.001	F003	0
1D84	Frequency for Source 3	2 to 90	Hz	0.001	F003	0
1D86	Frequency for Source 4	2 to 90	Hz	0.001	F003	0
1D88	Frequency for Source 5	2 to 90	Hz	0.001	F003	0
1D8A	Frequency for Source 6	2 to 90	Hz	0.001	F003	0
Source Do	emand (Read Only) (6 Modules)					
1E00	Source 1 Demand Ia	0 to 999999.999	Α	0.001	F060	0
1E02	Source 1 Demand Ib	0 to 999999.999	Α	0.001	F060	0
1E04	Source 1 Demand Ic	0 to 999999.999	Α	0.001	F060	0
1E06	Source 1 Demand Watt	0 to 999999.999	W	0.001	F060	0
1E08	Source 1 Demand Var	0 to 999999.999	var	0.001	F060	0
1E0A	Source 1 Demand Va	0 to 999999.999	VA	0.001	F060	0
1E0C	Reserved (4 items)				F001	0
1E10	Repeated for Source 2					
1E20	Repeated for Source 3					
1E30	Repeated for Source 4					
1E40	Repeated for Source 5					
1E50	Repeated for Source 6 emand Peaks (Read Only Non-Volatile) (6 Modules)					
		0 to 999999.999	Λ	0.001	T060	0
1E80 1E82	Source 1 Demand Ia Maximum Source 1 Demand Ia Maximum Date	0 to 4294967295	A	0.001	F060 F050	0
1E84	Source 1 Demand Ib Maximum	0 to 999999.999		0.001	F060	0
1E86	Source 1 Demand Ib Maximum Date	0 to 4294967295	A	1	F050	0
1E88	Source 1 Demand Ic Maximum	0 to 999999.999	A	0.001	F060	0
1E8A	Source 1 Demand Ic Maximum Date	0 to 4294967295		1	F050	0
1E8C	Source 1 Demand Watt Maximum	0 to 999999.999	W	0.001	F060	0
1E8E	Source 1 Demand Watt Maximum Date	0 to 4294967295		1	F050	0
1E90	Source 1 Demand Var	0 to 999999.999	var	0.001	F060	0
1E92	Source 1 Demand Var Maximum Date	0 to 4294967295		1	F050	0
1E94	Source 1 Demand Va Maximum	0 to 999999.999	VA	0.001	F060	0
1E96	Source 1 Demand Va Maximum Date	0 to 4294967295		1	F050	0
1E98	Reserved (8 items)				F001	0
1EA0	Repeated for Source 2					
1EC0	Repeated for Source 3					
1EE0	Repeated for Source 4					
1F00	Repeated for Source 5					
1F20	Repeated for Source 6					
Source Vo	oltage THD and Harmonics (Read Only) (up to 4 Modules)				
1F80	Source 1 Va THD	0 to 99.9		0.1	F001	0
1F81	Source 1 Va Harmonics - 2nd to 25th (24 items)	0 to 99.9		0.1	F001	0
1F99	Source 1 Vb THD	0 to 99.9		0.1	F001	0
1F9A	Source 1 Vb Harmonics - 2nd to 25th (24 items)	0 to 99.9		0.1	F001	0
1FB2	Source 1 Vc THD	0 to 99.9		0.1	F001	0
1FB3	Source 1 Vc Harmonics - 2nd to 25th (24 items)	0 to 99.9		0.1	F001	0
1FCB	Repeated for Source 2					
	lashover (Read/Write Setting) (2 Modules)					
2196	Breaker Flashover 1 Function	0 to 1		1	F102	0 (Disabled)
2197	Breaker Flashover 1 Side 1 Source	0 to 5		1	F167	0 (SRC 1)
2198	Breaker Flashover 1 Side 2 Source	0 to 6		1	F211	0 (None)
2199	Breaker Flashover 1 Status Closed A	0 to 4294967295		1	F300	0

Table B-9: MODBUS MEMORY MAP (Sheet 11 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
219B	Breaker Flashover 1 Status Closed B	0 to 4294967295		1	F300	0
219D	Breaker Flashover 1 Status Closed C	0 to 4294967295		1	F300	0
219F	Breaker Flashover 1 Voltage Pickup Level	0 to 1.5	pu	0.001	F001	850
21A0	Breaker Flashover 1 Voltage Difference Pickup Level	0 to 100000	V	1	F060	1000
21A2	Breaker Flashover 1 Current Pickup Level	0 to 1.5	pu	0.001	F001	600
21A3	Breaker Flashover 1 Pickup Delay	0 to 65.535	S	0.001	F001	100
21A4	Breaker Flashover 1 Supervision Phase A	0 to 4294967295		1	F300	0
21A6	Breaker Flashover 1 Supervision Phase B	0 to 4294967295		1	F300	0
21A8	Breaker Flashover 1 Supervision Phase C	0 to 4294967295		1	F300	0
21AA	Breaker Flashover 1 Block	0 to 4294967295		1	F300	0
21AC	Breaker Flashover 1 Events	0 to 1		1	F102	0 (Disabled)
21AD	Breaker Flashover 1 Target	0 to 2		1	F109	0 (Self-Reset)
21AE	Reserved (4 items)				F001	0
21B2	Repeated for breaker flashover 2					
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)		l		
21E0	Breaker 1 Arcing Current Phase A	0 to 99999999	kA ² -cyc	1	F060	0
21E2	Breaker 1 Arcing Current Phase B	0 to 99999999	kA ² -cyc	1	F060	0
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)		l		
21E4	Breaker 1 Arcing Current Phase C	0 to 99999999	kA ² -cyc	1	F060	0
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)		l		
21E6	Breaker 1 Operating Time Phase A	0 to 65535	ms	1	F001	0
21E7	Breaker 1 Operating Time Phase B	0 to 65535	ms	1	F001	0
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)				
21E8	Breaker 1 Operating Time Phase C	0 to 65535	ms	1	F001	0
21E9	Breaker 1 Operating Time	0 to 65535	ms	1	F001	0
21EA	Repeated for module number 2					-
	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)				
21EE	Repeated for module number 2	,				
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)				
21F0	Repeated for module number 2			l		
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)				
21F2	Repeated for module number 2					
Breaker A	Arcing Current Actuals (Read Only Non-Volatile) (6 Modul	les)				
21F4	Repeated for module number 3					
21FE	Repeated for module number 4					
2208	Repeated for module number 5					
2212	Repeated for module number 6					
	Arcing Current Commands (Read/Write Command) (6 Mo	dules)	1	l.	1	
2224	Breaker 1 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
2225	Breaker 2 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
2226	Breaker 3 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
2227	Breaker 4 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
2228	Breaker 5 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
2229	Breaker 6 Arcing Current Clear Command	0 to 1		1	F126	0 (No)
	ds Unauthorized Access (Read/Write Command)	1		<u> </u>	.=-	- ()
2230	Reset Unauthorized Access	0 to 1		1	F126	0 (No)
	h Impedance Fault Detection) Commands (Read/Write Co		1		L The state of the	- (- /)
2240	Hi-Z Clear Oscillography	0 to 1		1	F126	0 (No)
2241	Hi-Z Oscillography Force Trigger	0 to 1		1	F126	0 (No)
2242	Hi-Z Oscillography Force Algorithm Capture	0 to 1		1	F126	0 (No)
2243	Hi-Z Reset Sigma Values	0 to 1		1	F126	0 (No)
	n Impedance Fault Detection) Status (Read Only)					- ()
2250	Hi-Z Status	0 to 9		1	F187	0 (NORMAL)
	Hi-Z Phase A Arc Confidence	0 to 100		1	F001	0
2251						

Table B-9: MODBUS MEMORY MAP (Sheet 12 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT		
2252	Hi-Z Phase B Arc Confidence	0 to 100		1	F001	0		
2253	Hi-Z Phase C Arc Confidence	0 to 100		1	F001	0		
2254	Hi-Z Neutral Arc Confidence	0 to 100		1	F001	0		
Hi-Z (High	li-Z (High Impedance Fault Detection) Records (Read Only) (4 Modules)							
2260	Hi-Z Capture 1 Trigger Type	0 to 6		1	F188	0 (NONE)		
2261	Hi-Z Capture 1 Time	0 to 1		1	F050	0		
2263	Repeated for Hi-Z Capture 2							
2266	Repeated for Hi-Z Capture 3							
2269	Repeated for Hi-Z Capture 4							
Hi-Z (High	Impedance Fault Detection) RMS Records (Read Only) (4 Modules)						
2270	Hi-Z RMS Capture 1 Trigger Type	0 to 6		1	F188	0 (NONE)		
2271	Hi-Z RMS Capture 1 Time	0 to 1		1	F050	0		
2273	Repeated for Hi-Z RMS Capture 2							
2276	Repeated for Hi-Z RMS Capture 3							
2279	Repeated for Hi-Z RMS Capture 4							
Fault Loca	ation (Read Only) (5 Modules)				•			
2340	Fault 1 Prefault Phase A Current Magnitude	0 to 999999.999	Α	0.001	F060	0		
2342	Fault 1 Prefault Phase A Current Angle	-359.9 to 0	degrees	0.1	F002	0		
2343	Fault 1 Prefault Phase B Current Magnitude	0 to 999999.999	Α	0.001	F060	0		
2345	Fault 1 Prefault Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0		
2346	Fault 1 Prefault Phase C Current Magnitude	0 to 999999.999	Α	0.001	F060	0		
2348	Fault 1 Prefault Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0		
2349	Fault 1 Prefault Phase A Voltage Magnitude	0 to 999999.999	V	0.001	F060	0		
234B	Fault 1 Prefault Phase A Voltage Angle	-359.9 to 0	degrees	0.1	F002	0		
234C	Fault 1 Prefault Phase B Voltage Magnitude	0 to 999999.999	V	0.001	F060	0		
234E	Fault 1 Prefault Phase B Voltage Angle	-359.9 to 0	degrees	0.1	F002	0		
234F	Fault 1 Prefault Phase C Voltage Magnitude	0 to 999999.999	V	0.001	F060	0		
2351	Fault 1 Prefault Phase C Voltage Angle	-359.9 to 0	degrees	0.1	F002	0		
2352	Fault 1 Phase A Current Magnitude	0 to 999999.999	A	0.001	F060	0		
2354	Fault 1 Phase A Current Angle	-359.9 to 0	degrees	0.1	F002	0		
2355	Fault 1 Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0		
2357	Fault 1 Phase B Current Angle	-359.9 to 0	degrees	0.1	F002	0		
2358	Fault 1 Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0		
235A	Fault 1 Phase C Current Angle	-359.9 to 0	degrees	0.1	F002	0		
235B	Fault 1 Phase A Voltage Magnitude	0 to 999999.999	V	0.001	F060	0		
235D	Fault 1 Phase A Voltage Angle	-359.9 to 0	degrees	0.1	F002	0		
235E	Fault 1 Phase B Voltage Magnitude	0 to 999999.999	V	0.001	F060	0		
2360	Fault 1 Phase B Voltage Angle	-359.9 to 0	degrees	0.1	F002	0		
2361	Fault 1 Phase C Voltage Magnitude	0 to 999999.999	V	0.001	F060	0		
2363	Fault 1 Phase C Voltage Angle	-359.9 to 0	degrees	0.1	F002	0		
2364	Fault 1 Type	0 to 11		1	F148	0 (NA)		
2365	Fault 1 Location based on Line length units (km or miles)	-3276.7 to 3276.7		0.1	F002	0		
2366	Repeated for Fault 2		1					
238C	Repeated for Fault 3		 					
23B2	Repeated for Fault 4							
23D8	Repeated for Fault 5		 					
	heck Actuals (Read Only) (4 Modules)							
2400	Synchrocheck 1 Delta Voltage	-1000000000000 to 1000000000000	V	1	F060	0		
2402	Synchrocheck 1 Delta Frequency	0 to 655.35	Hz	0.01	F001	0		
2403	Synchrocheck 1 Delta Phase	0 to 359.9	degrees	0.1	F001	0		
2404	Repeated for Synchrocheck 2		1					
2408	Repeated for Synchrocheck 3		1					
240C	Repeated for Synchrocheck 4		1					
	. ,		1		l	I		

Table B-9: MODBUS MEMORY MAP (Sheet 13 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Autoreclo	ose Status (Read Only) (6 Modules)					
2410	Autoreclose 1 Count	0 to 65535		1	F001	0
2411	Autoreclose 2 Count	0 to 65535		1	F001	0
2412	Autoreclose 3 Count	0 to 65535		1	F001	0
2413	Autoreclose 4 Count	0 to 65535		1	F001	0
2414	Autoreclose 5 Count	0 to 65535		1	F001	0
2415	Autoreclose 6 Count	0 to 65535		1	F001	0
Field Unit	t Raw Data Settings (Read/Write Setting)			ı		
2460	Field Raw Data Port	0 to 7		1	F244	6 (H1a)
2461	Field Raw Data Freeze	0 to 1		1	F102	0 (Disabled)
Remote D	Double-Point Status Inputs (Read/Write Setting Registers	s) (5 Modules)		ı		
2540	Remote Double-point Status Input 1 Device	1 to 32		1	F001	1
2541	Remote Double-point Status Input 1 Item	0 to 64		1	F606	0 (None)
2542	Remote Double-point Status Input 1 Name	1 to 64		1	F205	"RemDPS Ip 1"
2548	Remote Double-point Status Input 1 Events	0 to 1		1	F102	0 (Disabled)
2549	Repeated for double-point status input 2					,
2552	Repeated for double-point status input 3					
255B	Repeated for double-point status input 4					
2564	Repeated for double-point status input 5					
	leasurement Unit Actual Values (Read Only)			1		
256D	PMU 1 Phase A Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
256F	PMU Unit 1 Phase A Voltage Angle	-180 to 180	۰	0.1	F002	0
2570	PMU 1 Phase B Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2572	PMU 1 Phase B Voltage Angle	-180 to 180	0	0.1	F002	0
2573	PMU 1 Phase C Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2575	PMU 1 Phase C Voltage Angle	-180 to 180	۰	0.1	F002	0
2576	PMU 1 Auxiliary Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2578	PMU 1 Auxiliary Voltage Angle	-180 to 180	۰	0.1	F002	0
2579	PMU 1 Positive Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
257B	PMU 1 Positive Sequence Voltage Angle	-180 to 180	۰	0.1	F002	0
257C	PMU 1 Negative Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
257E	PMU 1 Negative Sequence Voltage Angle	-180 to 180	0	0.1	F002	0
257F	PMU 1 Zero Sequence Voltage Magnitude	0 to 999999.999	V	0.001	F060	0
2581	PMU 1 Zero Sequence Voltage Angle	-180 to 180		0.1	F002	0
2582	PMU 1 Phase A Current Magnitude	0 to 999999.999	A	0.001	F060	0
2584	PMU 1 Phase A Current Angle	-180 to 180	•	0.001	F002	0
2585	PMU 1 Phase B Current Magnitude	0 to 999999.999	A	0.001	F060	0
2587	PMU 1 Phase B Current Angle	-180 to 180		0.1	F002	0
2588	PMU 1 Phase C Current Magnitude	0 to 999999.999	A	0.001	F060	0
258A	PMU 1 Phase C Current Angle	-180 to 180		0.1	F002	0
258B	PMU 1 Ground Current Magnitude	0 to 999999.999	A	0.001	F060	0
258D	PMU 1 Ground Current Angle	-180 to 180	•	0.001	F002	0
258E	PMU 1 Positive Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
2590	PMU 1 Positive Sequence Current Angle	-180 to 180		0.001	F002	0
2591	PMU 1 Negative Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
2593	PMU 1 Negative Sequence Current Magnitude	-180 to 180	•	0.001	F002	0
2594	PMU 1 Zero Sequence Current Magnitude	0 to 999999.999	A	0.001	F060	0
2594	PMU 1 Zero Sequence Current Magnitude PMU 1 Zero Sequence Current Angle	-180 to 180	· ·	0.001	F002	0
2597	PMU 1 Frequency	2 to 90	Hz	0.001	F002	0
2597	PMU 1 df/dt	-327.67 to 327.67	Hz/s	0.001	F003	0
2599 259A	PMU 1 Configuration Change Counter	0 to 655.35	112/5	0.01	F002 F001	0
259A 259B	Reserved (4 items)	0 to 0 1		1	F001	0
				_ '	FUUT	U
	leasurement Unit Integer Values (Read Only Actual Value	,	0000:-1-	1 1	F000	
2699	PMU 1 SOC Timestamp	0 to 4294967295	seconds	1	F003	0

Table B-9: MODBUS MEMORY MAP (Sheet 14 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
269B	PMU 1 FRAMESEC Timestamp	0 to 4294967295	seconds	1	F003	0
269D	PMU 1 STAT Flags	0 to 4294967295		1	F003	0
Phasor M	easurement Unit Aggregator Actual Values (Read Only)					
26BD	PMU 1 Aggregator PDU Size				F001	0
IEC 61850	GGIO5 Configuration (Read/Write Setting Registers) (16	6 Modules)				
26D0	IEC 61850 GGIO5 uinteger Input 1 Operand				F612	0
26D1	IEC 61850 GGIO5 uinteger Input 2 Operand				F612	0
26D2	IEC 61850 GGIO5 uinteger Input 3 Operand				F612	0
26D3	IEC 61850 GGIO5 uinteger Input 4 Operand				F612	0
26D4	IEC 61850 GGIO5 uinteger Input 5 Operand				F612	0
26D5	IEC 61850 GGIO5 uinteger Input 6 Operand				F612	0
26D6	IEC 61850 GGIO5 uinteger Input 7 Operand				F612	0
26D7	IEC 61850 GGIO5 uinteger Input 8 Operand				F612	0
26D8	IEC 61850 GGIO5 uinteger Input 9 Operand				F612	0
26D9	IEC 61850 GGIO5 uinteger Input 10 Operand				F612	0
26DA	IEC 61850 GGIO5 uinteger Input 11 Operand				F612	0
26DB	IEC 61850 GGIO5 uinteger Input 12 Operand				F612	0
26DC	IEC 61850 GGIO5 uinteger Input 13 Operand				F612	0
26DD	IEC 61850 GGIO5 uinteger Input 14 Operand				F612	0
26DE	IEC 61850 GGIO5 uinteger Input 15 Operand				F612	0
26DF	IEC 61850 GGIO5 uinteger Input 16 Operand				F612	0
	Received Integers (Read Only Actual Values) (16 Modul		-			
26F0	IEC 61850 Received uinteger 1	0 to 4294967295		1	F003	0
26F2	IEC 61850 Received uinteger 2	0 to 4294967295		1	F003	0
26F4	IEC 61850 Received uinteger 3	0 to 4294967295		1	F003	0
26F6	IEC 61850 Received uinteger 4	0 to 4294967295		1	F003	0
26F8	IEC 61850 Received uinteger 5	0 to 4294967295		1	F003	0
26FA	IEC 61850 Received uinteger 6	0 to 4294967295		1	F003	0
26FC	IEC 61850 Received uinteger 7	0 to 4294967295		1	F003	0
26FE	IEC 61850 Received uinteger 8	0 to 4294967295		1	F003	0
2700	IEC 61850 Received uinteger 9	0 to 4294967295		1	F003	0
2702	IEC 61850 Received uinteger 10	0 to 4294967295 0 to 4294967295		1	F003	0
2704 2706	IEC 61850 Received uinteger 11			1	F003 F003	0
2708	IEC 61850 Received uinteger 12 IEC 61850 Received uinteger 13	0 to 4294967295 0 to 4294967295		1	F003	0
2708 270A	IEC 61850 Received uinteger 13	0 to 4294967295		1	F003	0
270A 270C	IEC 61850 Received uniteger 14	0 to 4294967295		1	F003	0
270E	IEC 61850 Received uniteger 16	0 to 4294967295		1	F003	0
	urrent THD and Harmonics (Read Only) (2 Modules)	0 10 7234301233		<u>'</u>	1 003	J
2800	la THD for Source 1	0 to 99.9		0.1	F001	0
2801	la Harmonics for Source 1 - 2nd to 25th (24 items)	0 to 99.9		0.1	F001	0
2821	Ib THD for Source 1	0 to 99.9		0.1	F001	0
2822	Ib Harmonics for Source 1 - 2nd to 25th (24 items)	0 to 99.9		0.1	F001	0
283A	Reserved (8 items)	0 to 0.1		0.1	F001	0
2842	Ic THD for Source 1	0 to 99.9		0.1	F001	0
2843	Ic Harmonics for Source 1 - 2nd to 25th (24 items)	0 to 99.9		0.1	F001	0
285B	Reserved (8 items)	0 to 0.1		0.1	F001	0
2863	Repeated for Source 2					
Expanded	l FlexStates (Read Only)		•			
2B00	FlexStates, one per register (256 items)	0 to 1		1	F108	0 (Off)
Expanded	Digital Input/Output States (Read Only)		•			
2D00	Contact Input States, one per register (96 items)	0 to 1		1	F108	0 (Off)
2D80	Contact Output States, one per register (64 items)	0 to 1		1	F108	0 (Off)
2E00	Virtual Output States, one per register (96 items)	0 to 1		1	F108	0 (Off)
			-		.	

Table B-9: MODBUS MEMORY MAP (Sheet 15 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Expanded	I Remote Input/Output Status (Read Only)					
2F00	Remote Device States, one per register (16 items)	0 to 1		1	F155	0 (Offline)
2F80	Remote Input States, one per register (64 items)	0 to 1		1	F108	0 (Off)
Oscillogra	aphy Values (Read Only)					,
3000	Oscillography Number of Triggers	0 to 65535		1	F001	0
3001	Oscillography Available Records	0 to 65535		1	F001	0
3002	Oscillography Last Cleared Date	0 to 400000000		1	F050	0
3004	Oscillography Number Of Cycles Per Record	0 to 65535		1	F001	0
Oscillogra	aphy Commands (Read/Write Command)					-
3005	Oscillography Force Trigger	0 to 1		1	F126	0 (No)
3011	Oscillography Clear Data	0 to 1		1	F126	0 (No)
Oscillogra	aphy Analog Values (Read Only)					- (-)
3012	Oscillography Number of Triggers	0 to 32767	T	1	F001	0
	ort Indexing (Read Only Non-Volatile)			<u> </u>		-
3020	Number of Fault Reports	0 to 65535		1	F001	0
	ort Actuals (Read Only Non-Volatile) (15 Modules)					-
3030	Fault Report 1 Time	0 to 4294967295	T	1	F050	0
3032	Fault Report 2 Time	0 to 4294967295		1	F050	0
3034	Fault Report 3 Time	0 to 4294967295		1	F050	0
3036	Fault Report 4 Time	0 to 4294967295		1	F050	0
3038	Fault Report 5 Time	0 to 4294967295		1	F050	0
303A	Fault Report 6 Time	0 to 4294967295		1	F050	0
303C	Fault Report 7 Time	0 to 4294967295		1	F050	0
303E	Fault Report 8 Time	0 to 4294967295		1	F050	0
3040	Fault Report 9 Time	0 to 4294967295		1	F050	0
3042	Fault Report 10 Time	0 to 4294967295		1	F050	0
3044	Fault Report 11 Time	0 to 4294967295		1	F050	0
3046	Fault Report 12 Time	0 to 4294967295		1	F050	0
3048	Fault Report 13 Time	0 to 4294967295		1	F050	0
304A	Fault Report 14 Time	0 to 4294967295		1	F050	0
304C	Fault Report 15 Time	0 to 4294967295		1	F050	0
	ile Transfer (Read/Write)	0 10 120 100 1200			1 000	Ü
3100	Name of File to Read				F204	(none)
	ile Transfer Values (Read Only)				1201	(Horio)
3200	Character Position of Current Block within File	0 to 4294967295	T	1	F003	0
3202	Size of Currently-available Data Block	0 to 65535		1	F001	0
3203	Block of Data from Requested File (122 items)	0 to 65535		1	F001	0
	Read/Write)	0 10 00000			1 001	Ü
3280	Administrator Alphanumeric Password				F202	(none)
	Read Only)				. ===	()
328A	Administrator Alphanumeric Password Status	0 to 1		1	F102	0 (Disabled)
	Read/Write)	0 10 1			1 102	o (Biodbiod)
328B	Administrator Alphanumeric Password Entry				F202	(none)
	Read/Write Setting)				. ===	()
3295	Supervisor Alphanumeric Password Setting				F202	(none)
	Read Only)				. = 	()
329F	Supervisor Alphanumeric Password Status	0 to 1		1	F102	0 (Disabled)
	Read/Write)	1				- (=)
32A0	Supervisor alphanumeric password entry				F202	(none)
	Read/Write Setting)			<u> </u>	v_	()
32AA	Engineer Alphanumeric Password Setting		T	T	F202	(none)
	Read Only)				. 202	()
32B4	Engineer Alphanumeric Password Status	0 to 1		1	F102	0 (Disabled)
02D4	Engineer / aprianament i assword otatus	0.01	1	'	1 102	י (הופמטובת)

Table B-9: MODBUS MEMORY MAP (Sheet 16 of 72)

Security (Read/Write) 32B5 Engineer Alphanumeric Password Entry F202 Security (Read/Write Setting) 32BF Operator Alphanumeric Password Setting F202 Security (Read Only) 32C9 Operator Alphanumeric Password Status 0 to 1 1 F102 Security (Read/Write) 32CA Operator Alphanumeric Password Entry F202 Security (Read/Write Setting)	(none) (none) 0 (Disabled)
Security (Read/Write Setting) 32BF Operator Alphanumeric Password Setting F202 Security (Read Only) 1 F102 Security (Read/Write) 1 F102 Security (Read/Write) F202 Security (Read/Write Setting) F202	(none)
32BF Operator Alphanumeric Password Setting F202 Security (Read Only) 32C9 Operator Alphanumeric Password Status 0 to 1 1 F102 Security (Read/Write) 32CA Operator Alphanumeric Password Entry F202 Security (Read/Write Setting)	. ,
Security (Read Only) 32C9 Operator Alphanumeric Password Status	. ,
32C9 Operator Alphanumeric Password Status 0 to 1 1 F102 Security (Read/Write) 32CA Operator Alphanumeric Password Entry F202 Security (Read/Write Setting)	0 (Disabled)
Security (Read/Write) 32CA Operator Alphanumeric Password Entry F202 Security (Read/Write Setting)	0 (Disabled)
32CA Operator Alphanumeric Password Entry F202 Security (Read/Write Setting)	
Security (Read/Write Setting)	
	(none)
32D4 Observer Alphanumeric Password Setting F202	(none)
Security (Read Only)	
32DE Observer Alphanumeric Password Status 0 to 1 1 F102	0 (Disabled)
Security (Read/Write)	
32DF Observer Alphanumeric Password Entry 1 F202	(none)
Security (Read Only)	_
32E9 Reserved for Password Settings of Future Roles (63 items) 0 to 65535 1 F001	0
3328 Security Status Indicator	0
Security (Read/Write Setting)	
3329 Session Lockout 0 to 99 1 F001	3
332A Session Lockout Period 0 to 9999 min 1 F001	3
332B Load Factory Defaults 0 to 1 1 F126	0 (No)
332C Syslog Serve IP Address 0 to 4294967295 1 F003	0
332E Syslog Server Port Number 1 to 65535 1 F001	514
Security Supervisory (Read/Write Setting)	4.06.0
3331 Device Authentication Enable 0 to 1 1 F126	1 (Yes)
3332 Supervisor Role Enable 0 to 1 1 F102	0 (Disabled)
3333 Lock Relay 0 to 1 1 F102	0 (Disabled)
3334 Factory Service Mode Enable 0 to 1 1 F102	0 (Disabled)
3335 Failed Authentication Alarm Enable 0 to 1 1 F102 3336 Firmware Lock Alarm 0 to 1 1 F102	1 (Enabled) 1 (Enabled)
3336 Firmware Lock Alarm 0 to 1 1 F102 3337 Settings Lock Alarm 0 to 1 1 F102	1 (Enabled)
3338 Bypass Access 0 to 1 1 F628	0 (Disabled)
3339 Encryption 0 to 1 1 F102	1 (Enabled)
333A Serial Inactivity Timeout 1 to 9999 1 F001	1 (Lilabled)
Security Command (Read/Write Command)	'
3350 Operator Logoff 0 to 1 1 F126	0 (No)
3351 Engineer Logoff 0 to 1 1 F126	0 (No)
3352 Administrator Logoff 0 to 1 1 F126	0 (No)
3353 Clear Security Data 0 to 1 1 F126	0 (No)
Security Reserved Modbus Registers (Read/Write)	- ()
3360 Address 0x3360 reserved for serial login (20 items) 0 to 9999 1 F001	3
3374 Address 0x3374 reserved for serial logout 0 to 9999 1 F001	3
Security Reserved Modbus Registers (Read Only)	
3375 Address 0x3374 reserved for serial logout 0 to 5 1 F617	3 (Engineer)
Event Recorder Actual Values (Read Only)	
3400 Events Since Last Clear 0 to 4294967295 1 F003	0
3402 Number of Available Events 0 to 4294967295 1 F003	0
3404 Event Recorder Last Cleared Date 0 to 4294967295 1 F050	0
Event Recorder Commands (Read/Write)	
3406 Event Recorder Clear Command 0 to 1 1 F126	0 (No)
DCMA Input Values (Read Only) (24 Modules)	
34C0 DCMA Inputs 1 Value -99999999 to 9999999 1 F004	0
34C2 DCMA Inputs 2 Value -9999999 to 9999999 1 F004	0
34C4 DCMA Inputs 3 Value -99999999 to 9999999 1 F004	0

Table B-9: MODBUS MEMORY MAP (Sheet 17 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
34C6	DCMA Inputs 4 Value	-9999999 to 9999999		1	F004	0
34C8	DCMA Inputs 5 Value	-9999999 to 9999999		1	F004	0
34CA	DCMA Inputs 6 Value	-9999999 to 9999999		1	F004	0
34CC	DCMA Inputs 7 Value	-9999999 to 9999999		1	F004	0
34CE	DCMA Inputs 8 Value	-9999999 to 9999999		1	F004	0
34D0	DCMA Inputs 9 Value	-9999999 to 9999999		1	F004	0
34D2	DCMA Inputs 10 Value	-9999999 to 9999999		1	F004	0
34D4	DCMA Inputs 11 Value	-9999999 to 9999999		1	F004	0
34D6	DCMA Inputs 12 Value	-9999999 to 9999999		1	F004	0
34D8	DCMA Inputs 13 Value	-9999999 to 9999999		1	F004	0
34DA	DCMA Inputs 14 Value	-9999999 to 9999999		1	F004	0
34DC	DCMA Inputs 15 Value	-9999999 to 9999999		1	F004	0
34DE	DCMA Inputs 16 Value	-9999999 to 9999999		1	F004	0
34E0	DCMA Inputs 17 Value	-9999999 to 9999999		1	F004	0
34E2	DCMA Inputs 18 Value	-9999999 to 9999999		1	F004	0
34E4	DCMA Inputs 19 Value	-9999999 to 9999999		1	F004	0
34E6	DCMA Inputs 20 Value	-9999999 to 9999999		1	F004	0
34E8	DCMA Inputs 21 Value	-9999999 to 9999999		1	F004	0
34EA	DCMA Inputs 22 Value	-9999999 to 9999999		1	F004	0
34EC	DCMA Inputs 23 Value	-9999999 to 9999999		1	F004	0
34EE	DCMA Inputs 24 Value	-9999999 to 9999999		1	F004	0
	t Values (Read Only) (48 Modules)			·		
34F0	RTD Input 1 Value	-32768 to 32767	°C	1	F002	0
34F1	RTD Input 2 Value	-32768 to 32767	°C	1	F002	0
34F2	RTD Input 3 Value	-32768 to 32767	°C	1	F002	0
34F3	RTD Input 4 Value	-32768 to 32767	°C	1	F002	0
34F4	RTD Input 5 Value	-32768 to 32767	°C	1	F002	0
34F5	RTD Input 6 Value	-32768 to 32767	°C	1	F002	0
34F6	RTD Input 7 Value	-32768 to 32767	°C	1	F002	0
34F7	RTD Input 8 Value	-32768 to 32767	°C	1	F002	0
34F8	RTD Input 9 Value	-32768 to 32767	°C	1	F002	0
34F9	RTD Input 10 Value	-32768 to 32767	°C	1	F002	0
34FA	RTD Input 11 Value	-32768 to 32767	°C	1	F002	0
34FB	RTD Input 12 Value	-32768 to 32767	°C	1	F002	0
34FC	RTD Input 13 Value	-32768 to 32767	°C	1	F002	0
34FD	RTD Input 14 Value	-32768 to 32767	°C	1	F002	0
34FE	RTD Input 15 Value	-32768 to 32767	°C	1	F002	0
34FF	RTD Input 16 Value	-32768 to 32767	°C	1	F002	0
3500	RTD Input 17 Value	-32768 to 32767	°C	1	F002	0
3501	RTD Input 18 Value	-32768 to 32767	°C	1	F002	0
3502	RTD Input 19 Value	-32768 to 32767	°C	1	F002	0
3503	RTD Input 20 Value	-32768 to 32767	°C	1	F002	0
3504	RTD Input 21 Value	-32768 to 32767	°C	1	F002	0
3505	RTD Input 22 Value	-32768 to 32767	°C	1	F002	0
3506	RTD Input 23 Value	-32768 to 32767	°C	1	F002	0
3507	RTD Input 24 Value	-32768 to 32767	°C	1	F002	0
3508	RTD Input 25 Value	-32768 to 32767	°C	1	F002	0
3509	RTD Input 26 Value	-32768 to 32767	°C	1	F002	0
350A	RTD Input 27 Value	-32768 to 32767	°C	1	F002	0
350B	RTD Input 28 Value	-32768 to 32767	°C	1	F002	0
350C	RTD Input 29 Value	-32768 to 32767	°C	1	F002	0
350D	RTD Input 30 Value	-32768 to 32767	°C	1	F002	0
350E	RTD Input 31 Value	-32768 to 32767	°C	1	F002	0
350F	RTD Input 32 Value	-32768 to 32767	°C	1	F002	0
5501	TOTO IMPUL OF VALUE	02100 10 02101		ı '	1 002	I

Table B-9: MODBUS MEMORY MAP (Sheet 18 of 72)

STOI Input 33 Value	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3512 RTD Input 33 Value	3510	RTD Input 33 Value	-32768 to 32767	°C	1	F002	0
SST10	3511	RTD Input 34 Value	-32768 to 32767	°C	1	F002	0
SSTID RTD Input 47 Value	3512	RTD Input 35 Value	-32768 to 32767	°C	1	F002	0
3515 RTD Input 38 Value	3513	RTD Input 36 Value	-32768 to 32767	°C	1	F002	0
3516 RTD Input 39 Value	3514	RTD Input 37 Value	-32768 to 32767	°C	1	F002	0
STOT RTD Input 40 Value	3515	RTD Input 38 Value	-32768 to 32767	°C	1	F002	0
ST518 RTD Input 41 Value	3516	RTD Input 39 Value	-32768 to 32767	°C	1	F002	0
ST19	3517	RTD Input 40 Value	-32768 to 32767	°C	1	F002	0
ST1A RTD Input 43 Value	3518	RTD Input 41 Value	-32768 to 32767	°C	1	F002	0
351B RTD Input 44 Value	3519	RTD Input 42 Value	-32768 to 32767	°C	1	F002	0
351C RTD Input 45 Value	351A	RTD Input 43 Value	-32768 to 32767	°C	1	F002	0
SSTED RTD Input 49 Value	351B	RTD Input 44 Value	-32768 to 32767	°C	1	F002	0
SSTE RTD input 47 Value	351C	RTD Input 45 Value	-32768 to 32767	°C	1	F002	0
SSTF RTD Input 48 Value -32768 to 32767 'C 1 F002 0	351D	RTD Input 46 Value	-32768 to 32767	°C	1	F002	0
Ohm Input Values (Read Only) (2 Modules) 3520 Ohm Inputs 1 Value 0 to 65535 D 1 F001 0 0	351E	RTD Input 47 Value	-32768 to 32767	°C	1	F002	0
3520 Ohm Inputs 1 Value	351F	RTD Input 48 Value	-32768 to 32767	°C	1	F002	0
3521 Ohm Inputs 2 Value	Ohm Inpu	t Values (Read Only) (2 Modules)			•		
Expanded Direct Input/Output Status (Read Only)	3520	Ohm Inputs 1 Value	0 to 65535	Þ	1	F001	0
3560 Direct Device States, one per register (8 items) 0 to 1	3521	Ohm Inputs 2 Value	0 to 65535	Þ	1	F001	0
3570 Direct Input States, one per register (96 items) 0 to 1	Expanded	Direct Input/Output Status (Read Only)				•	
Radius Configuration (Read/Write Setting) 3735	3560	Direct Device States, one per register (8 items)	0 to 1		1	F155	0 (Offline)
3735 Undefined	3570	Direct Input States, one per register (96 items)	0 to 1		1	F108	0 (Off)
3737 Undefined	Radius Co	onfiguration (Read/Write Setting)				<u> </u>	
3738 Undefined	3735	Undefined	0 to 4294967295		1	F003	56554706
3739 Undefined	3737	Undefined	1 to 65535		1	F001	1812
373B Undefined 0 to 65535 1 F001 1812	3738	Undefined	1 to 65535		1	F001	1813
373D Undefined 0 to 65535 1 F001 1813 373F Undefined 1 F619 0 (EAP-TTLS) 3740 Undefined 1 to 65535 1 F001 2910 3741 Undefined 0 to 9999 sec 1 F001 10 3742 Undefined 0 to 9999 sec 1 F001 1 3743 Undefined F002 (none) 3743 Undefined 0 to 9999 sec 1 F001 1 3743 Undefined F002 (none) PTP Basic Configuration (Read/Write Setting) 3750 PTP Strict Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001	3739	Undefined	0 to 4294967295		1	F003	56554706
373F Undefined 1 F619 0 (EAP-TTLS) 3740 Undefined 1 to 65535 1 F001 2910 3741 Undefined 0 to 9999 sec 1 F001 10 3742 Undefined 1 F001 3 3743 Undefined 1 F001 3 3743 Undefined 1 F001 3 3743 Undefined F002 (none) PTP Basic Configuration (Read/Write Setting) 3750 PTP Strict Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN ID 0 to 7 1 F001 0 3754 Undefined (2 items) 0 to 4 1 F001 0	373B	Undefined	0 to 65535		1	F001	1812
3740 Undefined 1 to 65535 1 F001 2910 3741 Undefined 0 to 9999 sec 1 F001 10 3742 Undefined 0 to 9999 1 F001 3 3743 Undefined F002 (none) PTP Basic Configuration (Read/Write Setting) 3750 PTS Drick Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001 0 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled)	373D	Undefined	0 to 65535		1	F001	1813
3741 Undefined 0 to 9999 sec 1 F001 10 3742 Undefined 0 to 9999 1 F001 3 3743 Undefined F002 (none) PTP Basic Configuration (Read/Write Setting) 3750 PTP Strict Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001 4 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 <td>373F</td> <td>Undefined</td> <td></td> <td></td> <td>1</td> <td>F619</td> <td>0 (EAP-TTLS)</td>	373F	Undefined			1	F619	0 (EAP-TTLS)
3742 Undefined 0 to 9999 1 F001 3 3743 Undefined F002 (none) PTP Basic Configuration (Read/Write Setting) 3750 PTP Strict Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001 4 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002	3740	Undefined	1 to 65535		1	F001	2910
3743 Undefined	3741	Undefined	0 to 9999	sec	1	F001	10
PTP Basic Configuration (Read/Write Setting) 3750 PTP Strict Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001 4 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3756 PTP Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3750 Repeated for module number 3	3742	Undefined	0 to 9999		1	F001	3
3750 PTP Strict Power Profile 0 to 1 1 F102 1 (Enabled) 3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001 4 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 3	3743	Undefined				F002	(none)
3751 PTP Domain Number 0 to 255 1 F001 0 3752 PTP VLAN Priority 0 to 7 1 F001 4 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 <t< td=""><td>PTP Basic</td><td>Configuration (Read/Write Setting)</td><td></td><td></td><td></td><td>•</td><td></td></t<>	PTP Basic	Configuration (Read/Write Setting)				•	
3752 PTP VLAN Priority 0 to 7 1 F001 4 3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2	3750	PTP Strict Power Profile	0 to 1		1	F102	1 (Enabled)
3753 PTP VLAN ID 0 to 4095 1 F001 0 3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2	3751	PTP Domain Number	0 to 255		1	F001	0
3754 Undefined (2 items) 0 to 1 1 F001 0 PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2 Repeated for module number 3 <td>3752</td> <td>PTP VLAN Priority</td> <td>0 to 7</td> <td></td> <td>1</td> <td>F001</td> <td>4</td>	3752	PTP VLAN Priority	0 to 7		1	F001	4
PTP Port Configuration (Read/Write Setting) (3 Modules) 3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2 Repeated for module number 3 Repeated for module number 3	3753	PTP VLAN ID	0 to 4095		1	F001	0
3756 PTP Port x Function 0 to 1 1 F102 0 (Disabled) 3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Real Time Clock Synchronizing Actuals (Read Only) 1 F624 0 (none) 375F RTC Sync Source 0 to 5 1 F624 0 (none) 3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	3754	Undefined (2 items)	0 to 1		1	F001	0
3757 Port x Path Delay Adder 0 to 60000 ns 1 F001 0 3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 Repeated for module number 3 <	PTP Port	Configuration (Read/Write Setting) (3 Modules)					
3758 Port x Path Delay Asymmetry -1000 to 1000 ns 1 F002 0 3759 Repeated for module number 2 Repeated for module number 3 Repeated for module number 3 375C Repeated for module number 3 1 F624 0 (none) 375F RTC Sync Source 0 to 5 1 F624 0 (none) 3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	3756	PTP Port x Function	0 to 1		1	F102	0 (Disabled)
3759 Repeated for module number 2 Repeated for module number 3 375C Repeated for module number 3 Repeated for module number 3 Real Time Clock Synchronizing Actuals (Read Only) 375F RTC Sync Source 0 to 5 1 F624 0 (none) 3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	3757	Port x Path Delay Adder	0 to 60000	ns	1	F001	0
375C Repeated for module number 3 Real Time Clock Synchronizing Actuals (Read Only) 375F RTC Sync Source 0 to 5 1 F624 0 (none) 3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	3758	Port x Path Delay Asymmetry	-1000 to 1000	ns	1	F002	0
Real Time Clock Synchronizing Actuals (Read Only) 375F RTC Sync Source 0 to 5 1 F624 0 (none) 3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 99999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	3759	Repeated for module number 2					
375F RTC Sync Source 0 to 5 1 F624 0 (none) 3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	375C	Repeated for module number 3					
3760 PTP GrandMaster ID 0 to 100 1 F073 0 3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	Real Time	Clock Synchronizing Actuals (Read Only)					
3764 Real Time Clock Accuracy 0 to 999999999 ns 1 F003 0 3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	375F	RTC Sync Source	0 to 5		1	F624	0 (none)
3766 PTP Port 1 State (3 items) 0 to 4 1 F625 0 (Disabled)	3760	PTP GrandMaster ID	0 to 100		1	F073	0
	3764	Real Time Clock Accuracy	0 to 99999999	ns	1	F003	0
3769 RTC Offset 0 to 000000000 ns 1 F004 0	3766	PTP Port 1 State (3 items)	0 to 4		1	F625	0 (Disabled)
0.00 1.00 0.000	3769	RTC Offset	0 to 99999999	ns	1	F004	0
376B PTP - IRIG-B Delta -5000000000 to 500000000 ns 1 F004 0	376B	PTP - IRIG-B Delta	-500000000 to 500000000	ns	1	F004	0

Table B-9: MODBUS MEMORY MAP (Sheet 19 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Real Time	Clock Synchronizing FlexAnalogs (Read Only)	<u> </u>				1
376D	PTP - IRIG-B Delta FlexAnalog	-262143 to 262143		1	F004	0
Field Unit	s (Read/Write Setting) (8 Modules)					1
3800	Field Unit 1 ID	0 to 1		1	F205	"U1"
3806	Field Unit 1 Function	0 to 1		1	F102	0 (Disabled)
3807	Field Unit 1 Type	0 to 3		1	F243	0 (CC-05)
3808	Field Unit 1 Serial Number	1 to1		1	F205	"000000000000"
380E	Field Unit 1 Port	1 to 4		1	F001	1
380F	Repeated for Field Unit 2					
381E	Repeated for Filed Unit 3					
382D	Repeated for Filed Unit 4					
383C	Repeated for Filed Unit 5					
384B	Repeated for Filed Unit 6					
385A	Repeated for Filed Unit 7					
3869	Repeated for Filed Unit 8					
	Process Card Ports (Read/Write Setting)					<u> </u>
3878	Field Unit 1 Process Card Port	0 to 7		1	F244	6 (H1a)
3879	Field Unit 2 Process Card Port	0 to 7		1	F244	4 (H2a)
387A	Field Unit3 Process Card Port	0 to 7		1	F244	2 (H3a)
387B	Field Unit 4 Process Card Port	0 to 7		1	F244	0 (H4a)
387C	Field Unit 5 Process Card Fort	0 to 7		1	F244	7 (H1b)
387D	Field Unit 6 Process Card Fort	0 to 7		1	F244	5 (H2b)
387E	Field Unit 7 Process Card Fort	0 to 7		1	F244	3 (H3b)
387F	Field Unit 8 Process Card Port	0 to 7		1	F244	1 (H4b)
	CT VT Settings (Read/Write Setting) (6 Modules)	0 10 7		'	1 244	1 (1140)
3890		1 0 to 16	T	1	F247	0 (none)
	Remote Phase CT x Origin 1	0 to 16		1		0 (none)
3891	Remote Phase CT x Origin 2	0 to 16			F247	0 (none)
3892	Remote Ground CT x Origin 1	0 to 16		1	F248	0 (none))
3893	Remote Ground CT x Origin 2	0 to 16		1	F248	0 (none)
3894	AC Bank Redundancy Type	0 to 2		1	F261	1 (Dependability Biased)
3895	Remote Phase CT 1 Primary	1 to 65000		1	F001	1
3896	Remote Phase CT 1 Secondary	0 to 1		1	F123	0 (1 A)
3897	Remote Ground CT 1 Primary	1 to 65000		1	F001	1
3898	Remote Ground CT 1 Secondary	0 to 1		1	F123	0 (1 A)
3899	Remote Phase VT 1 Connection	0 to 1		1	F100	0 (Wye)
389A	Remote Phase VT 1 Secondary	25 to 240		0.1	F001	664
389B	Remote Phase VT 1 Ratio	1 to 24000		1	F060	1
389D	Remote Auxiliary VT 1 Connection	0 to 6		1	F166	1 (Vag)
389E	Remote Auxiliary VT 1 Secondary	25 to 240		0.1	F001	664
389F	Remote Auxiliary VT 1 Ratio	1 to 24000		1	F060	1
38A1	Repeated for module number 2		†			
38B2	Repeated for module number 3					
38C3	Repeated for module number 4					
38D4	Repeated for module number 5					
38E5	Repeated for module number 6					
	Contact Inputs (Read/Write Setting) (40 Modules)					
3900	Field Contact Input 1 ID		T		F205	"FCI 1"
3906	Field Contact Input 1 Origin	0 to 8		1	F256	0 (none)
3907	Field Contact Input 1 Origin	1 to 18		1	F001	1
3907	Field Contact Input 1 Input Field Contact Input 1 Failsafe Value	0 to 1		1	F108	0 (Off)
	1		me			20
3909	Field Contact Input 1 Debounce Time	0 to 16	ms	0.5	F001	_
390A	Field Contact Input 1 Events	0 to 1		1	F102	1 (Enabled)
390B	Repeated for Field Contact Input 2					

Table B-9: MODBUS MEMORY MAP (Sheet 20 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3916	Repeated for Field Contact Input 3					
3921	Repeated for Field Contact Input 4					
392C	Repeated for Field Contact Input 5					
3937	Repeated for Field Contact Input 6					
3942	Repeated for Field Contact Input 7					
394D	Repeated for Field Contact Input 8					
3958	Repeated for Field Contact Input9					
3963	Repeated for Field Contact Input 10					
396E	Repeated for Field Contact Input 11					
3979	Repeated for Field Contact Input 12					
3984	Repeated for Field Contact Input 13					
398F	Repeated for Field Contact Input 14					
399A	Repeated for Field Contact Input 15					
39A5	Repeated for Field Contact Input 16					
39B0	Repeated for Field Contact Input 17					
39BB	Repeated for Field Contact Input 18					
39C6	Repeated for Field Contact Input 19					
39D1	Repeated for Field Contact Input 20					
39DC	Repeated for Field Contact Input 21					
39E7	Repeated for Field Contact Input 22					
39F2	Repeated for Field Contact Input 23					
39FD	Repeated for Field Contact Input 24					
3A08	Repeated for Field Contact Input 25					
3A13	Repeated for Field Contact Input 26					
3A1E	Repeated for Field Contact Input 27					
3A29	Repeated for Field Contact Input 28					
3A34	Repeated for Field Contact Input 29					
3A3F	Repeated for Field Contact Input 30					
3A4A	Repeated for Field Contact Input 31					
3A55	Repeated for Field Contact Input 32					
3A60	Repeated for Field Contact Input 33					
3A6B	Repeated for Field Contact Input 34					
3A76	Repeated for Field Contact Input 35					
3A81	Repeated for Field Contact Input 36					
3A8C	Repeated for Field Contact Input 37					
3A97	Repeated for Field Contact Input 38					
3AA2	Repeated for Field Contact Input 39					
3AAD	Repeated for Field Contact Input 40					
Field Unit	Shared Inputs (Read/Write Setting) (16 Modules)					
3B00	Field Shared Input 1 ID	0 to 65535		1	F205	"SI 1"
3B06	Field Shared Input 1 Unit Origin 1	0 to 8		1	F256	0 (none)
3B07	Field Shared Input 1Channel Origin 1	1 to 15		1	F001	1
3B08	Field Shared Input 1 Events	0 to 1		1	F102	1 (Enabled)
3B09	Repeated for Field Shared Input 2					
3B12	Repeated for Field Shared Input 3					
3B1B	Repeated for Field Shared Input 4					
3B24	Repeated for Field Shared Input 5					
3B2D	Repeated for Field Shared Input 6					
3B36	Repeated for Field Shared Input 7					
3B3F	Repeated for Field Shared Input 8					
3B48	Repeated for Field Shared Input 9					
3B51	Repeated for Field Shared Input 10					
3B5A	Repeated for Field Shared Input 11					
3B63	Repeated for Field Shared Input 12					
	•			•		

Table B-9: MODBUS MEMORY MAP (Sheet 21 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3B6C	Repeated for Field Shared Input 13					
3B75	Repeated for Field Shared Input 14					
3B7E	Repeated for Field Shared Input 15					
3B87	Repeated for Field Shared Input 16					
Field Unit	Contact Outputs (Read/Write Setting) (8 Modules)		·!			
3B90	Field Contact Output 1 ID (6 items)				F205	"FCO U /OUT"
3BB4	Field Output 1 Operate (6 items)	0 to 4294967295		1	F300	0
3BC0	Field Output 1 Seal In (6 items)	0 to 4294967295		1	F300	0
3BCC	Field Output 1 Events (6 items)	0 to 1		1	F102	1 (Enabled)
3BD2	Repeated for Field Contact Output 2					
3C14	Repeated for Field Contact Output 3					
3C56	Repeated for Field Contact Output 4					
3C98	Repeated for Field Contact Output 5					
3CDA	Repeated for Field Contact Output 6					
3D1C	Repeated for Field Contact Output 7					
3D5E	Repeated for Field Contact Output 8					
Field Unit	Latching Outputs (Read/Write Setting) (8 Modules)		L			
3DC7	Field Latching Output 1 ID	0 to 1			F205	"FLO Ux /LO"
3DCD	Field Latching Output 1 Open	0 to 4294967295		1	F300	0
3DCF	Field Latching Output 1 Close	0 to 4294967295		1	F300	0
3DD1	Field Latching Output 1 Events	0 to 1		1	F102	1 (Enabled)
3DD2	Field Latching Output 1 Reserved (2 items)	0 to 1		1	F001	0
3DD4	Repeated for Field Latching Output 2					
3DE1	Repeated for Field Latching Output 3					
3DEE	Repeated for Field Latching Output 4					
3DFB	Repeated for Field Latching Output 5					
3E08	Repeated for Field Latching Output 6					
3E15	Repeated for Field Latching Output 7					
3E22	Repeated for Field Latching Output 8					
Field Unit	Shared Outputs (Read/Write Setting) (16 Modules)		·!			
3E30	Field Shared Output 1 ID	0 to 65535			F205	"SO 1"
3E36	Field Shared Output 1 Operate	0 to 4294967295		1	F300	0
3E38	Field Shared Output 1 Unit Dest 1	0 to 8		1	F256	0 (none)
3E39	Field Shared Output 1 Channel Dest 1	1 to 15		1	F001	1
3E3A	Field Shared Output 1 Unit Dest 2	0 to 8		1	F256	0 (none)
3E3B	Field Shared Output 1 Channel Dest 2	1 to 15		1	F001	1
3E3C	Field Shared Output 1 Events	0 to 1		1	F102	1 (Enabled)
3E3D	Repeated for Field Shared Output 2					
3E4A	Repeated for Field Shared Output 3					
3E57	Repeated for Field Shared Output 4					
3E64	Repeated for Field Shared Output 5					
3E71	Repeated for Field Shared Output 6					
3E7E	Repeated for Field Shared Output 7					
3E8B	Repeated for Field Shared Output 8					
3E98	Repeated for Field Shared Output 9					
3EA5	Repeated for Field Shared Output 10					
3EB2	Repeated for Field Shared Output 11					
3EBF	Repeated for Field Shared Output 12					
3ECC	Repeated for Field Shared Output 13					
3ED9	Repeated for Field Shared Output 14					
3EE6	Repeated for Field Shared Output 15		1			
3EF3	Repeated for Field Shared Output 16		1			
Field Unit	RTDs (Read/Write Setting) (8 Modules)	•				•
3F00	Field Unit RTD 1Name	0 to 1		1	F205	"RTD 1"
		t-				1

Table B-9: MODBUS MEMORY MAP (Sheet 22 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
3F06	Field Unit RTD 1 Origin	0 to 24		1	F253	0 (none)
3F07	Field Unit RTD 1 Type	0 to 2		1	F259	0 (100 Ohm Nickel)
3F08	Repeated for Field Unit RTD 2					,
3F10	Repeated for Field Unit RTD 3					
3F18	Repeated for Field Unit RTD 4					
3F20	Repeated for Field Unit RTD 5					
3F28	Repeated for Field Unit RTD 6					
3F30	Repeated for Field Unit RTD 7					
3F38	Repeated for Field Unit RTD 8					
Field Unit	Transducers (Read/Write Setting) (8 Modules)			ı	l	l
3F40	Field Unit Transducer 1 Name	0 to 1		1	F205	"TRD 1"
3F46	Field Unit Transducer 1 Origin	0 to 24		1	F53	0 (none)
3F47	Field Unit Transducer 1 Range	0 to 9		1	F246	6 (020mA)
3F48	Field Unit Transducer 1 Min Value	-9999.999 to 9999.999		0.01	F004	0
3F4A	Field Unit Transducer 1 Max Value	-9999.999 to 9999.999		0.001	F004	100000
3F4C	Field Unit Transducer 1 Units				F206	(none)
3F4F	Repeated for Field Unit Transducer 2				1 200	(Horic)
3F5E	Repeated for Field Unit Transducer 3					
3F6D	Repeated for Field Unit Transducer 4					
3F7C	•					
	Repeated for Field Unit Transducer 5					
3F8B	Repeated for Field Unit Transducer 6					
3F9A	Repeated for Field Unit Transducer 7					
3FA9	Repeated for Field Unit Transducer 8					
	Identifiers (Read Only) (8 Modules)	T	1			
3FB8	Attached Field Unit 1 Serial Number			1	F205	(none)
3FBE	Attached Filed Unit 1 Port Number			1	F001	0
3FBF	Attached Field Unit 1 Type	0 to 3		1	F243	0 (CC-05)
3FC0	Field Unit 1 Status	0 to 4		1	F262	0 (Disabled)
3FC1	Repeated for Field Unit 2					
3FCA	Repeated for Field Unit 3					
3FD3	Repeated for Field Unit 4					
3FDC	Repeated for Field Unit 5					
3FE5	Repeated for Field Unit 6					
3FEE	Repeated for Field Unit 7					
3FF7	Repeated for Field Unit 8					
Password	ls (Read/Write Command)					
4000	Command Password Setting	0 to 4294967295		1	F202	0
Password	ls (Read/Write Setting)					
400A	Setting Password Setting	0 to 4294967295		1	F202	0
Password	ls (Read/Write)					
4014	Command Password Entry	0 to 4294967295		1	F202	(none)
401E	Setting Password Entry	0 to 4294967295		1	F202	(none)
Password	ls (Read Only)					
4028	Command Password Status	0 to 1		1	F102	0 (Disabled)
4029	Setting Password Status	0 to 1		1	F102	0 (Disabled)
Password	ls (Read/Write Setting)				•	
402A	Command Password Access Timeout	5 to 480	min	1	F001	5
402B	Setting Password Access Timeout	5 to 480	min	1	F001	30
402C	Invalid Password Attempts	2 to 5		1	F001	3
402D	Password Lockout Duration	5 to 60	min	1	F001	5
	Is (Read/Write)	1		1		
402E	Password Access Events	0 to 1		1	F102	0 (Disabled)
402E	I dooword Access Everils	0 (0 1		<u> </u>	1 102	บ (เกเรสมเธน)

Table B-9: MODBUS MEMORY MAP (Sheet 23 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Password	ds (Read/Write Setting)					
402F	Local Setting Auth	1 to 4294967295		1	F300	1
4031	Remote Setting Auth	0 to 4294967295		1	F300	1
4033	Access Auth Timeout	5 to 480	min	1	F001	30
User Disp	play Invoke (Read/Write Setting)					
4040	Invoke and Scroll Through User Display Menu Operand	0 to 4294967295		1	F300	0
LED Test	(Read/Write Setting)					
4048	LED Test Function	0 to 1	T	1	F102	0 (Disabled)
4049	LED Test Control	0 to 4294967295		1	F300	0
Preference	es (Read/Write Setting)					-
404F	Language	0 to 3		1	F531	0 (English)
4050	Flash Message Time	0.5 to 10	S	0.1	F001	10
4051	Default Message Timeout	10 to 900	s	1	F001	300
4052	Default Message Intensity	0 to 3		1	F101	0 (25%)
4053	Screen Saver Feature	0 to 1		1	F102	0 (Disabled)
4054	Screen Saver Wait Time	1 to 65535	min	1	F001	30
4055	Current Cutoff Level	0.002 to 0.02	_	0.001	F001	20
4056	Voltage Cutoff Level	0.002 to 0.02 0.1 to 1	pu V	0.001	F001	10
	ications (Read/Write Setting)	0.1 to 1	V	0.1	1 001	10
407D	COM2 Selection	0 to 3	1	1 1	F601	0 (DC40E)
407D 407E		0 to 1000		10	F001	0 (RS485) 0
	COMO Minimum Response Time		ms			
407F	COM2 Minimum Response Time	0 to 1000	ms	10	F001	0
4080	Modbus Slave Address	1 to 254		1	F001	254
4083	RS485 Com1 Baud Rate	0 to 11		1	F112	8 (115200)
4084	RS485 Com1 Parity	0 to 2		1	F113	0 (None)
4085	RS485 Com2 Baud Rate	0 to 11		1	F112	8 (115200)
4086	RS485 Com2 Parity	0 to 2		1	F113	0 (None)
4087	IP Address	0 to 4294967295		1	F003	56554706
4089	IP Subnet Mask	0 to 4294967295		1	F003	4294966272
408B	Port 1 Gateway IP Address	0 to 4294967295		1	F003	56554497
408D	Network Address NSAP				F074	0
4097	Port 1 Link Loss Alert	0 to 1		1	F102	0 (Disabled)
4098	Port 2 Link Loss Alert	0 to 1		1	F102	0 (Disabled)
4099	Port 3 Link Loss Alert	0 to 1		1	F102	0 (Disabled)
409A	DNP Channel 1 Port	0 to 5		1	F177	0 (None)
409B	DNP Channel 2 Port	0 to 5		1	F177	0 (None)
409C	DNP Address	0 to 65519		1	F001	1
409E	DNP Client Addresses (2 items)	0 to 4294967295		1	F003	0
40A3	TCP Port Number for the Modbus protocol	0 to 65535		1	F001	502
40A4	TCP/UDP Port Number for the DNP Protocol	0 to 65535		1	F001	20000
40A5	TCP Port Number for the HTTP (Web Server) Protocol	0 to 65535		1	F001	80
40A6	Main UDP Port Number for the TFTP Protocol	0 to 65535		1	F001	69
40A7	Data Transfer UDP Port Numbers for the TFTP Protocol (zero means "automatic") (2 items)	0 to 65535		1	F001	0
40A9	DNP Unsolicited Responses Function	0 to 1		1	F102	0 (Disabled)
40AA	DNP Unsolicited Responses Timeout	0 to 60	S	1	F001	5
40AB	DNP Unsolicited Responses Maximum Retries	1 to 255		1	F001	10
40AC	DNP Unsolicited Responses Destination Address	0 to 65519		1	F001	1
40AD	Ethernet Operation Mode	0 to 1		1	F192	1 (Half-Duplex)
40AE	DNP Current Scale Factor	0 to 8		1	F194	2 (1)
40AF	DNP Voltage Scale Factor	0 to 8		1	F194	2 (1)
40B0	DNP Power Scale Factor	0 to 8		1	F194	2 (1)
40B1	DNP Energy Scale Factor	0 to 8		1	F194	2 (1)
	j ==		1	1		

Table B-9: MODBUS MEMORY MAP (Sheet 24 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
40B3	DNP Other Scale Factor	0 to 8		1	F194	2 (1)
40B4	DNP Current Default Deadband	0 to 100000000		1	F003	30000
40B6	DNP Voltage Default Deadband	0 to 100000000		1	F003	30000
40B8	DNP Power Default Deadband	0 to 100000000		1	F003	30000
40BA	DNP Energy Default Deadband	0 to 100000000		1	F003	30000
40BC	DNP Power Factor Default Deadband	0 to 100000000		1	F003	30000
40BE	DNP Other Default Deadband	0 to 100000000		1	F003	30000
40C0	DNP IIN Time Synchronization Bit Period	1 to 10080	min	1	F001	1440
40C1	DNP Message Fragment Size	30 to 2048		1	F001	240
40C2	DNP Client Address 3	0 to 4294967295		1	F003	0
40C4	DNP Client Address 4	0 to 4294967295		1	F003	0
40C6	DNP Client Address 5	0 to 4294967295		1	F003	0
40C8	DNP Number of Paired Binary Output Control Points	0 to 32		1	F001	0
40C9	DNP TCP Connection Timeout	10 to 65535		1	F001	120
40CA	DNP Communications Reserved (22 items)	0 to 1		1	F001	0
40E0	TCP Port Number for the IEC 60870-5-104 Protocol	0 to 65535		1	F001	2404
40E1	IEC 60870-5-104 Protocol Function	0 to 1		1	F102	0 (Disabled)
40E2	IEC 60870-5-104 Protocol Common Address of ASDU	0 to 65535		1	F001	0
40E3	IEC 60870-5-104 Protocol Cyclic data Transmit Period	1 to 65535	s	1	F001	60
40E4	IEC 60870-5-104 Current Default Threshold	0 to 100000000		1	F003	30000
40E6	IEC 60870-5-104 Voltage Default Threshold	0 to 100000000		1	F003	30000
40E8	IEC 60870-5-104 Power Default Threshold	0 to 100000000		1	F003	30000
40EA	IEC 60870-5-104 Energy Default Threshold	0 to 100000000		1	F003	30000
40EC	IEC 60870-5-104 Power Default Threshold	0 to1		0.01	F001	100
40EE	IEC 60870-5-104 Other Default Threshold	0 to 100000000		1	F003	30000
40F0	IEC 60870-5-104 Client Address (5 items)	0 to 4294967295		1	F003	0
4104	IEC 60870-5-104 Redundancy Port	0 to 1		1	F126	0 (No)
4105	Port 2 IP Address	0 to 4294967295		1	F003	56554706
4107	Port 2 IP Subnet Mask	0 to 4294967295		1	F003	4294966272
4109	Port 2 Gateway IP Address	0 to 4294967295		1	F003	56554497
410B	PRT2 Ethernet Operation Mode	0 to 1		1	F192	1 (Full-Duplex)
410C	PRT2 Redundancy Enabled	0 to 2		1	F627	0 (None)
410D	Port 3 IP Address	0 to 4294967295		1	F003	56554706
410F	Port 3 IP Subnet Mask	0 to 4294967295		1	F003	4294966272
4111	Port 3 Gateway IP Address	0 to 4294967295		1	F003	56554497
4113	Port 3 Ethernet Operation Mode	0 to 1		1	F192	1 (Full-Duplex)
4114	PRT1 GOOSE Enabled	0 to 1		1	F102	1 (Enabled)
4115	PRT2 GOOSE Enabled	0 to 1		1	F102	1 (Enabled)
4116	PRT3 GOOSE Enabled	0 to 1		1	F102	1 (Enabled)
4119	PRT2 PRP Mcst Addr				F072	0
411C	IEC Communications Reserved (33 items)	0 to 1		1	F001	0
413E	High Enet Traffic Function	0 to 1		1	F102	0 (Disabled)
413F	High Enet Traffic Events	0 to 1		1	F102	0 (Disabled)
4140	DNP Object 1 Default Variation	1 to 2		1	F001	2
4141	DNP Object 2 Default Variation	1 to 3		1	F001	2
4142	DNP Object 20 Default Variation	0 to 3		1	F523	0 (1)
4143	DNP Object 21 Default Variation	0 to 3		1	F524	0 (1)
4144	DNP Object 22 Default Variation	0 to 3		1	F523	0 (1)
4145	DNP Object 23 Default Variation	0 to 3		1	F523	0 (1)
4146	DNP Object 30 Default Variation	1 to 5		1	F001	1
4147	DNP Object 32 Default Variation	0 to 5		1	F525	0 (1)
4148	SCADA Protocol	0 to 2		1	F629	0 (DNP 3.0)
	cations Actuals (Read Only)	0.4:4	1	1 4	F004	1
4160	Modbus Available TCP/IP Connections	0 to 4		1	F001	4

Table B-9: MODBUS MEMORY MAP (Sheet 25 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4161	DNP Available TCP/IP Connections	0 to 2		1	F001	2
4162	IEC Available TCP/IP Connections	0 to 2		1	F001	2
4163	MMS Available TCP/IP Connections	0 to 5		1	F001	5
4164	PMU Available TCP/IP Connections	0 to 4		1	F001	4
Simple No	etwork Time Protocol (Read/Write Setting)			•	•	
4168	Simple Network Time Protocol (SNTP) Function	0 to 1		1	F102	0 (Disabled)
4169	Simple Network Time Protocol (SNTP) Server IP Address	0 to 4294967295		1	F003	0
416B	Simple Network Time Protocol (SNTP) UDP Port Number	1 to 65535		1	F001	123
Data Logg	ger Commands (Read/Write Command)		•	•		•
4170	Data Logger Clear	0 to 1		1	F126	0 (No)
Data Logg	ger (Read/Write Setting)					
4181	Data Logger Channel Settings (16 items)				F600	0
4191	Data Logger Mode	0 to 1		1	F260	0 (continuous)
4192	Data Logger Trigger	0 to 4294967295		1	F300	0
4194	Data Logger Rate	15 to 3600000	ms	1	F003	60000
Clock (Re	ad/Write Setting)					
419F	Synchronizing Source	0 to 3		1	F623	0 (none)
Clock (Re	ad/Write Command)					
41A0	Real Time Clock Set Time	0 to 235959		1	F050	0
Clock (Re	ad/Write Setting)					
41A2	SR Date Format	0 to 4294967295		1	F051	0
41A4	SR Time Format	0 to 4294967295		1	F052	0
41A6	IRIG-B Signal Type	0 to 2		1	F114	0 (None)
41A7	Clock Events Enable / Disable	0 to 1		1	F102	0 (Disabled)
41A8	Time Zone Offset from UTC	-24 to 24	hours	0.5	F002	0
41A9	Daylight Savings Time (DST) Function	0 to 1		1	F102	0 (Disabled)
41AA	Daylight Savings Time (DST) Start Month	0 to 11		1	F237	0 (January)
41AB	Daylight Savings Time (DST) Start Day	0 to 6		1	F238	0 (Sunday)
41AC	Daylight Savings Time (DST) Start Day Instance	0 to 4		1	F239	0 (First)
41AD	Daylight Savings Time (DST) Start Hour	0 to 23		1	F001	2
41AE	Daylight Savings Time (DST) Stop Month	0 to 11		1	F237	0 (January)
41AF	Daylight Savings Time (DST) Stop Day	0 to 6		1	F238	0 (Sunday)
41B0	Daylight Savings Time (DST) Stop Day Instance	0 to 4		1	F239	0 (First)
41B1	Daylight Savings Time (DST) Stop Hour	0 to 23		1	F001	2
Fault Rep	ort Commands (Read/Write Command)					
41B2	Fault Reports Clear Data Command	0 to 1		1	F126	0 (No)
Oscillogra	aphy (Read/Write Setting)					
41C0	Oscillography Number of Records	3 to 64		1	F001	15
41C1	Oscillography Trigger Mode	0 to 1		1	F118	0 (Auto. Overwrite)
41C2	Oscillography Trigger Position	0 to 100	%	1	F001	50
41C3	Oscillography Trigger Source	0 to 4294967295		1	F300	0
41C5	Oscillography AC Input Waveforms	0 to 4		1	F183	2 (16 samples/ cycle)
41D0	Oscillography Analog Channel n (16 items)	0 to 65535		1	F600	0
4200	Oscillography Digital Channel n (63 items)	0 to 4294967295		1	F300	0
Trip and A	Alarm LEDs (Read/Write Setting)					
42B0	Trip LED Input FlexLogic Operand	0 to 4294967295		1	F300	0
42B2	Alarm LED Input FlexLogic Operand	0 to 4294967295		1	F300	0
User Prog	grammable LEDs (Read/Write Setting) (48 Modules)					
42C0	FlexLogic Operand to Activate LED	0 to 4294967295		1	F300	0
42C2	User LED type (latched or self-resetting)	0 to 1		1	F127	1 (Self-Reset)
42C3	Repeated for User-Programmable LED 2					
42C6	Repeated for User-Programmable LED 3					
42C9	Repeated for User-Programmable LED 4					

Table B-9: MODBUS MEMORY MAP (Sheet 26 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
42CC	Repeated for User-Programmable LED 5					
42CF	Repeated for User-Programmable LED 6					
42D2	Repeated for User-Programmable LED 7					
42D5	Repeated for User-Programmable LED 8					
42D8	Repeated for User-Programmable LED 9					
42DB	Repeated for User-Programmable LED 10					
42DE	Repeated for User-Programmable LED 11					
42E1	Repeated for User-Programmable LED 12					
42E4	Repeated for User-Programmable LED 13					
42E7	Repeated for User-Programmable LED 14					
42EA	Repeated for User-Programmable LED 15					
42ED	Repeated for User-Programmable LED 16					
42F0	Repeated for User-Programmable LED 17					
42F3	Repeated for User-Programmable LED 18					
42F6	Repeated for User-Programmable LED 19					
42F9	Repeated for User-Programmable LED 20					
42FC	Repeated for User-Programmable LED 21					
42FF	Repeated for User-Programmable LED 22					
4302	Repeated for User-Programmable LED 23					
4305	Repeated for User-Programmable LED 24					
4308	Repeated for User-Programmable LED 25					
430B	Repeated for User-Programmable LED 26					
430E	Repeated for User-Programmable LED 27					
4311	Repeated for User-Programmable LED 28					
4314	Repeated for User-Programmable LED 29					
4317	Repeated for User-Programmable LED 30					
431A	Repeated for User-Programmable LED 31					
431D	Repeated for User-Programmable LED 32					
4320	Repeated for User-Programmable LED 33					
4323	Repeated for User-Programmable LED 34					
4326	Repeated for User-Programmable LED 35					
4329	Repeated for User-Programmable LED 36					
432C	Repeated for User-Programmable LED 37					
432F	Repeated for User-Programmable LED 38					
4332	Repeated for User-Programmable LED 39					
4335	Repeated for User-Programmable LED 40					
4338	Repeated for User-Programmable LED 41					
433B	Repeated for User-Programmable LED 42					
433E	Repeated for User-Programmable LED 43					
4341	Repeated for User-Programmable LED 44					
4344	Repeated for User-Programmable LED 45					
4347	Repeated for User-Programmable LED 46					
434A	Repeated for User-Programmable LED 47					
434D	Repeated for User-Programmable LED 48					
PRP Statu	ıs (Read Only)					
4363	Total Received Port A	0 to 4294967295		1	F003	0
4365	Total Received Port B	0 to 4294967295		1	F003	0
4367	Total Mismatches Port A	0 to 4294967295		1	F003	0
4369	Total Mismatches Port B	0 to 4294967295		1	F003	0
436B	Total Errors	0 to 4294967295		1	F003	0
IPv4 Rout	e Table (Read/Write Setting) (6 Modules)					
4370	IPv4 Network Route 1 Destination	0 to 4294967295		1	F003	56554706
4372	IPv4 Network Route 1 Netmask	0 to 4294967295		1	F003	56554706
4374	IPv4 Network Route 1 Gateway	0 to 4294967295		1	F003	56554706

Table B-9: MODBUS MEMORY MAP (Sheet 27 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4376	Repeated for Route 2					
437C	Repeated for Route 3					
4382	Repeated for Route 4					
4388	Repeated for Route 5					
438E	Repeated for Route 6					
Installatio	n (Read/Write Setting)			<u>l</u>		
43E0	Relay Programmed State	0 to 1		1	F133	0 (Not
						Programmed)
43E1	Relay Name				F202	"Relay-1"
	rammable Self Tests (Read/Write Setting)					
4441	User Programmable Detect Ring Break Function	0 to 1		1	F102	1 (Enabled)
4442	User Programmable Direct Device Off Function	0 to 1		1	F102	1 (Enabled)
4443	User Programmable Remote Device Off Function	0 to 1		1	F102	1 (Enabled)
4444	User Programmable First Ethernet Fail Function	0 to 1		1	F102	0 (Disabled)
4445	User Programmable Secondary Ethernet Fail Function	0 to 1		1	F102	0 (Disabled)
4446	User Programmable Battery Fail Function	0 to 1		1	F102	1 (Enabled)
4447	User Programmable SNTP Fail Function	0 to 1		1	F102	1 (Enabled)
4448	User Programmable IRIG-B Fail Function	0 to 1		1	F102	1 (Enabled)
444A	Process Bus Failure Operand	0 to 4294967295		1	F300	0
444C	PTP Fail Function	0 to 1		1	F102	1 (Enabled)
444D	User Programmable Third Ethernet Fail Function	0 to 1		1	F102	0 (Disabled)
444E	User Programmable SFP Fail Function	0 to 1		1	F102	0 (Disabled)
CT Setting	gs (Read/Write Setting) (6 Modules)					
4480	Phase CT 1 Primary	1 to 65000	Α	1	F001	1
4481	Phase CT 1 Secondary	0 to 1		1	F123	0 (1 A)
4482	Ground CT 1 Primary	1 to 65000	Α	1	F001	1
4483	Ground CT 1 Secondary	0 to 1		1	F123	0 (1 A)
4484	Repeated for CT Bank 2					
4488	Repeated for CT Bank 3					
448C	Repeated for CT Bank 4					
4490	Repeated for CT Bank 5					
4494	Repeated for CT Bank 6					
VT Setting	gs (Read/Write Setting) (6 Modules)					
4500	Phase VT 1 Connection	0 to 1		1	F100	0 (Wye)
4501	Phase VT 1 Secondary	25 to 240	V	0.1	F001	664
4502	Phase VT 1 Ratio	1 to 24000	:1	1	F060	1
4504	Auxiliary VT 1 Connection	0 to 6		1	F166	1 (Vag)
4505	Auxiliary VT 1 Secondary	25 to 240	V	0.1	F001	664
4506	Auxiliary VT 1 Ratio	1 to 24000	:1	1	F060	1
4508	Repeated for VT Bank 2					
4510	Repeated for VT Bank 3					
4518	Repeated for VT Bank 4					
4520	Repeated for VT Bank 5					
4528	Repeated for VT Bank 6					
Source Se	ettings (Read/Write Setting) (6 Modules)					
4580	Source 1 Name	0 to 1			F206	"SRC 1"
4583	Source 1 Phase CT	0 to 63		1	F400	0
4584	Source 1 Ground CT	0 to 63		1	F400	0
4585	Source 1 Phase VT	0 to 63		1	F400	0
4586	Source 1 Auxiliary VT	0 to 63		1	F400	0
4587	Repeated for Source 2		1			
458E	Repeated for Source 3		1			
4595	Repeated for Source 4					
	Repeated for Source 5					
459C	•					

Table B-9: MODBUS MEMORY MAP (Sheet 28 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
45A3	Repeated for Source 6					
Power Sy	stem (Read/Write Setting)					
4600	Nominal Frequency	25 to 60	Hz	1	F001	60
4601	Phase Rotation	0 to 1		1	F106	0 (ABC)
4602	Frequency And Phase Reference	0 to 5		1	F167	0 (SRC 1)
4603	Frequency Tracking Function	0 to 1		1	F102	1 (Enabled)
Incipient	Cable Fault Detector (Read/Write Settings)					
46B2	Incipient Cable Fault Detector 1 Function	0 to 1		1	F102	0 (Disabled)
46B3	Incipient Cable Fault Detector 1 Block	0 to 4294967295		1	F300	0
46B5	Incipient Cable Fault Detector 1 Source	0 to 5		1	F167	0 (SRC 1)
46B6	Incipient Cable Fault Detector 1 Pickup	0.1 to 10	pu	0.01	F001	50
46B7	Incipient Cable Fault Detector 1 Mode	0 to 1		1	F254	0 (Number of Counts)
46B8	Incipient Cable Fault Detector 1 Counts	1 to 10		1	F001	2
46B9	Incipient Cable Fault Detector 1 Time Window	0 to 1000	s	0.01	F003	1000
46BB	Incipient Cable Fault Detector 1 Reset Delay	0 to 65.535	s	0.001	F001	100
46BC	Incipient Cable Fault Detector 1 Target	0 to 2		1	F109	0 (Self-reset)
46BD	Incipient Cable Fault Detector 1 Events	0 to 1		1	F102	0 (Disabled)
46BE	Repeated for incipient cable fault detector 2					
	Control (Read/Write Settings) (4 Modules)					
47D0	Breaker 1 Function	0 to 1		1	F102	0 (Disabled)
47D1	Breaker 1 Name				F206	"Bkr 1"
47D4	Breaker 1 Mode	0 to 1		1	F157	0 (3-Pole)
47D5	Breaker 1 Open	0 to 4294967295		1	F300	0
47D7	Breaker 1 Close	0 to 4294967295		1	F300	0
47D9	Breaker 1 Phase A / Three-pole Closed	0 to 4294967295		1	F300	0
47DB	Breaker 1 Phase B Closed	0 to 4294967295		1	F300	0
47DD	Breaker 1 Phase C Closed	0 to 4294967295		1	F300	0
47DF	Breaker 1 External Alarm	0 to 4294967295		1	F300	0
47E1 47E3	Breaker 1 Alarm Delay	0 to 65.535	S	0.001	F003	0 (Disabled)
47E3 47E4	Breaker 1 Pushbutton Control Breaker 1 Manual Close Recall Time	0 to 1 0 to 4294967295		0.001	F102 F003	0 (Disabled) 0
47E4 47E6	Breaker 1 Out of Service	0 to 4294967295	S	1	F300	0
47E8	Breaker 1 Block Open	0 to 4294967295		1	F300	0
47EA	Breaker 1 Block Close	0 to 4294967295		1	F300	0
47EC	Breaker 1 Phase A / Three-pole Opened	0 to 4294967295		1	F300	0
47EE	Breaker 1 Phase B Opened	0 to 4294967295		1	F300	0
47F0	Breaker 1 Phase C Opened	0 to 4294967295		1	F300	0
47F2	Breaker 1 Operate Time	0 to 65.535	s	0.001	F001	70
47F3	Breaker 1 Events	0 to 1		1	F102	0 (Disabled)
47F4	Reserved	0 to 65535	s	1	F001	0
47F5	Repeated for breaker 2					
Demand (Read/Write Setting)	•	•			
490A	Demand Current Method	0 to 2		1	F139	0 (Thermal Exponential)
490B	Demand Power Method	0 to 2		1	F139	0 (Thermal Exponential)
490C	Demand Interval	0 to 5		1	F132	2 (15 MIN)
490D	Demand Input	0 to 4294967295		1	F300	0
Demand (Read/Write Command)		•			
490F	Demand Clear Record	0 to 1		1	F126	0 (No)
FlexCurve	e A (Read/Write Setting)					
4910	FlexCurve A (120 items)	0 to 655535	ms	1	F011	0
FlexCurve	B (Read/Write Setting)					
4988	FlexCurve B (120 items)	0 to 655535	ms	1	F011	0

Table B-9: MODBUS MEMORY MAP (Sheet 29 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Modbus U	Jser Map (Read/Write Setting)					
4A00	Modbus Address Settings for User Map (256 items)	0 to 65535		1	F001	0
User Disp	lays Settings (Read/Write Setting) (16 Modules)	<u> </u>	· ·		·	<u> </u>
4C00	User-Definable Display 1 Top Line Text				F202	и и
4C0A	User-Definable Display 1 Bottom Line Text				F202	****
4C14	Modbus Addresses of Display 1 Items (5 items)	0 to 65535		1	F001	0
4C19	Reserved (7 items)				F001	0
4C20	Repeated for User-Definable Display 2					
4C40	Repeated for User-Definable Display 3					
4C60	Repeated for User-Definable Display 4					
4C80	Repeated for User-Definable Display 5					
4CA0	Repeated for User-Definable Display 6					
4CC0	Repeated for User-Definable Display 7					
4CE0	Repeated for User-Definable Display 8					
4D00	Repeated for User-Definable Display 9					
4D20	Repeated for User-Definable Display 10					
4D40	Repeated for User-Definable Display 11					
4D60	Repeated for User-Definable Display 12					
4D80	Repeated for User-Definable Display 13					
4DA0	Repeated for User-Definable Display 14					
4DC0	Repeated for User-Definable Display 15					
4DE0	Repeated for User-Definable Display 16					
Field Unit	Raw Data Actuals (Read Only) (8 Modules)					
4E00	Raw Field Data AC1 Mag	0 to 0.001	Α	0.001	F003	0
4E02	Raw Field Data AC1 Angle	0 to 0.1	degree	0.1	F002	0
4E03	Raw Field Data AC2 Mag	0 to 0.001	Α	0.001	F003	0
4E05	Raw Field Data AC2 Angle	0 to 0.1	degree	0.1	F002	0
4E06	Raw Field Data AC3 Mag	0 to 0.001	Α	0.001	F003	0
4E08	Raw Field Data AC3 Angle	0 to 0.01	degree	0.1	F002	0
4E09	Raw Field Data AC4 Mag	0 to 0.001	Α	0.001	F003	0
4E0B	Raw Field Data AC4 Angle	0 to 0.01	degree	0.1	F002	0
4E0C	Raw Field Data AC5 Mag	0 to 0.001	A/V	0.001	F003	0
4E0E	Raw Field Data AC5 Angle	0 to 0.01	degree	0.1	F002	0
4E0F	Raw Field Data AC6 Mag	0 to 0.001	A/V	0.001	F003	0
4E11	Raw Field Data AC6 Angle	0 to 0.01	degree	0.1	F002	0
4E12	Raw Field Data AC7 Mag	0 to 0.001	A/V	0.001	F003	0
4E14	Raw Field Data AC7 Angle	0 to 0.01	degree	0.1	F002	0
4E15	Raw Field Data AC8 Mag	0 to 0.001	A/V	0.001	F003	0
4E17	Raw Field Data AC8 Angle	0 to 0.01	degree	0.1	F002	0
4E18	Raw Field Data DC1	0 to 0.001	V	0.001	F002	0
4E19	Raw Field Data DC2	0 to 0.001	V	0.001	F002	0
4E1A	Raw Field Data DC3	0 to 0.001	V	0.001	F002	0
4E1B	Raw Field Data FCI States (2 items)	0 to 1		1	F500	0
4E1D	Raw Field Data SI States	0 to 1		1	F500	0
4E1E	Raw Field Data SI Test States	0 to 1		1	F500	0
4E1F	Raw Field Data Brick ADC Temperature	0 to 1	degree	1	F002	0
4E20	Raw Field Data Brick Transceiver Temperature	0 to 1	degree	1	F002	0
4E21	Raw Field Data Brick Transceiver Voltage	0 to 0.01	V	0.01	F001	0
4E22	Raw Field Data Brick Transceiver Current	0 to 1	mA	1	F001	0
4E23	Raw Field Data Brick Tx Power	0 to 0.01	dBm	0.1	F002	0
4E24	Raw Field Data Brick Rx Power	0 to 0.1	dBm	0.1	F002	0
4E25	Raw Field Data Brick Diagnostics (2 items)	0 to 65535		1	F500	0
4E27	Raw Field Data Local Transceiver Temperature	0 to 1	degree	1	F002	0
4E28	Raw Field Data Local Transceiver Voltage	0 to 0.01	V	0.01	F001	0

Table B-9: MODBUS MEMORY MAP (Sheet 30 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
4E29	Raw Field Data Local Transceiver Current	0 to 1	mA	1	F001	0
4E2A	Raw Field Data Local Tx Power	0 to 0.1	dBm	0.1	F002	0
4E2B	Raw Field Data Local Rx Power	0 to 0.1	dBm	0.1	F002	0
4E2C	Repeated for module number 2	0 to 0.1	45	0		
4E58	Repeated for module number 3		1			
4E84	Repeated for module number 4					
4E80	Repeated for module number 5					
4EDC	Repeated for module number 6					
4F08	Repeated for module number 7					
4F06 4F34	Repeated for module number 8					
	'					
5000	(Read/Write Setting)	0 to 4294967295	1	1 1	F300	2097152
	FlexLogic Entry (512 items)	0 10 4294907295		1	F300	2097 152
	ts (Read/Write Setting) (48 Modules)	0.1.4	1	1 4	F400	0 (8) (11)
5400	RTD Input 1 Function	0 to 1		1	F102	0 (Disabled)
5401	RTD Input 1 ID				F205	"RTD lp 1"
5407	RTD Input 1 Type	0 to 3		1	F174	0 (100 ohm Platinum)
5414	Repeated for RTD Input 2					
5428	Repeated for RTD Input 3					
543C	Repeated for RTD Input 4					
5450	Repeated for RTD Input 5					
5464	Repeated for RTD Input 6					
5478	Repeated for RTD Input 7					
548C	Repeated for RTD Input 8					
54A0	Repeated for RTD Input 9					
54B4	Repeated for RTD Input 10					
54C8	Repeated for RTD Input 11					
54DC	Repeated for RTD Input 12					
54F0	Repeated for RTD Input 13					
5404	Repeated for RTD Input 14					
5518	Repeated for RTD Input 15					
552C	Repeated for RTD Input 16					
5540	Repeated for RTD Input 17					
5554	Repeated for RTD Input 18					
5568	Repeated for RTD Input 19					
557C	Repeated for RTD Input 20					
5590	Repeated for RTD Input 21					
55A4	Repeated for RTD Input 22					
55B8	Repeated for RTD Input 23		†			
55CC	Repeated for RTD Input 24		†			
55E0	Repeated for RTD Input 25		+	-		
55F4	Repeated for RTD Input 26		+	 		
5508	Repeated for RTD Input 27		+	 		
561C	Repeated for RTD Input 28		+	 		
5630	Repeated for RTD Input 29		+	-		
5644	Repeated for RTD Input 30		+	-		
5658	Repeated for RTD Input 31					
566C	Repeated for RTD Input 32		1	 		
5680	•			-		
	Repeated for RTD Input 33			<u> </u>		
5694	Repeated for RTD Input 34					
56A8	Repeated for RTD Input 35					
56BC	Repeated for RTD Input 36		1			
56D0	Repeated for RTD Input 37		1			
56E4	Repeated for RTD Input 38					

Table B-9: MODBUS MEMORY MAP (Sheet 31 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
56F8	Repeated for RTD Input 39					
560C	Repeated for RTD Input 40		+			
5620	Repeated for RTD Input 41					
5734	Repeated for RTD Input 42					
5748	Repeated for RTD Input 43					
575C	Repeated for RTD Input 44					
5770	Repeated for RTD Input 45					
5784	Repeated for RTD Input 46					
5798	Repeated for RTD Input 47					
57AC	Repeated for RTD Input 48					
	Timers (Read/Write Setting) (32 Modules)					
5800	FlexLogic Timer 1 Type	0 to 2		1	F129	0 (millisecond)
5801	FlexLogic Timer 1 Pickup Delay	0 to 60000		1	F001	0
5802	FlexLogic Timer 1 Dropout Delay	0 to 60000		1	F001	0
5803	Reserved (5 items)	0 to 65535		1	F001	0
5808	Repeated for FlexLogic Timer 2					
5810	Repeated for FlexLogic Timer 3					
5818	Repeated for FlexLogic Timer 4					
5820	Repeated for FlexLogic Timer 5					
5828	Repeated for FlexLogic Timer 6					
5830	Repeated for FlexLogic Timer 7					
5838	Repeated for FlexLogic Timer 8					
5840	Repeated for FlexLogic Timer 9					
5848	Repeated for FlexLogic Timer 10					
5850	Repeated for FlexLogic Timer 11					
5858	Repeated for FlexLogic Timer 12					
5860	Repeated for FlexLogic Timer 13					
5868	Repeated for FlexLogic Timer 14					
5870	Repeated for FlexLogic Timer 15					
5878	Repeated for FlexLogic Timer 16					
5880	Repeated for FlexLogic Timer 17					
5888	Repeated for FlexLogic Timer 18					
5890	Repeated for FlexLogic Timer 19					
5898	Repeated for FlexLogic Timer 20					
58A0	Repeated for FlexLogic Timer 21					
58A8	Repeated for FlexLogic Timer 22					
58B0	Repeated for FlexLogic Timer 23					
58B8	Repeated for FlexLogic Timer 24		+			
58C0	Repeated for FlexLogic Timer 25		+	 		
58C8	Repeated for FlexLogic Timer 26		+	1		
58D0	Repeated for FlexLogic Timer 27		+	1		
58D8	Repeated for FlexLogic Timer 28		+	<u> </u>		1
58E0	Repeated for FlexLogic Timer 29		+	1		
58E8	Repeated for FlexLogic Timer 30		+	 		
58F0	Repeated for FlexLogic Timer 31		+	-		+
58F8	Repeated for FlexLogic Timer 31		+	-		1
	ne Overcurrent (Read/Write Grouped Setting) (6 Modules)	1	<u> </u>	<u> </u>	
5900	Phase Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5901	Phase Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5902	Phase Time Overcurrent 1 Input	0 to 1		1	F122	0 (SRC 1) 0 (Phasor)
5902	Phase Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5904	Phase Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)
5904	Phase Time Overcurrent 1 Multiplier	0 to 600		0.01	F103	100
5905	Phase Time Overcurrent 1 Reset	0 to 600		1	F104	0 (Instantaneous)
2900	T Hase Time Overbuilent i Neset	0.01		'	1 104	o (mistantaneous)

Table B-9: MODBUS MEMORY MAP (Sheet 32 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5907	Phase Time Overcurrent 1 Voltage Restraint	0 to 1		1	F102	0 (Disabled)
5908	Phase TOC 1 Block For Each Phase (3 items)	0 to 4294967295		1	F300	0
590F	Phase Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5910	Phase Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5911	Reserved (3 items)	0 to 1		1	F001	0
5914	Repeated for Phase Time Overcurrent 2					
5928	Repeated for Phase Time Overcurrent 3					
593C	Repeated for Phase Time Overcurrent 4					
5950	Repeated for Phase Time Overcurrent 5					
5964	Repeated for Phase Time Overcurrent 6					
Phase Ins	tantaneous Overcurrent (Read/Write Grouped Setting) (ι	ıp to 12 Modules)				
5A00	Phase Instantaneous Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5A01	Phase Instantaneous Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5A02	Phase Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5A03	Phase Instantaneous Overcurrent 1 Delay	0 to 600	s	0.01	F001	0
5A04	Phase Instantaneous Overcurrent 1 Reset Delay	0 to 600	s	0.01	F001	0
5A05	Phase IOC1 Block For Each Phase (3 items)	0 to 4294967295		1	F300	0
5A0B	Phase Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5A0C	Phase Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5A0D	Reserved (6 items)	0 to 1		1	F001	0
5A13	Repeated for Phase Instantaneous Overcurrent 2					
5A26	Repeated for Phase Instantaneous Overcurrent 3					
5A39	Repeated for Phase Instantaneous Overcurrent 4					
5A4C	Repeated for Phase Instantaneous Overcurrent 5					
5A5F	Repeated for Phase Instantaneous Overcurrent 6					
5A72	Repeated for Phase Instantaneous Overcurrent 7					
5A85	Repeated for Phase Instantaneous Overcurrent 8					
5A98	Repeated for Phase Instantaneous Overcurrent 9					
5AAB	Repeated for Phase Instantaneous Overcurrent 10					
5ABE	Repeated for Phase Instantaneous Overcurrent 11					
5AD1	Repeated for Phase Instantaneous Overcurrent 12					
	me Overcurrent (Read/Write Grouped Setting) (up to 6 M	•	_			
5B00	Neutral Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5B01	Neutral Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5B02	Neutral Time Overcurrent 1 Input	0 to 1		1	F122	0 (Phasor)
5B03	Neutral Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5B04	Neutral Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)
5B05	Neutral Time Overcurrent 1 Multiplier	0 to 600		0.01	F001	100
5B06	Neutral Time Overcurrent 1 Reset	0 to 1			F104	0 (Instantaneous)
5B07	Neutral Time Overcurrent 1 Block	0 to 4294967295		1	F300	, and the second
5B09 5B0A	Neutral Time Overcurrent 1 Target	0 to 2 0 to 1		1	F109	0 (Self-reset)
5B0A 5B0B	Neutral Time Overcurrent 1 Events Reserved (6 items)	0 to 1		1	F102 F001	0 (Disabled) 0
5B0B 5B11	Repeated for Neutral Time Overcurrent 2	0 10 1		'	F001	0
5B11 5B22	Repeated for Neutral Time Overcurrent 2Repeated for Neutral Time Overcurrent 3		1			
5B22 5B33	Repeated for Neutral Time Overcurrent 3		1	-		
5B33 5B44	Repeated for Neutral Time Overcurrent 5		1	-		
5B55	Repeated for Neutral Time Overcurrent 6		+	-		
	stantaneous Overcurrent (Read/Write Grouped Setting)	(up to 12 Modules)		<u> </u>		
5C00	Neutral Instantaneous Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5C01	Neutral Instantaneous Overcurrent 1 Signal Source	0 to 1		1	F167	0 (SRC 1)
5C02	Neutral Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5C03	Neutral Instantaneous Overcurrent 1 Delay	0 to 600	S	0.001	F001	0
5C04	Neutral Instantaneous Overcurrent 1 Reset Delay	0 to 600	s	0.01	F001	0
550 -1		0 10 000	3	0.01	. 501	Ü

Table B-9: MODBUS MEMORY MAP (Sheet 33 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
5C05	Neutral Instantaneous Overcurrent 1 Block	0 to 4294967295		1	F300	0
5C07	Neutral Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5C08	Neutral Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5C09	Reserved (8 items)	0 to 1		1	F001	0
5C11	Repeated for Neutral Instantaneous Overcurrent 2					
5C22	Repeated for Neutral Instantaneous Overcurrent 3					
5C33	Repeated for Neutral Instantaneous Overcurrent 4					
5C44	Repeated for Neutral Instantaneous Overcurrent 5					
5C55	Repeated for Neutral Instantaneous Overcurrent 6					
5C66	Repeated for Neutral Instantaneous Overcurrent 7					
5C77	Repeated for Neutral Instantaneous Overcurrent 8					
5C88	Repeated for Neutral Instantaneous Overcurrent 9					
5C99	Repeated for Neutral Instantaneous Overcurrent 10					
5CAA	Repeated for Neutral Instantaneous Overcurrent 11					
5CBB	Repeated for Neutral Instantaneous Overcurrent 12					
Ground T	ime Overcurrent (Read/Write Grouped Setting) (up to 6 N	Modules)				
5D00	Ground Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5D01	Ground Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5D02	Ground Time Overcurrent 1 Input	0 to 1		1	F122	0 (Phasor)
5D03	Ground Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5D04	Ground Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)
5D05	Ground Time Overcurrent 1 Multiplier	0 to 600		0.01	F001	100
5D06	Ground Time Overcurrent 1 Reset	0 to 1		1	F104	0 (Instantaneous)
5D07	Ground Time Overcurrent 1 Block	0 to 4294967295		1	F300	0
5D09	Ground Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5D0A	Ground Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5D0B	Reserved (6 items)	0 to 1		1	F001	0
5D11	Repeated for Ground Time Overcurrent 2					
5D22	Repeated for Ground Time Overcurrent 3					
5D33	Repeated for Ground Time Overcurrent 4					
5D44	Repeated for Ground Time Overcurrent 5					
5D55	Repeated for Ground Time Overcurrent 6					
Ground In	nstantaneous Overcurrent (Read/Write Grouped Setting)	(up to 12 Modules)				
5DA0	Ground Instantaneous Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
5DA1	Ground Instantaneous Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5DA2	Ground Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
5DA3	Ground Instantaneous Overcurrent 1 Delay	0 to 600	s	0.01	F001	0
5DA4	Ground Instantaneous Overcurrent 1 Reset Delay	0 to 600	S	0.01	F001	0
5DA5	Ground Instantaneous Overcurrent 1 Block	0 to 4294967295		1	F300	0
5DA7	Ground Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
5DA8	Ground Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
5DA9	Reserved (8 items)	0 to 1		1	F001	0
5DB1	Repeated for Ground Instantaneous Overcurrent 2					
5DC2	Repeated for Ground Instantaneous Overcurrent 3					
5DD3	Repeated for Ground Instantaneous Overcurrent 4					
5DE4	Repeated for Ground Instantaneous Overcurrent 5					
5DF5	Repeated for Ground Instantaneous Overcurrent 6					
5E06	Repeated for Ground Instantaneous Overcurrent 7					
5E17	Repeated for Ground Instantaneous Overcurrent 8					
5E28	Repeated for Ground Instantaneous Overcurrent 9					
5E39	Repeated for Ground Instantaneous Overcurrent 10					
5E4A	Repeated for Ground Instantaneous Overcurrent 11					
5E5B	Repeated for Ground Instantaneous Overcurrent 12					

Table B-9: MODBUS MEMORY MAP (Sheet 34 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT				
Incipient	Cable Fault Detector Actual Values (Read Only) (6 Modu	les)	1	1	l					
5EC0	Incipient Cable Fault Detector 1 Phase A Counter	0 to 65535		1	F001	0				
5EC1	Incipient Cable Fault Detector 1 Phase B Counter	0 to 65535		1	F001	0				
5EC2	Incipient Cable Fault Detector 1 Phase C Counter	0 to 65535		1	F001	0				
5EC3	Repeated for incipient cable fault detector 2									
Incipient	Incipient Cable Fault Detector Communication (Read/Write Setting) (6 Modules)									
5ED8	Incipient Cable Fault Detector 1 Clear Counters	0 to 1		1	F126	0 (No)				
5ED9	Repeated for incipient cable fault detector 2									
Setting G	roups (Read/Write Setting)									
5F70	Setting Group for Modbus Comms (0 means group 1)	0 to 5		1	F001	0				
5F71	Setting Groups Block	0 to 4294967295		1	F300	0				
5F73	FlexLogic to Activate Groups 2 through 6 (5 items)	0 to 4294967295		1	F300	0				
5F7D	Setting Group Function	0 to 1		1	F102	0 (Disabled)				
5F7E	Setting Group Events	0 to 1		1	F102	0 (Disabled)				
Setting G	roups (Read Only)		•							
5F7F	Current Setting Group	0 to 5		1	F001	0				
Setting G	roup Names (Read/Write Setting)									
5F8C	Setting Group 1 Name				F203	(none)				
5F94	Setting Group 2 Name				F203	(none)				
5F9C	Setting Group 3 Name				F203	(none)				
5FA4	Setting Group 4 Name				F203	(none)				
5FAC	Setting Group 5 Name				F203	(none)				
5FB4	Setting Group 6 Name				F203	(none)				
Autoreclo	se (Read/Write Setting) (6 Modules)									
6200	Autoreclose 1 Function	0 to 1		1	F102	0 (Disabled)				
6201	Autoreclose 1 Initiate	0 to 4294967295		1	F300	0				
6203	Autoreclose 1 Block	0 to 4294967295		1	F300	0				
6205	Autoreclose 1 Max Number of Shots	1 to 4		1	F001	1				
6206	Autoreclose 1 Manual Close	0 to 4294967295		1	F300	0				
6208	Autoreclose 1 Manual Reset from LO	0 to 4294967295		1	F300	0				
620A	Autoreclose 1 Reset Lockout if Breaker Closed	0 to 1		1	F108	0 (Off)				
620B	Autoreclose 1 Reset Lockout On Manual Close	0 to 1		1	F108	0 (Off)				
620C	Autoreclose 1 Breaker Closed	0 to 4294967295		1	F300	0				
620E	Autoreclose 1 Breaker Open	0 to 4294967295		1	F300	0				
6210	Autoreclose 1 Block Time Upon Manual Close	0 to 655.35	S	0.01	F001	1000				
6211	Autoreclose 1 Dead Time Shot 1	0 to 655.35	S	0.01	F001	100				
6212	Autoreclose 1 Dead Time Shot 2	0 to 655.35	S	0.01	F001	200				
6213	Autoreclose 1 Dead Time Shot 3	0 to 655.35	s	0.01	F001	300				
6214	Autoreclose 1 Dead Time Shot 4	0 to 655.35	S	0.01	F001	400				
6215	Autoreclose 1 Reset Lockout Delay	0 to 655.35	S	0.01	F001	6000				
6216	Autoreclose 1 Reset Time	0 to 655.35	S	0.01	F001	6000				
6217	Autoreclose 1 Incomplete Sequence Time	0 to 655.35	S	0.01	F001	500				
6218	Autoreclose 1 Events	0 to 1		1	F102	0 (Disabled)				
6219	Autoreclose 1 Reduce Max 1	0 to 4294967295		1	F300	0				
621B	Autoreclose 1 Reduce Max 2	0 to 4294967295		1	F300	0				
621D	Autoreclose 1 Reduce Max 3	0 to 4294967295		1	F300	0				
621F	Autoreclose 1 Add Delay 1	0 to 4294967295		1	F300	0				
6221	Autoreclose 1 Delay 1	0 to 655.35	S	0.01	F001	0				
6222	Autoreclose 1 Add Delay 2	0 to 4294967295		1	F300	0				
6224	Autoreclose 1 Delay 2	0 to 655.35	S	0.01	F001	0				
6225	Reserved (4 items)	0 to 0.001		0.001	F001	0				
6229	Repeated for Autoreclose 2		1	ļ						
6252	Repeated for Autoreclose 3		1							
627B	Repeated for Autoreclose 4									

Table B-9: MODBUS MEMORY MAP (Sheet 35 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
62A4	Repeated for Autoreclose 5					
62CD	Repeated for Autoreclose 6					
Negative	Sequence Time Overcurrent (Read/Write Grouped Setting	g) (2 Modules)				
6300	Negative Sequence Time Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
6301	Negative Sequence Time Overcurrent 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
6302	Negative Sequence Time Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
6303	Negative Sequence Time Overcurrent 1 Curve	0 to 16		1	F103	0 (IEEE Mod Inv)
6304	Negative Sequence Time Overcurrent 1 Multiplier	0 to 600		0.01	F001	100
6305	Negative Sequence Time Overcurrent 1 Reset	0 to 1		1	F104	0 (Instantaneous)
6306	Negative Sequence Time Overcurrent 1 Block	0 to 4294967295		1	F300	0
6308	Negative Sequence Time Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
6309	Negative Sequence Time Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
630A	Reserved (7 items)	0 to 1		1	F001	0
6311	Repeated for Negative Sequence Time Overcurrent 2					
	Sequence Instantaneous Overcurrent (Read/Write Group					
63C0	Negative Sequence Instantaneous OC 1 Function	0 to 1		1	F102	0 (Disabled)
63C1	Negative Sequence Instantaneous OC 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
63C2	Negative Sequence Instantaneous Overcurrent 1 Pickup	0 to 30	pu	0.001	F001	1000
63C3	Negative Sequence Instantaneous Overcurrent 1 Delay	0 to 600	S	0.01	F001	0
63C4	Negative Sequence Instantaneous OC 1 Reset Delay	0 to 600	S	0.01	F001	0
63C5	Negative Sequence Instantaneous Overcurrent 1 Block	0 to 4294967295		1	F300	0
63C7	Negative Sequence Instantaneous Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)
63C8	Negative Sequence Instantaneous Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)
63C9	Reserved (8 items)	0 to 1		1	F001	0
63D1	Repeated for Negative Sequence Instantaneous OC 2					
	Sequence Overvoltage (Read/Write Grouped Setting) (3 I		•			
6440	Negative Sequence Overvoltage Function	0 to 1		1	F102	0 (Disabled)
6441	Negative Sequence Overvoltage Source	0 to 5		1	F167	0 (SRC 1)
6442	Negative Sequence Overvoltage Pickup	0 to 1.25	pu	0.001	F001	300
6443	Negative Sequence Overvoltage Pickup Delay	0 to 600	S	0.01	F001	50
6444	Negative Sequence Overvoltage Reset Delay	0 to 600	S	0.01	F001	50
6445	Negative Sequence Overvoltage Block	0 to 4294967295		1	F300	0 (0.15
6447	Negative Sequence Overvoltage Target	0 to 2		1	F109	0 (Self-reset)
6448	Negative Sequence Overvoltage Events	0 to 1		1	F102	0 (Disabled)
6449	Repeated for module number 2					
6452	Repeated for module number 3					
	uency (Read/Write Setting) (4 Modules)	0 to 1	T	1 4	F100	0 (Disabled)
6470	Overfrequency 1 Function	0 to 1		1	F102	0 (Disabled) 0
6471 6473	Overfrequency 1 Block Overfrequency 1 Source	0 to 4294967295 0 to 5		1	F300 F167	0 (SRC 1)
6474	Overfrequency 1 Source Overfrequency 1 Pickup	20 to 65	Hz	0.01	F001	6050
6474	Overfrequency 1 Pickup Delay	0 to 65.535	S S	0.001	F001	500
6476	Overfrequency 1 Reset Delay	0 to 65.535	s	0.001	F001	500
6477	Overfrequency 1 Target	0 to 2		1	F109	0 (Self-reset)
6477	Overfrequency 1 Events	0 to 2		1	F109	0 (Sell-leset) 0 (Disabled)
6479	Reserved (4 items)	0 to 1		1	F001	0 (Disabled)
647D	Repeated for Overfrequency 2	0.10 1		'	1 301	
648A	Repeated for Overfrequency 3					
6497	Repeated for Overfrequency 4		1			
	Directional Power (Read/Write Grouped Setting) (2 Modu	iles)				
6680	Sensitive Directional Power 1 Function	0 to 1	T	1	F102	0 (Disabled)
6681	Sensitive Directional Power 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
6682	Sensitive Directional Power 1 RCA	0 to 359	degrees	1	F001	0 (3/(3/1)
6683	Sensitive Directional Power 1 Calibration	0 to 0.95	degrees	0.05	F001	0
3000	Tamana and an an an an an an an an an an an an an	0 10 0.00	209,000	3.00	. 001	Ů

Table B-9: MODBUS MEMORY MAP (Sheet 36 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
6684	Sensitive Directional Power 1 STG1 SMIN	-1.2 to 1.2	pu	0.001	F002	100
6685	Sensitive Directional Power 1 STG1 Delay	0 to 600	S	0.01	F001	50
6686	Sensitive Directional Power 1 STG2 SMIN	-1.2 to 1.2	pu	0.001	F002	100
6687	Sensitive Directional Power 1 STG2 Delay	0 to 600	S	0.01	F001	2000
6688	Sensitive Directional Power 1 Block	0 to 4294967295			F300	0
668A	Sensitive Directional Power 1 Target	0 to 2		1	F109	0 (Self-reset)
668B	Sensitive Directional Power 1 Events	0 to 1		1	F102	0 (Disabled)
668C	Reserved (5 items)	0 to 65535		1	F001	0
6691	Repeated for Sensitive Directional Power 2					
Load Encr	roachment (Read/Write Grouped Setting)					
66C0	Load Encroachment Function	0 to 1		1	F102	0 (Disabled)
66C1	Load Encroachment Source	0 to 5		1	F167	0 (SRC 1)
66C2	Load Encroachment Minimum Voltage	0 to 3	pu	0.001	F001	250
66C3	Load Encroachment Reach	0.02 to 250	ohms	0.01	F001	100
66C4	Load Encroachment Angle	5 to 50	degrees	1	F001	30
66C5	Load Encroachment Pickup Delay	0 to 65.535	S	0.001	F001	0
66C6	Load Encroachment Reset Delay	0 to 65.535	S	0.001	F001	0
66C7	Load Encroachment Block	0 to 4294967295		1	F300	0
66C9	Load Encroachment Target	0 to 2		1	F109	0 (Self-reset)
66CA	Load Encroachment Events	0 to 1		1	F102	0 (Disabled)
66CB	Reserved (6 items)	0 to 65535		1	F001	0
Phase Und	dervoltage (Read/Write Grouped Setting) (3 Modules)					
7000	Phase Undervoltage 1 Function	0 to 1		1	F102	0 (Disabled)
7001	Phase Undervoltage 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
7002	Phase Undervoltage 1 Pickup	0 to 3	pu	0.001	F001	1000
7003	Phase Undervoltage 1 Curve	0 to 1		1	F111	0 (Definite Time)
7004	Phase Undervoltage 1 Delay	0 to 600	s	0.01	F001	100
7005	Phase Undervoltage 1 Minimum Voltage	0 to 3	pu	0.001	F001	100
7006	Phase Undervoltage 1 Block	0 to 4294967295		1	F300	0
7008	Phase Undervoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7009	Phase Undervoltage 1 Events	0 to 1		1	F102	0 (Disabled)
700A	Phase Undervoltage 1 Measurement Mode	0 to 1		1	F186	0 (Phase to Ground)
700B	Reserved (6 items)	0 to 1		1	F001	0
7011	Repeated for Phase Undervoltage 2					
7022	Repeated for Phase Undervoltage 3					
Phase Ove	ervoltage (Read/Write Grouped Setting) (3 Modules)					
7040	Phase Overvoltage 1 Function	0 to 1		1	F102	0 (Disabled)
7041	Phase Overvoltage 1 Source	0 to 5		1	F167	0 (SRC 1)
7042	Phase Overvoltage 1 Pickup	0 to 3	pu	0.001	F001	1000
7043	Phase Overvoltage 1 Delay	0 to 600	S	0.01	F001	100
7044	Phase Overvoltage 1 Reset Delay	0 to 600	s	0.01	F001	100
7045	Phase Overvoltage 1 Block	0 to 4294967295		1	F300	0
7047	Phase Overvoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7048	Phase Overvoltage 1 Events	0 to 1		1	F102	0 (Disabled)
7049	Repeated for Phase Overvoltage 2					
7052	Repeated for Phase Overvoltage 3					
	ectional Overcurrent (Read/Write Grouped Setting) (2 Mo		_	,		
7200	Phase Directional Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)
7201	Phase Directional Overcurrent 1 Source	0 to 5		1	F167	0 (SRC 1)
7202	Phase Directional Overcurrent 1 Block	0 to 4294967295		1	F300	0
7204	Phase Directional Overcurrent 1 ECA	0 to 359		1	F001	30
7205	Phase Directional Overcurrent 1 Pol V Threshold	0 to 3	pu	0.001	F001	700

Table B-9: MODBUS MEMORY MAP (Sheet 37 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT			
7206	Phase Directional Overcurrent 1 Block Overcurrent	0 to 1		1	F126	0 (No)			
7207	Phase Directional Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)			
7208	Phase Directional Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)			
7209	Reserved (8 items)	0 to 1		1	F001	0			
7211	Repeated for Phase Directional Overcurrent 2								
Neutral D	irectional Overcurrent (Read/Write Grouped Setting) (2 M	odules)							
7230	Neutral Directional Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)			
7231	Neutral Directional Overcurrent 1 Source	0 to 5		1	F167	0 (SRC 1)			
7232	Neutral Directional Overcurrent 1 Polarizing	0 to 4		1	F230	0 (Voltage)			
7233	Neutral Directional Overcurrent 1 Forward ECA	-90 to 90	° Lag	1	F002	75			
7234	Neutral Directional Overcurrent 1 Forward Limit Angle	40 to 90	degrees	1	F001	90			
7235	Neutral Directional Overcurrent 1 Forward Pickup	0.006 to 30	pu	0.001	F001	50			
7236	Neutral Directional Overcurrent 1 Reverse Limit Angle	40 to 90	degrees	1	F001	90			
7237	Neutral Directional Overcurrent 1 Reverse Pickup	0.002 to 30	pu	0.001	F001	50			
7238	Neutral Directional Overcurrent 1 Target	0 to 2		1	F109	0 (Self-reset)			
7239	Neutral Directional Overcurrent 1 Block	0 to 65535		1	F300	0			
723B	Neutral Directional Overcurrent 1 Events	0 to 1		1	F102	0 (Disabled)			
723C	Neutral Directional Overcurrent 1 Polarizing Voltage	0 to 1		1	F231	0 (Calculated V0)			
723D	Neutral Directional Overcurrent 1 Op Current	0 to 1		1	F196	0 (Calculated 3I0)			
723E	Neutral Directional Overcurrent 1 Offset	0 to 250	ohms	0.01	F001	0			
723F	Neutral Directional Overcurrent 1 Pos Seq Restraint	0 to 0.5		0.001	F001	63			
7240	Reserved	0 to 1		1	F001	0			
7241Repeated for Neutral Directional Overcurrent 2									
	sequence Directional Overcurrent (Read/Write Grouped	, ,	,						
7260	Negative Sequence Directional Overcurrent 1 Function	0 to 1		1	F102	0 (Disabled)			
7261	Negative Sequence Directional Overcurrent 1 Source	0 to 5		1	F167	0 (SRC 1)			
7262	Negative Sequence Directional Overcurrent 1 Type	0 to 1		1	F179	0 (Neg Sequence)			
7263	Neg Sequence Directional Overcurrent 1 Forward ECA	0 to 90	° Lag	1	F002	75			
7264	Neg Seq Directional Overcurrent 1 Forward Limit Angle	40 to 90	degrees	1	F001	90			
7265	Neg Sequence Directional Overcurrent 1 Forward Pickup	0.015 to 30	pu	0.05	F001	5			
7266	Neg Seq Directional Overcurrent 1 Reverse Limit Angle	40 to 90	degrees	1	F001	90			
7267 7268	Neg Sequence Directional Overcurrent 1 Reverse Pickup	0.015 to 30 0 to 2	pu	0.05	F001 F109	5			
	Negative Sequence Directional Overcurrent 1 Target			1	F300	0 (Self-reset)			
7269 726B	Negative Sequence Directional Overcurrent 1 Block	0 to 4294967295 0 to 1		1	F102	0 (Disabled)			
726C	Negative Sequence Directional Overcurrent 1 Events Negative Sequence Directional Overcurrent 1 Offset	0 to 250	ohms	0.01	F001	0 (Disabled)			
726D	Neg Seq Directional Overcurrent 1 Pos Seq Restraint	0 to 0.5		0.001	F001	63			
726E	9 1			1	F001	0			
7271	Reserved (3 items)Repeated for Neg Seq Directional Overcurrent 2	0 to 1	+	'	1 00 1	-			
	Arcing Current Settings (Read/Write Setting) (6 Modules)								
7290	Breaker 1 Arcing Amp Function	0 to 1		1	F102	0 (Disabled)			
7290	Breaker 1 Arcing Amp Source	0 to 5		1	F167	0 (SRC 1)			
7292	Breaker 1 Arcing Amp Init	0 to 4294967295		1	F300	0			
7294	Breaker 1 Arcing Amp Init B	0 to 4294967295		1	F300	0			
7296	Breaker 1 Arcing Amp Init C	0 to 4294967295		1	F300	0			
7298	Breaker 1 Arcing Amp Delay	0 to 65.535	s	0.001	F001	0			
7299	Breaker 1 Arcing Amp Limit	0 to 50000	kA2-cyc	1	F001	1000			
729A	Breaker 1 Arcing Amp Block	0 to 4294967295		1	F300	0			
729C	Breaker 1 Arcing Amp Target	0 to 2		1	F109	0 (Self-reset)			
729D	Breaker 1 Arcing Amp Events	0 to 1		1	F102	0 (Disabled)			
729E	Repeated for Breaker 2 Arcing Amp					, , , , , , , , , , , , , , , , , , , ,			
72AC	Repeated for Breaker 3 Arcing Amp								
72BA	Repeated for Breaker 4 Arcing Amp								
72C8	Repeated for Breaker 5 Arcing Amp								
			1	<u> </u>					

Table B-9: MODBUS MEMORY MAP (Sheet 38 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
72D6	Repeated for Breaker 6 Arcing Amp					
Disconne	ct (Breaker) Switch (Read/Write setting) (24 Modules)					
74A0	Disconnect Switch 1 Function	0 to 1		1	F102	0 (Disabled)
74A1	Disconnect Switch 1 Name				F206	"SW 1"
74A4	Disconnect Switch 1 Mode	0 to 1		1	F157	0 (3-Pole)
74A5	Disconnect Switch 1 Open	0 to 4294967295		1	F300	0
74A7	Disconnect Switch 1 Block Open	0 to 4294967295		1	F300	0
74A9	Disconnect Switch 1 Close	0 to 4294967295		1	F300	0
74AB	Disconnect Switch 1 Block Close	0 to 4294967295		1	F300	0
74AD	Disconnect Switch 1 Phase A / Three-pole Closed	0 to 4294967295		1	F300	0
74AF	Disconnect Switch 1 Phase A / Three-pole Opened	0 to 4294967295		1	F300	0
74B1	Disconnect Switch 1 Phase B Closed	0 to 4294967295		1	F300	0
74B3	Disconnect Switch 1 Phase B Opened	0 to 4294967295		1	F300	0
74B5	Disconnect Switch 1 Phase C Closed	0 to 4294967295		1	F300	0
74B7	Disconnect Switch 1 Phase C Opened	0 to 4294967295		1	F300	0
74B9	Disconnect Switch 1 Operate Time	0 to 65.535	S	0.001	F001	70
74BA	Disconnect Switch 1 Alarm Delay	0 to 65.535	S	0.001	F003	0
74BC	Disconnect Switch 1 Events	0 to 1		1	F102	0 (Disabled)
74BD	Reserved (2 items)					
74BF	Repeated for module number 2					
74DE	Repeated for module number 3					
74FD	Repeated for module number 4					
741C	Repeated for module number 5					
743B	Repeated for module number 6					
755A	Repeated for module number 7					
7579	Repeated for module number 8					
7598	Repeated for module number 9					
75B7	Repeated for module number 10					
75D6	Repeated for module number 11					
75F5	Repeated for module number 12					
7614	Repeated for module number 13					
7633	Repeated for module number 14					
7652	Repeated for module number 15					
7671	Repeated for module number 16					
7690	Repeated for module number 17					
76AF	Repeated for module number 18					
76CE	Repeated for module number 19					
76ED	Repeated for module number 20					
770C	Repeated for module number 21					
772B	Repeated for module number 22					
774A	Repeated for module number 23					
7769	Repeated for module number 24					
	Overload Protection (Read/Write Settings) (2 Modules)					
7788	Thermal Protection 1 Function	0 to 1		1	F102	0 (Disabled)
7789	Thermal Protection 1 Source	0 to 5		1	F167	0 (SRC 1)
778A	Thermal Protection 1 Base Current	0.2 to 3	pu	0.01	F001	80
778B	Thermal Protection 1 K Factor	1 to 1.2		0.05	F001	110
778C	Thermal Protection 1 Trip Time Constant	0 to 1000	min.	1	F001	45
778D	Thermal Protection 1 Reset Time Constant	0 to 1000	min.	1	F001	45
778E	Thermal Protection 1 Minimum Reset Time	0 to 1000	min.	1	F001	20
778F	Thermal Protection 1 Reset	0 to 4294967295		1	F300	0
7791	Thermal Protection 1 Block	0 to 4294967295		1	F300	0
7793	Thermal Protection 1 Target	0 to 2		1	F109	0 (Self-reset)
7794	Thermal Protection 1 Events	0 to 1		1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 39 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7795	Reserved (2 items)				F001	0
7797	Repeated for Thermal Protection 2					
Broken C	onductor Detection (Read/Write Settings) (2 or 6 Module	s)	•	•		
77AA	Broken Conductor 1 Function	0 to 1		1	F102	0 (Disabled)
77AB	Broken Conductor 1 Source	0 to 5		1	F167	0 (SRC 1)
77AC	Broken Conductor 1 I2/I1 Ratio	20 to 100	%	0.1	F001	200
77AD	Broken Conductor 1 I1 Minimum	0.05 to 1	pu	0.01	F001	10
77AE	Broken Conductor 1 I1 Maximum	0.05 to 5	pu	0.01	F001	150
77AF	Broken Conductor 1 Pickup Delay	0 to 65.535	S	0.001	F001	20000
77B0	Broken Conductor 1 Block	0 to 4294967295		1	F300	0
77B2	Broken Conductor 1 Target	0 to 2		1	F109	0 (Self-reset)
77B3	Broken Conductor 1 Events	0 to 1		1	F102	0 (Disabled)
77B4	Reserved (2 items)				F001	0
77B6	Repeated for Broken Conductor 2					
Ohm Inpu	its (Read/Write Setting) (2 Modules)					
77F8	Ohm Inputs 1 Function	0 to 1		1	F102	0 (Disabled)
77F9	Ohm Inputs 1 ID				F205	"Ohm lp 1 "
77FF	Ohm Inputs 1 Reserved (9 items)	0 to 65535		1	F001	0
7808	Repeated for Ohm Inputs 2					
Phasor M	easurement Unit Recorder Config Counter Command (R	ead/Write Command)				
781A	PMU 1 Recorder Clear Config Counter	0 to 1		1	F126	0 (No)
Phasor M	easurement Unit One-shot Command (Read/Write Settin	g)				
788C	PMU One-shot Function	0 to 1		1	F102	0 (Disabled)
788D	PMU One-shot Sequence Number	0 to 99		1	F001	1
788E	PMU One-shot Time	0 to 235959		1	F050	0
Phasor M	easurement Unit Recording Values (Read Only)					
7890	PMU 1 Available Records	0 to 65535		1	F001	0
7891	PMU 1 Second Per Record	0 to 6553.5		0.1	F001	0
7893	PMU 1 Last Cleared Date	0 to 400000000		1	F050	0
Phasor M	easurement Unit Test Values (Read/Write Setting)					
78AE	PMU 1 Test Function	0 to 1		1	F102	0 (Disabled)
78AF	PMU 1 Phase A Voltage Test Magnitude	0 to 700	kV	0.01	F003	50000
78B1	PMU 1 Page A Voltage Test Angle	-180 to 180	۰	0.05	F002	0
78B2	PMU 1 Phase B Voltage Test Magnitude	0 to 700	kV	0.01	F003	50000
78B4	PMU 1 Phase B Voltage Test Angle	-180 to 180	۰	0.05	F002	-12000
78B5	PMU 1 Phase C Voltage Test Magnitude	0 to 700	kV	0.01	F003	50000
78B7	PMU 1 Phase C Voltage Test Angle	-180 to 180	۰	0.05	F002	12000
78B8	PMU 1 Auxiliary Voltage Test Magnitude	0 to 700	kV	0.01	F003	50000
78BA	PMU 1 Auxiliary Voltage Test Angle	-180 to 180	۰	0.05	F002	0
78BB	PMU 1 Phase A Current Test Magnitude	0 to 9.999	kA	0.001	F004	1000
78BD	PMU 1 Phase A Current Test Angle	-180 to 180	۰	0.05	F002	-1000
78BE	PMU 1 Phase B Current Test Magnitude	0 to 9.999	kA	0.001	F004	1000
78C0	PMU 1 Phase B Current Test Angle	-180 to 180	۰	0.05	F002	-13000
78C1	PMU 1 Phase C Current Test Magnitude	0 to 9.999	kA	0.001	F003	1000
78C3	PMU 1 Phase C Current Test Angle	-180 to 180		0.05	F002	11000
78C4	PMU 1 Ground Current Test Magnitude	0 to 9.999	kA	0.001	F004	0
78C6	PMU 1 Ground Current Test Angle	-180 to 180	۰	0.05	F002	0
78C7	PMU 1 Test Frequency	20 to 70	Hz	0.001	F003	60000
78C9	PMU 1 Test df/dt	-10 to 10	Hz/s	0.01	F002	0
	quency (Read/Write Setting) (6 Modules)					
7A80	Underfrequency Function	0 to 1		1	F102	0 (Disabled)
7A81	Underfrequency Block	0 to 4294967295		1	F300	0
7A83	Min Current	0.1 to 1.25	pu	0.01	F001	10
7A84	Underfrequency Pickup	20 to 65	Hz	0.01	F001	5950

Table B-9: MODBUS MEMORY MAP (Sheet 40 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
7A85	Pickup Delay	0 to 65.535	S	0.001	F001	2000
7A86	Reset Delay	0 to 65.535	S	0.001	F001	2000
7A87	Underfrequency Source	0 to 5		1	F167	0 (SRC 1)
7A88	Underfrequency Events	0 to 1		1	F102	0 (Disabled)
7A89	Underfrequency Target	0 to 2		1	F109	0 (Self-reset)
7A8A	Underfreqency 1 Reserved (5 items)	0 to 1		1	F001	0
7A8F	Repeated for Underfrequency 2					
7A9E	Repeated for Underfrequency 3					
7AAD	Repeated for Underfrequency 4					
7ABC	Repeated for Underfrequency 5					
7ACB	Repeated for Underfrequency 6					
User Prog	rammable Pushbuttons (Read/Write Setting) (16 Module	s)				
7B60	User Programmable Pushbutton 1 Function	0 to 2		1	F137	0 (Disabled)
7B61	User Programmable Pushbutton 1 Top Line	1			F202	(none)
7B6B	User Programmable Pushbutton 1 On Text				F202	(none)
7B75	User Programmable Pushbutton 1 Off Text				F202	(none)
7B7F	User Programmable Pushbutton 1 Drop-Out Time	0 to 60	S	0.05	F001	0
7B80	User Programmable Pushbutton 1 Target	0 to 2		1	F109	0 (Self-reset)
7B81	User Programmable Pushbutton 1 Events	0 to 1		1	F102	0 (Disabled)
7B82	User Programmable Pushbutton 1 LED Operand	0 to 4294967295		1	F300	0
7B84	User Programmable Pushbutton 1 Autoreset Delay	0 to 600	s	0.05	F001	0
7B85	User Programmable Pushbutton 1 Autoreset Function	0 to 1		1	F102	0 (Disabled)
7B86	User Programmable Pushbutton 1 Local Lock	0 to 4294967295		1	F300	0
7B88	User Programmable Pushbutton 1 Message Priority	0 to 2		1	F220	0 (Disabled)
7B89	User Programmable Pushbutton 1 Remote Lock	0 to 4294967295		1	F300	0
7B8B	User Programmable Pushbutton 1 Reset	0 to 4294967295		1	F300	0
7B8D	User Programmable Pushbutton 1 Set	0 to 4294967295		1	F300	0
7B8F	User Programmable Pushbutton 1 Hold	0 to 10	S	0.1	F001	1
7B90	Repeated for User Programmable Pushbutton 2					
7BC0	Repeated for User Programmable Pushbutton 3					
7BF0	Repeated for User Programmable Pushbutton 4					
7C20	Repeated for User Programmable Pushbutton 5					
7C50	Repeated for User Programmable Pushbutton 6					
7C80	Repeated for User Programmable Pushbutton 7					
7CB0	Repeated for User Programmable Pushbutton 8					
7DE0	Repeated for User Programmable Pushbutton 9					
7D10	Repeated for User Programmable Pushbutton 10					
7D40	Repeated for User Programmable Pushbutton 11					
7D70	Repeated for User Programmable Pushbutton 12					
7DA0	Repeated for User Programmable Pushbutton 13					
7DD0	Repeated for User Programmable Pushbutton 14					
7E00	Repeated for User Programmable Pushbutton 15		1			
7E30	Repeated for User Programmable Pushbutton 16					
7F00	vervoltage (Read/Write Grouped Setting) (3 Modules) Neutral Overvoltage 1 Function	0 to 1	Τ.	1	F102	0 (Disabled)
7F00 7F01	Neutral Overvoltage 1 Function Neutral Overvoltage 1 Signal Source	0 to 5		1	F102 F167	<u>'</u>
7F01 7F02	Neutral Overvoltage 1 Pickup		DI.			0 (SRC 1) 300
7F02 7F03	Neutral Overvoltage 1 Pickup Neutral Overvoltage 1 Pickup Delay	0 to 3.00 0 to 600	pu	0.001	F001 F001	100
7F03 7F04		0 to 600	S	0.01	F001	100
7F04 7F05	Neutral Overvoltage 1 Reset Delay Neutral Overvoltage 1 Block	0 to 4294967295	S	1	F300	0
7F05 7F07	Neutral Overvoltage 1 Target	0 to 2		1	F109	0 (Self-reset)
7F08 7F09	Neutral Overvoltage 1 Events Neutral Overvoltage 1 Curves	0 to 1		1	F102	0 (Disabled)
7F09 7F0A	-	0 to 3		1	F116 F001	0 (Definite Time)
/ FUA	Reserved (8 items)	0 to 65535		1	FUUI	U

Table B-9: MODBUS MEMORY MAP (Sheet 41 of 72)

7F11	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT			
	Repeated for Neutral Overvoltage 2								
7F22	Repeated for Neutral Overvoltage 3								
Auxiliary	Undervoltage (Read/Write Grouped Setting) (3 Modules)								
7F60	Auxiliary Undervoltage 1 Function	0 to 1		1	F102	0 (Disabled)			
7F61	Auxiliary Undervoltage 1 Signal Source	0 to 5		1	F167	0 (SRC 1)			
7F62	Auxiliary Undervoltage 1 Pickup	0 to 3	pu	0.001	F001	700			
7F63	Auxiliary Undervoltage 1 Delay	0 to 600	s	0.01	F001	100			
7F64	Auxiliary Undervoltage 1 Curve	0 to 1		1	F111	0 (Definite Time)			
7F65	Auxiliary Undervoltage 1 Minimum Voltage	0 to 3	pu	0.001	F001	100			
7F66	Auxiliary Undervoltage 1 Block	0 to 4294967295		1	F300	0			
7F68	Auxiliary Undervoltage 1 Target	0 to 2		1	F109	0 (Self-reset)			
7F69	Auxiliary Undervoltage 1 Events	0 to 1		1	F102	0 (Disabled)			
7F6A	Reserved (7 items)	0 to 65535		1	F001	0			
7F71	Repeated for Auxiliary Undervoltage 2								
7F82	Repeated for Auxiliary Undervoltage 3								
Auxiliary	Overvoltage (Read/Write Grouped Setting) (3 Modules)								
7FA0	Auxiliary Overvoltage 1 Function	0 to 1		1	F102	0 (Disabled)			
7FA1	Auxiliary Overvoltage 1 Signal Source	0 to 5		1	F167	0 (SRC 1)			
7FA2	Auxiliary Overvoltage 1 Pickup	0 to 3	pu	0.001	F001	300			
7FA3	Auxiliary Overvoltage 1 Pickup Delay	0 to 600	S	0.01	F001	100			
7FA4	Auxiliary Overvoltage 1 Reset Delay	0 to 600	S	0.01	F001	100			
7FA5	Auxiliary Overvoltage 1 Block	0 to 4294967295		1	F300	0			
7FA7	Auxiliary Overvoltage 1 Target	0 to 2		1	F109	0 (Self-reset)			
7FA8	Auxiliary Overvoltage 1 Events	0 to 1		1	F102	0 (Disabled)			
7FA9	Reserved (8 items)	0 to 65535		1	F001	0			
7FB1	Repeated for Auxiliary Overvoltage 2								
7FC2	Repeated for Auxiliary Overvoltage 3								
Frequenc	y (Read Only)		•						
8000	Tracking Frequency	2 to 90	Hz		F001	0			
Temp Mo	nitor Actual Values (Read Only Non-Volatile)								
81C0	nitor Actual Values (Read Only Non-Volatile) Reserved Register T1	-55 to 125	С	1	F002	-55			
•	· · · · · · · · · · · · · · · · · · ·	-55 to 125 -55 to 125	C	1 1	F002 F002	-55 125			
81C0	Reserved Register T1	-55 to 125 -2147483647 to							
81C0 81C1 81C2	Reserved Register T1 Reserved Register T2 Reserved Register T3	-55 to 125 -2147483647 to 2147483647	C	1	F002 F004	125 0			
81C0 81C1 81C2 81C4	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4	-55 to 125 -2147483647 to 2147483647 0 to 4294967295	C	1 1 1	F002 F004 F003	125 0			
81C0 81C1 81C2 81C4 81C6	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295	C	1 1 1 1	F002 F004 F003 F003	125 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295		1 1 1 1	F002 F004 F003 F003 F003	125 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295	C	1 1 1 1 1	F002 F004 F003 F003 F003 F003	125 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T8	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295		1 1 1 1	F002 F004 F003 F003 F003	125 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile)	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003	125 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F003	125 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 4294967295		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F003	125 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F003	125 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T6 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules)	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 4294967295 0 to 65535		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001	125 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001	125 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F0	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535 0 to 65535 0 to 64294967295		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Configuration Time	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001	125 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 SizeRepeated for module number 2	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535 0 to 65535 0 to 64294967295		1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3 83F4 EGD Fast	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 SizeRepeated for module number 2 Production (Read/Write Setting)	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535 0 to 65535 0 to 4294967295 0 to 65535		1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3 83F4 EGD Fast	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 SizeRepeated for module number 2 Production (Read/Write Setting) EGD Fast Producer Exchange 1 Function	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535 0 to 4294967295 0 to 65535 0 to 65535		1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3 83F4 EGD Fast 8400 8401	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Size Repeated for module number 2 Production (Read/Write Setting) EGD Fast Producer Exchange 1 Function EGD Fast Producer Exchange 1 Destination	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 4294967295 0 to 65535 0 to 65535 0 to 4294967295 0 to 65535		1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3 83F4 EGD Fast 8400 8401 8403	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T6 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Configuration Time EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Size Repeated for module number 2 Production (Read/Write Setting) EGD Fast Producer Exchange 1 Function EGD Fast Producer Exchange 1 Destination EGD Fast Producer Exchange 1 Destination	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 65535 0 to 65535 0 to 65535 0 to 65535 0 to 4294967295 0 to 65535		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0 0 0 0 0 0			
81C0 81C1 81C2 81C4 81C6 81C8 81CA 81CC EGD Fast 83E0 83E1 83E3 EGD Slov 83F1 83F3 83F4 EGD Fast 8400 8401	Reserved Register T1 Reserved Register T2 Reserved Register T3 Reserved Register T4 Reserved Register T5 Reserved Register T6 Reserved Register T7 Reserved Register T7 Reserved Register T8 Production Status (Read Only Non-Volatile) EGD Fast Producer Exchange 1 Signature EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Fast Producer Exchange 1 Size Production Status (Read Only Non-Volatile) (2 Modules) EGD Slow Producer Exchange 1 Signature EGD Slow Producer Exchange 1 Configuration Time EGD Slow Producer Exchange 1 Size Repeated for module number 2 Production (Read/Write Setting) EGD Fast Producer Exchange 1 Function EGD Fast Producer Exchange 1 Destination	-55 to 125 -2147483647 to 2147483647 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 4294967295 0 to 65535 0 to 4294967295 0 to 65535 0 to 65535 0 to 4294967295 0 to 65535		1 1 1 1 1 1 1 1	F002 F004 F003 F003 F003 F003 F001 F001 F001 F001	125 0 0 0 0 0 0 0 0 0 0 0 0 0			

Table B-9: MODBUS MEMORY MAP (Sheet 42 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
EGD Slow	Production (Read/Write Setting) (2 Modules)		•			•
8468	EGD Slow Producer Exchange 1 Function	0 to 1		1	F102	0 (Disabled)
8469	EGD Fast Producer Exchange 1 Destination	0 to 4294967295		1	F003	0
846B	EGD Slow Producer Exchange 1 Data Rate	500 to 1000	ms	50	F001	1000
846C	EGD Slow Producer Exchange 1 Data Item 1 (50 items)	0 to 65535		1	F001	0
846E	Reserved (50 items)				F001	0
84D0	Repeated for EGD Exchange 2					
Breaker Fa	ailure (Read/Write Grouped Setting) (4 or 6 Modules)		<u> </u>			
8600	Breaker Failure 1 Function	0 to 1		1	F102	0 (Disabled)
8601	Breaker Failure 1 Mode	0 to 1		1	F157	0 (3-Pole)
8602	Breaker Failure 1 Source	0 to 5		1	F167	0 (SRC 1)
8603	Breaker Failure 1 Amp Supervision	0 to 1		1	F126	1 (Yes)
8604	Breaker Failure 1 Use Seal-In	0 to 1		1	F126	1 (Yes)
8605	Breaker Failure 1 Three Pole Initiate	0 to 4294967295		1	F300	0
8607	Breaker Failure 1 Block	0 to 4294967295		1	F300	0
8609	Breaker Failure 1 Phase Amp Supv Pickup	0.001 to 30	pu	0.001	F001	1050
860A	Breaker Failure 1 Neutral Amp Supv Pickup	0.001 to 30	pu	0.001	F001	1050
860B	Breaker Failure 1 Use Timer 1	0 to 1		1	F126	1 (Yes)
860C	Breaker Failure 1 Timer 1 Pickup	0 to 65.535	s	0.001	F001	0
860D	Breaker Failure 1 Use Timer 2	0 to 1		1	F126	1 (Yes)
860E	Breaker Failure 1 Timer 2 Pickup	0 to 65.535	S	0.001	F001	0
860F	Breaker Failure 1 Use Timer 3	0 to 1		1	F126	1 (Yes)
8610	Breaker Failure 1 Timer 3 Pickup	0 to 65.535	s	0.001	F001	0
8611	Breaker Failure 1 Breaker Status 1 Phase A/3P	0 to 4294967295		1	F300	0
8613	Breaker Failure 1 Breaker Status 2 Phase A/3P	0 to 4294967295		1	F300	0
8615	Breaker Failure 1 Breaker Test On	0 to 4294967295		1	F300	0
8617	Breaker Failure 1 Phase Amp Hiset Pickup	0.001 to 30	pu	0.001	F001	1050
8618	Breaker Failure 1 Neutral Amp Hiset Pickup	0.001 to 30	pu	0.001	F001	1050
8619	Breaker Failure 1 Phase Amp Loset Pickup	0.001 to 30	pu	0.001	F001	1050
861A	Breaker Failure 1 Neutral Amp Loset Pickup	0.001 to 30	pu	0.001	F001	1050
861B	Breaker Failure 1 Loset Time	0 to 65.535	s	0.001	F001	0
861C	Breaker Failure 1 Trip Dropout Delay	0 to 65.535	S	0.001	F001	0
861D	Breaker Failure 1 Target	0 to 2		1	F109	0 (Self-reset)
861E	Breaker Failure 1 Events	0 to 1		1	F102	0 (Disabled)
861F	Breaker Failure 1 Phase A Initiate	0 to 4294967295		1	F300	0
8621	Breaker Failure 1 Phase B Initiate	0 to 4294967295		1	F300	0
8623	Breaker Failure 1 Phase C Initiate	0 to 4294967295		1	F300	0
8625	Breaker Failure 1 Breaker Status 1 Phase B	0 to 4294967295		1	F300	0
8627	Breaker Failure 1 Breaker Status 1 Phase C	0 to 4294967295		1	F300	0
8629	Breaker Failure 1 Breaker Status 2 Phase B	0 to 4294967295		1	F300	0
862B	Breaker Failure 1 Breaker Status 2 Phase C	0 to 4294967295		1	F300	0
862D	Repeated for Breaker Failure 2		+	<u> </u>	. 355	
865A	Repeated for Breaker Failure 3		†			
8687	Repeated for Breaker Failure 4		+			
86B4	Repeated for Breaker Failure 5		+	-		
86E1	Repeated for Breaker Failure 6		+	-		
	Settings (Read/Write Setting)		1			
8800	FlexState Parameters (256 items)	0 to 4294967295			F300	0
	ements (Read/Write Setting) (48 Modules)	1.1.120.007.200			, 555	, ,
8A00	Digital Element 1 Function	0 to 1		1	F102	0 (Disabled)
	Digital Element 1 Name				F203	"Dig Element 1"
8A01			1	Ì		5 1
8A01 8A09	5	0 to 4294967295		1	F300	0
8A01 8A09 8A0B	Digital Element 1 Input Digital Element 1 Pickup Delay	0 to 4294967295 0 to 999999.999	 S	1 0.001	F300 F003	0

Table B-9: MODBUS MEMORY MAP (Sheet 43 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
8A0F	Digital Element 1 Block	0 to 4294967295		1	F300	0
8A11	Digital Element 1 Target	0 to 2		1	F109	0 (Self-reset)
8A12	Digital Element 1 Events	0 to 1		1	F102	0 (Disabled)
8A13	Digital Element 1 Pickup LED	0 to 1		1	F102	1 (Enabled)
8A14	Reserved (2 items)				F001	0
8A16	Repeated for Digital Element 2					
8A2C	Repeated for Digital Element 3					
8A42	Repeated for Digital Element 4					
8A58	Repeated for Digital Element 5					
8A6E	Repeated for Digital Element 6					
8A84	Repeated for Digital Element 7					
8A9A	Repeated for Digital Element 8					
8AB0	Repeated for Digital Element 9					
8AC6	Repeated for Digital Element 10					
8ADC	Repeated for Digital Element 11					
8AF2	Repeated for Digital Element 12					
8B08	Repeated for Digital Element 13					
8B1E	Repeated for Digital Element 14					
8B34	Repeated for Digital Element 15					
8B4A	Repeated for Digital Element 16					
8B60	Repeated for Digital Element 17					
8B76	Repeated for Digital Element 18					
8B8C	Repeated for Digital Element 19					
8BA2	Repeated for Digital Element 20					
8BB8	Repeated for Digital Element 21					
8BCE	Repeated for Digital Element 22					
8BE4	Repeated for Digital Element 23					
8BFA	Repeated for Digital Element 24					
8C10	Repeated for Digital Element 25					
8C26	Repeated for Digital Element 26					
8C3C	Repeated for Digital Element 27					
8C52	Repeated for Digital Element 28					
8C68	Repeated for Digital Element 29					
8C7E	Repeated for Digital Element 30					
8C94	Repeated for Digital Element 31					
8CAA	Repeated for Digital Element 32					
8CC0	Repeated for Digital Element 33					
8CD6	Repeated for Digital Element 34					
8CEC	Repeated for Digital Element 35					
8D02	Repeated for Digital Element 36					
8D18	Repeated for Digital Element 37					
8D2E	Repeated for Digital Element 38					
8D44	Repeated for Digital Element 39					
8D5A	Repeated for Digital Element 40					
8D70	Repeated for Digital Element 41					
8D86	Repeated for Digital Element 42					
8D9C	Repeated for Digital Element 43					
8DB2	Repeated for Digital Element 44					
8DC8	Repeated for Digital Element 45		ļ			
8DDE	Repeated for Digital Element 46					
8DF4	Repeated for Digital Element 47					
8E0A	Repeated for Digital Element 48					
	Read/Write Setting) (6 Modules)		_			1
8ED0	Trip Bus 1 Function	0 to 1		1	F102	0 (Disabled)

Table B-9: MODBUS MEMORY MAP (Sheet 44 of 72)

SEDI Trip Bus Flexic Delay 0 to 600	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
RECPA Tip Bus Reset Deby 0 to 000 s	8ED1	Trip Bus 1 Block	0 to 4294967295			F300	0
SEDS Tipp Bus 1 Input (16 tems)	8ED3	Trip Bus 1 Pickup Delay	0 to 600	S	0.01	F001	0
BEFF Trip Bus Lackning 0 to 1	8ED4	Trip Bus 1 Reset Delay	0 to 600	S	0.01	F001	0
SEFF8 Trip Bus Target	8ED5	Trip Bus 1 Input (16 items)	0 to 4294967295		1	F300	0
BEFB	8EF5	Trip Bus 1 Latching	0 to 1		1	F102	0 (Disabled)
BEFPA Reserved (a letters)	8EF6	Trip Bus 1 Reset	0 to 65535		1	F300	0
BEFA Reserved (8 items)	8EF8	Trip Bus 1 Target	0 to 2		1	F109	0 (Self-reset)
BF02	8EF9	Trip Bus 1 Events	0 to 1		1	F102	0 (Disabled)
BF34	8EFA	Reserved (8 items)				F001	0
BF66	8F02	Repeated for Trip Bus 2					
BF98	8F34	Repeated for Trip Bus 3					
FREEEment Float	8F66	Repeated for Trip Bus 4					
PiexElement Function	8F98	Repeated for Trip Bus 5					
Property Property	8FCA	Repeated for Trip Bus 6					
Pool	FlexElem	ent (Read/Write Setting) (16 Modules)					
PiexElement 1 InputP	9000	FlexElement 1 Function	0 to 1		1	F102	0 (Disabled)
9005 FlexElement 1 InputM	9001	FlexElement 1 Name				F206	"FxE 1"
9006 FlexElement 1 Compare 0 to 1	9004	FlexElement 1 InputP	0 to 65535		1	F600	0
Pool	9005	FlexElement 1 InputM	0 to 65535		1	F600	0
Pools FiexElement 1 Direction	9006	FlexElement 1 Compare	0 to 1		1	F516	0 (LEVEL)
9009 FiexElement 1 Hysteresis 0.1 to 50 % 0.1 F001 30 9004 FiexElement 1 Pickup 90 to 90 pu 0.001 F004 1000 9000 FiexElement 1 DeltaT 10 to 2 1 F518 0 (Millisconds) 7000 7000 FiexElement 1 DeltaT 20 to 88400 1 F603 20 7000 7000 FiexElement 1 DeltaT 20 to 88400 1 F603 20 7000	9007	FlexElement 1 Input	0 to 1		1	F515	0 (SIGNED)
900A FlexElement 1 Pickup 90 to 90 pu 0.001 F004 1000 900C FlexElement 1 DeltaT Units 0 to 2 1 F518 0 (Milliseconds) 900D FlexElement 1 DeltaT 20 to 86400 1 F003 20 900F FlexElement 1 Pickup Delay 0 to 65.535 \$ 0.001 F001 0 9010 FlexElement 1 Flokup Delay 0 to 65.535 \$ 0.001 F001 0 9010 FlexElement 1 Block 0 to 65535 \$ 0.001 F001 0 0 9011 FlexElement 1 Block 0 to 65535 1 F300 0 9013 FlexElement 1 Target 0 to 2 1 F109 0 (Self-rest) 9014 FlexElement 1 Target 0 to 2 1 F102 0 (Disabled) 9015 Repeated for FlexElement 2 1 F102 0 (Disabled) 9015 Repeated for FlexElement 3 1 F102 0 (Disabled) 9034 Repeated for FlexElement 4 1 F102 0 (Disabled) 9034 Repeated for FlexElement 4 1 F102 0 (Disabled) 9036 Repeated for FlexElement 6 1 F102 0 (Disabled) 9036 Repeated for FlexElement 6 1 F103 0 (Disabled) 9040 Repeated for FlexElement 7 1 F104 7 F105 F105 7 F105 7 F105 7 F105 7 F105 7 F105 7 F105 7 F105 7 F105 7 F105 7 F105 7 F105 F105 7 F105 F1	9008	FlexElement 1 Direction	0 to 1		1	F517	0 (OVER)
900C FlexElement 1 DeltaT Units 0 to 2	9009	FlexElement 1 Hysteresis	0.1 to 50	%	0.1	F001	30
900D FlexElement 1 DeltaT	900A	FlexElement 1 Pickup	-90 to 90	pu	0.001	F004	1000
900F FlexElement 1 Pickup Delay 0 to 65.535 s 0.001 F001 0 9010 FlexElement 1 Reset Delay 0 to 65.535 s 0.001 F001 0 9011 FlexElement 1 Block 0 to 65.535 s 0.001 F001 0 9013 FlexElement 1 Target 0 to 2 1 F109 0 (Self-reset) 9014 FlexElement 1 Events 0 to 1 1 F102 0 (Disabled) 9015 Repeated for FlexElement 2 1 F102 0 (Disabled) 9026 Repeated for FlexElement 3 1 F102 0 (Disabled) 9037 Repeated for FlexElement 5 1 F102 9038 Repeated for FlexElement 6 1 F102 9079 Repeated for FlexElement 7 1 F103 9089 Repeated for FlexElement 8 1 F103 9080 Repeated for FlexElement 9 1 F103 9080 Repeated for FlexElement 9 1 F103 9080 Repeated for FlexElement 10 1 F103 9080 Repeated for FlexElement 11 1 F103 9080 Repeated for FlexElement 16 1 F103 9080 Repeated for FlexElement 16 1 F103 9080 Repeated for FlexElement 17 1 F103 9111 Repeated for FlexElement 18 1 F107 9090 Repeated for FlexElement 16 1 F300 0 9000 Fault Report 1 Source 0 to 4294967295 1 F300 0 9201 Fault Report 1 T1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9205 Fault Report 1 21 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 20 Magnitude 0.01 to 650 ohms	900C	FlexElement 1 DeltaT Units	0 to 2		1	F518	0 (Milliseconds)
9010 FlexElement 1 Reset Delay	900D	FlexElement 1 DeltaT	20 to 86400		1	F003	20
9011 FlexElement 1 Block	900F	FlexElement 1 Pickup Delay	0 to 65.535	S	0.001	F001	0
9013 FlexElement 1 Target 0 to 2	9010	FlexElement 1 Reset Delay	0 to 65.535	S	0.001	F001	0
9014 FlexElement 1 Events	9011	FlexElement 1 Block	0 to 65535		1	F300	0
9015Repeated for FlexElement 2 902ARepeated for FlexElement 3 903FRepeated for FlexElement 4 9054Repeated for FlexElement 5 9069Repeated for FlexElement 6 907ERepeated for FlexElement 7 9083Repeated for FlexElement 7 9093Repeated for FlexElement 8 90A8Repeated for FlexElement 9 90BDRepeated for FlexElement 10 90C2Repeated for FlexElement 11 90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 4294967295 1 F167 0 (SRC 1) 9201 Fault Report 1 21 Magnitude 0.0.1 to 250 ohms 0.01 F001 300 9204 Fault Report 1 2 Magnitude 0.0.1 to 650 ohms 0.0.1 F001 900 9205 Fault Report 1 20 Magnitude 0.0.1 to 650 ohms 0.0.1 F001 900	9013	FlexElement 1 Target	0 to 2		1	F109	0 (Self-reset)
902ARepeated for FlexElement 3 903FRepeated for FlexElement 4 9054Repeated for FlexElement 5 9069Repeated for FlexElement 6 907ERepeated for FlexElement 7 9093Repeated for FlexElement 7 9093Repeated for FlexElement 8 90A8Repeated for FlexElement 9 90BDRepeated for FlexElement 10 90BDRepeated for FlexElement 11 90CTRepeated for FlexElement 11 90FCRepeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 9200 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 4294967295 1 F167 0 (SRC 1) 9201 Fault Report 1 Tingger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.0.11 to 250 ohms 0.0.1 F001 300 9204 Fault Report 1 Z1 Magnitude 0.0.1 to 650 ohms 0.0.1 F001 900 9205 Fault Report 1 Z0 Magnitude 0.0.1 to 650 ohms 0.0.1 F001 900	9014	FlexElement 1 Events	0 to 1		1	F102	0 (Disabled)
903FRepeated for FlexElement 4 9054Repeated for FlexElement 5 9069Repeated for FlexElement 6 907ERepeated for FlexElement 7 9093Repeated for FlexElement 8 90A8Repeated for FlexElement 9 90BDRepeated for FlexElement 10 90BORepeated for FlexElement 11 90CTRepeated for FlexElement 12 90FCRepeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 9138Repeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 42949497295 1 F300 0 9201 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Magnitude 25 to 90 degrees 1 F001 75	9015	Repeated for FlexElement 2					
9054Repeated for FlexElement 6 9069Repeated for FlexElement 6 907ERepeated for FlexElement 7 9093Repeated for FlexElement 8 90A8Repeated for FlexElement 9 90BDRepeated for FlexElement 10 90D2Repeated for FlexElement 11 90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900	902A	Repeated for FlexElement 3					
9069Repeated for FlexElement 6 907ERepeated for FlexElement 7 9093Repeated for FlexElement 8 90A8Repeated for FlexElement 9 90BDRepeated for FlexElement 10 90BDRepeated for FlexElement 11 90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75	903F	Repeated for FlexElement 4					
907E Repeated for FlexElement 7	9054	Repeated for FlexElement 5					
9093Repeated for FlexElement 8 90A8Repeated for FlexElement 9 90BDRepeated for FlexElement 10 90D2Repeated for FlexElement 11 90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 4294967295 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75	9069	Repeated for FlexElement 6					
908 Repeated for FlexElement 9 90BD Repeated for FlexElement 10 90D2 Repeated for FlexElement 11 90E7 Repeated for FlexElement 12 90FC Repeated for FlexElement 13 9111 Repeated for FlexElement 14 9126 Repeated for FlexElement 15 913B Repeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source	907E	Repeated for FlexElement 7					
90BDRepeated for FlexElement 10 90D2Repeated for FlexElement 11 90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 4294967295 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75	9093	Repeated for FlexElement 8					
90D2Repeated for FlexElement 11 90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75	90A8	Repeated for FlexElement 9					
90E7Repeated for FlexElement 12 90FCRepeated for FlexElement 13 9111Repeated for FlexElement 14 9126Repeated for FlexElement 15 913BRepeated for FlexElement 16 913BRepeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 0hms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 0hms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75	90BD	Repeated for FlexElement 10					
90FCRepeated for FlexElement 13		Repeated for FlexElement 11					
9111 Repeated for FlexElement 14 9126 Repeated for FlexElement 15 913B Repeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		•					
9126 Repeated for FlexElement 15 Repeated for FlexElement 16 913B Repeated for FlexElement 16 Repeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75	90FC	•					
913B Repeated for FlexElement 16 Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		•					
Fault Report Settings (Read/Write Setting) (up to 5 Modules) 9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		·					
9200 Fault Report 1 Source 0 to 5 1 F167 0 (SRC 1) 9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		•					
9201 Fault Report 1 Trigger 0 to 4294967295 1 F300 0 9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		5, 1					
9203 Fault Report 1 Z1 Magnitude 0.01 to 250 ohms 0.01 F001 300 9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		-					
9204 Fault Report 1 Z1 Angle 25 to 90 degrees 1 F001 75 9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75			0 to 4294967295		1		
9205 Fault Report 1 Z0 Magnitude 0.01 to 650 ohms 0.01 F001 900 9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75				ohms			
9206 Fault Report 1 Z0 Angle 25 to 90 degrees 1 F001 75		·		 			
				ohms			
9207 Fault Report 1 Line Length Units				degrees			-
	9207	Fault Report 1 Line Length Units	0 to 1		1	F147	0 (km)

Table B-9: MODBUS MEMORY MAP (Sheet 45 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
9208	Fault Report 1 Line Length	0 to 2000		0.1	F001	1000
9209	Fault Report 1 VT Substitution	0 to 2		1	F270	0 (None)
920A	Fault Report 1 System Z0 Magnitude	0.01 to 650.00	ohms	0.01	F001	900
9208	Fault Report 1 System Z0 Angle	25 to 90	degrees	1	F001	75
920C	Fault REM1-TAP Z1 Magnitude	0.01 to 250	ohms	0.01	F001	300
920D	Fault REM1-TAP Z1 Angle	25 to 90	degrees	1	F001	75
920E	Fault REM1-TAP Length	0 to 2000		0.1	F001	1000
920F	Fault REM2-TAP Z1 Magnitude	0.01 to 250	ohms	0.01	F001	300
9210	Fault REM2-TAP Z1 Angle	25 to 90	degrees	1	F001	75
9511	Fault REM2-TAP Length	0 to 2000		0.1	F001	1000
9212	Repeated for Fault Report 2					
9224	Repeated for Fault Report 3					
9236	Repeated for Fault Report 4					
9248	Repeated for Fault Report 5					
	tputs (Read/Write Setting) (24 Modules)					
9360	dcmA Output 1 Source	0 to 65535		1	F600	0
9361	dcmA Output 1 Range	0 to 2		1	F522	0 (–1 to 1 mA)
9362	dcmA Output 1 Minimum	-90 to 90	pu	0.001	F004	0
9364	dcmA Output 1 Maximum	-90 to 90	pu	0.001	F004	1000
9366	Repeated for dcmA Output 2					
936C	Repeated for dcmA Output 3					
9372	Repeated for dcmA Output 4					
9378	Repeated for dcmA Output 5					
937E	Repeated for dcmA Output 6					
9384	Repeated for dcmA Output 7					
938A	Repeated for dcmA Output 8					
9390	Repeated for dcmA Output 9					
9396	Repeated for dcmA Output 10					
939C	Repeated for dcmA Output 11					
93A2	Repeated for dcmA Output 12					
93A8	Repeated for dcmA Output 13					
93AE	Repeated for dcmA Output 14					
93B4	Repeated for dcmA Output 15					
93BA	Repeated for dcmA Output 16					
93C0	Repeated for dcmA Output 17					
93C6	Repeated for dcmA Output 18					
93CC	Repeated for dcmA Output 19					
93D2	Repeated for dcmA Output 20					
93D8	Repeated for dcmA Output 21					
93DE	Repeated for dcmA Output 22					
93E4	Repeated for dcmA Output 23					
93EA	Repeated for dcmA Output 24					
•	out/Output Names (Read/Write Setting) (32 Modules)					
9400	Direct Input 1 Name	0 to 96		1	F205	"Dir lp 1"
9406	Direct Output 1 Name	1 to 96		1	F205	"Dir Out 1"
940C	Repeated for Direct Input/Output 2					
9418	Repeated for Direct Input/Output 3					
9424	Repeated for Direct Input/Output 4					
9430	Repeated for Direct Input/Output 5					
943C	Repeated for Direct Input/Output 6					
9448	Repeated for Direct Input/Output 7					
9454	Repeated for Direct Input/Output 8					
9460	Repeated for Direct Input/Output 9					
946C	Repeated for Direct Input/Output 10					

Table B-9: MODBUS MEMORY MAP (Sheet 46 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
9478	Repeated for Direct Input/Output 11					
9484	Repeated for Direct Input/Output 12					
9490	Repeated for Direct Input/Output 13					
949C	Repeated for Direct Input/Output 14					
94A8	Repeated for Direct Input/Output 15					
94B4	Repeated for Direct Input/Output 16					
94C0	Repeated for Direct Input/Output 17					
94CC	Repeated for Direct Input/Output 18					
94D8	Repeated for Direct Input/Output 19					
94E4	Repeated for Direct Input/Output 20					
94F0	Repeated for Direct Input/Output 21					
94FC	Repeated for Direct Input/Output 22					
9508	Repeated for Direct Input/Output 23					
9514	Repeated for Direct Input/Output 24					
9520	Repeated for Direct Input/Output 25					
952C	Repeated for Direct Input/Output 26					
9538	Repeated for Direct Input/Output 27					
9544	Repeated for Direct Input/Output 28					
9550	Repeated for Direct Input/Output 29					
955C	Repeated for Direct Input/Output 30					
9568	Repeated for Direct Input/Output 31					
9574	Repeated for Direct Input/Output 32					
IEC 61850	Received Integers (Read/Write Setting) (16 Modules)					<u> </u>
98A0	IEC61850 GOOSE UInteger 1 Default Value	0 to 429496295		1	F003	1000
98A2	IEC61850 GOOSE UInteger Input 1 Mode	0 to 1		1	F491	0 (Default Value)
98A3	Repeated for IEC61850 GOOSE UInteger 2					
98A6	Repeated for IEC61850 GOOSE UInteger 3					
98A9	Repeated for IEC61850 GOOSE UInteger 4					
98AC	Repeated for IEC61850 GOOSE UInteger 5					
98AF	Repeated for IEC61850 GOOSE UInteger 6					
98B2	Repeated for IEC61850 GOOSE UInteger 7					
98B5	Repeated for IEC61850 GOOSE UInteger 8					
98B8	Repeated for IEC61850 GOOSE UInteger 9					
98BB	Repeated for IEC61850 GOOSE UInteger 10					
98BE	Repeated for IEC61850 GOOSE UInteger 11					
98C1	Repeated for IEC61850 GOOSE UInteger 12					
98C4	Repeated for IEC61850 GOOSE UInteger 13					
98C7	Repeated for IEC61850 GOOSE UInteger 14					
98CA	Repeated for IEC61850 GOOSE UInteger 15					
98CD	Repeated for IEC61850 GOOSE UInteger 16					
FlexEleme	ent Actuals (Read Only) (8 Modules)					
9900	FlexElement 1 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9902	FlexElement 2 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9904	FlexElement 3 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9906	FlexElement 4 Actual	-2147483.647 to 2147483.647		0.001	F004	0
9908	FlexElement 5 Actual	-2147483.647 to 2147483.647		0.001	F004	0
990A	FlexElement 6 Actual	-2147483.647 to 2147483.647		0.001	F004	0
990C	FlexElement 7 Actual	-2147483.647 to 2147483.647		0.001	F004	0
990E	FlexElement 8 Actual	-2147483.647 to 2147483.647		0.001	F004	0
Breaker R	estrike (Read/Write Setting) (3 Modules)					
9930	Breaker Restrike 1 Function	0 to 1		1	F102	0 (Disabled)
9931	Breaker Restrike 1 Block	0 to 4294967295		1	F300	0
9933	Breaker Restrike 1 Signal Source	0 to 5		1	F167	0 (SRC 1)
5555	2.53.151 (Cottino 1 Signal Couloc	0.00		<u>'</u>	. 107	5 (01(0-1)

Table B-9: MODBUS MEMORY MAP (Sheet 47 of 72)

	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT	
Beraser Reatifies 1 Fice 1	9934	Breaker Restrike 1 Pickup	0.10 to 2.00	pu	0.01	F001	500	
Besaler Restrike Dipen Command	9935	Breaker Restrike 1 Reset Delay	0 to 65.535	S	0.001	F001	100	
Breaker Restrike Open Command	9936	Breaker Restrike 1 HF Detect	0 to 1		1	F102	1 (Enabled)	
Beraker Restrike 1 Crose Command 0 to 4294967295	9937	Breaker Restrike 1 Breaker Open	0 to 4294967295		1	F300	0	
Breaker Restrike 1 Target	9939	Breaker Restrike 1 Open Command	0 to 4294967295		1	F300	0	
Broaker Restrike 1 Events	993B	Breaker Restrike 1 Close Command	0 to 4294967295		1	F300	0	
Reserved (2 items)	993D	Breaker Restrike 1 Target	0 to 2		1	F109	0 (Self-reset)	
Teleprotection Inputs/Outputs Commands (Read/Write Command)	993E	Breaker Restrike 1 Events	0 to 1		1	F102	0 (Disabled)	
Teleprotection Inputs/Outputs (Read/Write Settings)	993F	Reserved (2 items)	0 to 1		1	F001	0	
Teleprotection Inputs (Read Write Settings)	Teleprote	ction Inputs/Outputs Commands (Read/Write Command)				<u> </u>		
Teleprotection Function 1	9980	Teleprotection Clear Lost Packets	0 to 1		1	F126	0 (No)	
Pege Teleprotection Number of Terminals	Teleprote	ction Inputs/Outputs (Read/Write Settings)		1				
9992 Teleprotection Number of Channels	9990	Teleprotection Function	0 to 1		1	F102	0 (Disabled)	
Pege Teleprotection Local Relay ID	9991	Teleprotection Number of Terminals	2 to 3		1	F001	2	
Page	9992	Teleprotection Number of Channels	1 to 2		1	F001	1	
Page Teleprotection Terminal 2 ID	9993	Teleprotection Local Relay ID	0 to 255		1	F001	0	
9986 Reserved (10 items) 0 to 1	9994	Teleprotection Terminal 1 ID	0 to 255		1	F001	0	
Part Part	9995	Teleprotection Terminal 2 ID	0 to 255		1	F001	0	
Part Teleprotection Input 2-n Default States (16 items)	9996	Reserved (10 items)	0 to 1			F001	0	
Paragraphic Teleprotection Output 1-n Operand (16 items)	9A00	Teleprotection Input 1-n Default States (16 items)	0 to 3		1	F086	0 (Off)	
Para Teleprotection Output 2-n Operand (16 items)	9A10	Teleprotection Input 2-n Default States (16 items)	0 to 3		1	F086	0 (Off)	
Teleprotection Channel Tests (Read Only) SAA0 Teleprotection Channel 1 Status 0 to 2	9A20	Teleprotection Output 1-n Operand (16 items)	0 to 4294967295		1	F300	0	
9AA0 Teleprotection Channel 1 Number of Lost Packets 0 to 62	9A40	Teleprotection Output 2-n Operand (16 items)	0 to 4294967295		1	F300	0	
9AA1 Teleprotection Channel 1 Number of Lost Packets 0 to 65535 1 F001 0	Teleprote	ction Channel Tests (Read Only)				<u> </u>		
PaAA2 Teleprotection Channel 2 Status	9AA0	Teleprotection Channel 1 Status	0 to 2		1	F134	1 (OK)	
9AA3 Teleprotection Channel 2 Number of Lost Packets 0 to 65535 1 F001 0 9AA4 Teleprotection Network Status 0 to 2 1 F134 2 (n/a) 9AA5 Teleprotection Channel 1 Input States 0 to 1 1 F500 0 9AB0 Teleprotection Channel 2 Input States 0 to 1 1 F500 0 9AB0 Teleprotection Input 1 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F102 0 (Disabled) A001 Cold Load Pickup 1 Initiate 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A004 Cold Load Pickup 1 Source 0 to 100000 s 0.001 F003 100000 A006 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Source 0 to 5 1 F107 0 (SRC 1) A009 Cold Load Pickup 1 Source 0 to 65535 1 F101 0 A000 Cold Load Pickup 1 Source 0 to 65535 1 F102 0 (Disabled) A091 Tyres Failure Settings (Read/Write) (6 Modules) A092 VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A093 Cold Load Pickup 1 Source 0 to 3 pu 0.001 F001 100 A094 VT	9AA1	Teleprotection Channel 1 Number of Lost Packets	0 to 65535		1	F001	0	
9AA4 Teleprotection Network Status	9AA2	Teleprotection Channel 2 Status	0 to 2		1	F134	1 (OK)	
9AAF Teleprotection Channel 1 Input States 0 to 1 1 F500 0 9ABO Teleprotection Channel 2 Input States 0 to 1 1 F500 0 9ACO Teleprotection Input 1 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9ADO Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9ADO Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9ADO Teleprotection Input 1 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) ADOA Cold Load Pickup 1 Function 0 to 1 1 F300 0 (Disabled) A001 Cold Load Pickup 1 Function 0 to 4294967295 1 F300 0 0 0 0 0 1 F300 0 0 0 0 0 0 0 0 0 0 0	9AA3	Teleprotection Channel 2 Number of Lost Packets	0 to 65535		1	F001	0	
9ABO Teleprotection Channel 2 Input States 0 to 1 1 F500 0 9ACO Teleprotection Input 1 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) 9ADO Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) Cold Load Pickup (Read/Write Setting) (2 Modules) A000 Cold Load Pickup 1 Function 0 to 1 1 F102 0 (Disabled) A001 Cold Load Pickup 1 Initiate 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 10000 s 1 F001 1000 A004 Outage Time Before Reset 1 0 to 10000 s 1 F001 1000 A008 Cold Load Pickup 1 Reserved 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 55	9AA4	Teleprotection Network Status	0 to 2		1	F134	2 (n/a)	
9ACO Teleprotection Input 1 States, 1 per register (16 items) 0 to 1	9AAF	Teleprotection Channel 1 Input States	0 to 1		1	F500	0	
9AD0 Teleprotection Input 2 States, 1 per register (16 items) 0 to 1 1 F108 0 (Off) Cold Load Pickup (Read/Write Setting) (2 Modules) A000 Cold Load Pickup 1 Function 0 to 1 1 F102 0 (Disabled) A001 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 1000 s 1 F001 1000 A005 Outage Time Before Cold Load Pickup 1 0 to 100000 s 1 F001 1000 A006 On Load Time Before Reset 1 0 to 1000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F167 0 (SRC 1) A004 Repeated for Cold Load Pickup 2 1 F102 0 (Disabled) VT Fuse Failure Settings (Read/Write) (6 Modules) 1 F102<	9AB0	Teleprotection Channel 2 Input States	0 to 1		1	F500	0	
Cold Load Pickup (Read/Write Setting) (2 Modules) A000 Cold Load Pickup 1 Function 0 to 1 1 F102 0 (Disabled) A001 Cold Load Pickup 1 Initiate 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A005 Outage Time Before Cold Load Pickup 1 0 to 10000 s 1 F001 1000 A006 On Load Time Before Reset 1 0 to 1000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F167 0 (SRC 1) A004 Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09B VT F	9AC0	Teleprotection Input 1 States, 1 per register (16 items)	0 to 1		1	F108	0 (Off)	
A000 Cold Load Pickup 1 Function 0 to 1 1 F102 0 (Disabled) A001 Cold Load Pickup 1 Initiate 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A005 Outage Time Before Cold Load Pickup 1 0 to 1000 s 1 F001 1000 A006 On Load Time Before Reset 1 0 to 1000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A004 Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) 1 F102 0 (Disabled) A09A VT Fuse Failure Failure Inution 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmo	9AD0	Teleprotection Input 2 States, 1 per register (16 items)	0 to 1		1	F108	0 (Off)	
A001 Cold Load Pickup 1 Initiate 0 to 4294967295 1 F300 0 A003 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A005 Outage Time Before Cold Load Pickup 1 0 to 1000 s 1 F001 1000 A006 On Load Time Before Reset 1 0 to 1000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A004 Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Function 0 to 1 1 F102 0 (Disabled) A09B VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 3 1 F102 <td< td=""><td>Cold Loa</td><td>d Pickup (Read/Write Setting) (2 Modules)</td><td></td><td></td><td></td><td></td><td></td></td<>	Cold Loa	d Pickup (Read/Write Setting) (2 Modules)						
A003 Cold Load Pickup 1 Block 0 to 4294967295 1 F300 0 A005 Outage Time Before Cold Load Pickup 1 0 to 1000 s 1 F001 1000 A006 On Load Time Before Reset 1 0 to 1000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A00A Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Settings (Read/Write) (6 Modules) 1 F102 0 (Disabled) A09B VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A0A9 Repeated for module number 3 .	A000	Cold Load Pickup 1 Function	0 to 1		1	F102	0 (Disabled)	
A005 Outage Time Before Cold Load Pickup 1 0 to 1000 s 1 F001 1000 A006 On Load Time Before Reset 1 0 to 1000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A00A Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 2	A001	Cold Load Pickup 1 Initiate	0 to 4294967295		1	F300	0	
A006 On Load Time Before Reset 1 0 to 10000000 s 0.001 F003 100000 A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A00A Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) WT Fuse Failure Function (Pickup August VT Fuse Failure Neutral Wire Open Function (Pickup August VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup (Pickup August VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup (Pickup August VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup (Pickup August VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup (Pickup August VT Fuse Failure Actual Value (Pickup August VT Fuse Failure Actual Values (Read Only) (6 Modules) 1 F102 0 (Disabled) A0A0 Repeated for module number 3 1 F001 100 A0A3 Repeated for module number 5 1 1 1 1 1 1	A003	Cold Load Pickup 1 Block	0 to 4294967295		1	F300	0	
A008 Cold Load Pickup 1 Source 0 to 5 1 F167 0 (SRC 1) A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A00A Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Function 0 to 1 1 F102 0 (Disabled) A09B VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 2 A0A0 Repeated for module number 3 A0A3 Repeated for module number 6	A005	Outage Time Before Cold Load Pickup 1	0 to 1000	S	1	F001	1000	
A009 Cold Load Pickup 1 Reserved 0 to 65535 1 F001 0 A00A Repeated for Cold Load Pickup 2 1 F001 0 VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Function 0 to 1 1 F102 0 (Disabled) A09B VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 2 1 F001 100 A0A0 Repeated for module number 3 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1	A006	On Load Time Before Reset 1	0 to 1000000	S	0.001	F003		
A00ARepeated for Cold Load Pickup 2 VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Function	A008	Cold Load Pickup 1 Source	0 to 5		1	F167	0 (SRC 1)	
VT Fuse Failure Settings (Read/Write) (6 Modules) A09A VT Fuse Failure Function 0 to 1 1 F102 0 (Disabled) A09B VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 2 1 F001 100 A0A0 Repeated for module number 3 1 1 F001 100 A0A3 Repeated for module number 3 1 1 1 00 1 1 1 1 1 1	A009	Cold Load Pickup 1 Reserved	0 to 65535		1	F001	0	
A09A VT Fuse Failure Function 0 to 1 1 F102 0 (Disabled) A09B VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6	A00A	Repeated for Cold Load Pickup 2						
A09B VT Fuse Failure Neutral Wire Open Function 0 to 1 1 F102 0 (Disabled) A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09DRepeated for module number 2 A0A0Repeated for module number 3 A0A3Repeated for module number 4 A0A6Repeated for module number 5 A0A9Repeated for module number 6 VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0	VT Fuse I							
A09C VT Fuse Failure Neutral Wire Open 3rd Harmonic Pickup 0 to 3 pu 0.001 F001 100 A09D Repeated for module number 2 Repeated for module number 3 Repeated for module number 4 Repeated for module number 5 Repeated for module number 6 Repeated for							` ,	
A09D Repeated for module number 2 A0A0 Repeated for module number 3 A0A3 Repeated for module number 4 A0A6 Repeated for module number 5 A0A9 Repeated for module number 6 VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0		·					` ,	
A0A0Repeated for module number 3 A0A3Repeated for module number 4 A0A6Repeated for module number 5 A0A9Repeated for module number 6 VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0		-	0 to 3	pu	0.001	F001	100	
A0A3Repeated for module number 4 A0A6Repeated for module number 5 A0A9Repeated for module number 6 VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0		'						
A0A6Repeated for module number 5 A0A9Repeated for module number 6 VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0		·						
A0A9 Repeated for module number 6 VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0		·						
VT Fuse Failure Actual Values (Read Only) (6 Modules) A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0								
A0AC VTFF x V0 3rd harmonic 0 to 999999.999 V 0.001 F060 0		•						
	VT Fuse Failure Actual Values (Read Only) (6 Modules)							
A0AERepeated for module number 2		VTFF x V0 3rd harmonic	0 to 999999.999	V	0.001	F060	0	
	A0AE	Repeated for module number 2						

Table B-9: MODBUS MEMORY MAP (Sheet 48 of 72)

Access Repeated for module number 3	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
ABB6	A0B0	Repeated for module number 3					
Selector Switch Actual Values (Read Only)	A0B2	Repeated for module number 4					
Selector Switch Actual Values (Read Only)	A0B4	Repeated for module number 5					
A211 Selector switch 1 position	A0B6	Repeated for module number 6					
A281 Selector switch 2 position 1 to 7	Selector S	Switch Actual Values (Read Only)					
Selector Switch Settings (Read/Write) (2 Modules)	A210	Selector switch 1 position	1 to 7		1	F001	0
A288 Selector Function	A211	Selector switch 2 position	1 to 7		1	F001	1
A281 Selector 1 Range	Selector S	Switch Settings (Read/Write) (2 Modules)					
A282 Selector 1 Timeout	A280	Selector 1 Function	0 to 1		1	F102	0 (Disabled)
A283 Selector Step Up	A281	Selector 1 Range	1 to 7		1	F001	7
A285 Selector 1 Step Mode	A282	Selector 1 Timeout	3 to 60	S	0.1	F001	50
A288 Selector 1 Acknowledge	A283	Selector 1 Step Up	0 to 4294967295		1	F300	0
A288 Selector 1 Bit1	A285	Selector 1 Step Mode	0 to 1		1	F083	0 (Time-out)
A28A Selector 1 Bit1	A286	Selector 1 Acknowledge	0 to 4294967295		1	F300	0
A28C Selector 1 Bit2	A288	Selector 1 Bit0	0 to 4294967295		1	F300	0
A28E Selector 1 Bit Mode	A28A	Selector 1 Bit1	0 to 4294967295		1	F300	0
A28F Selector 1 Bit Acknowledge	A28C	Selector 1 Bit2	0 to 4294967295		1	F300	0
A291 Selector 1 Power Up Mode	A28E	Selector 1 Bit Mode	0 to 1		1	F083	0 (Time-out)
A292 Selector 1 Target	A28F	Selector 1 Bit Acknowledge	0 to 4294967295		1	F300	0
A293 Selector 1 Events 0 to 1	A291	Selector 1 Power Up Mode	0 to 2		1	F084	0 (Restore)
A294 Reserved (10 items)	A292	Selector 1 Target	0 to 2		1	F109	0 (Self-reset)
A29E Repeated for Selector 2	A293	Selector 1 Events	0 to 1		1	F102	0 (Disabled)
Digital Counter Read/Write Setting (8 Modules)	A294	Reserved (10 items)			1	F001	0
A300 Digital Counter 1 Function 0 to 1	A29E	Repeated for Selector 2					
A301 Digital Counter 1 Name	Digital Co	unter (Read/Write Setting) (8 Modules)					
A307 Digital Counter 1 Units	A300	Digital Counter 1 Function	0 to 1		1	F102	0 (Disabled)
A30A Digital Counter 1 Block 0 to 4294967295 1	A301	Digital Counter 1 Name				F205	"Counter 1"
A30C Digital Counter 1 Up	A307	Digital Counter 1 Units				F206	(none)
A30E Digital Counter 1 Down 0 to 4294967295 1	A30A	Digital Counter 1 Block	0 to 4294967295		1	F300	0
A311 Digital Counter 1 Preset -2147483647 to 2147483647 30C	Digital Counter 1 Up	0 to 4294967295		1	F300	0	
A313 Digital Counter 1 Compare -2147483647 1	A30E	Digital Counter 1 Down	0 to 4294967295		1	F300	0
A315 Digital Counter 1 Reset Digital Counter 1 Freeze/Reset Digital Counter 1 Freeze/Reset Digital Counter 1 Freeze/Reset Digital Counter 1 Freeze/Reset Digital Counter 1 Freeze/Count Digital Counter 1 Freeze/Count Digital Counter 1 Set To Preset Digital Counter 1 Set To Preset Digital Counter 1 Set To Preset Digital Counter 1 Set To Preset Digital Counter 1 Set To Preset Digital Counter 2 Found Digital Counter 2 Found Digital Counter 3 Found Digital Counter 3 Found Digital Counter 4 Found Digital Counter 5 Found Digital Counter 6 Found Digital Counter 7 Found Digital Counter 8 Flexcurves C and D (Read/Write Setting) Digital Counter 8 Digital Counter 1 Digital Counter 2 Digital Counter 3 Digital Counter 3 Digital Counter 4 Digital Counter 8 Digital Counter 8 Digital Counter 8 Digital Counter 8 Digital Counter 8 Digital Counter 8 Digital Counter 9	A311	Digital Counter 1 Preset			1	F004	0
A317 Digital Counter 1 Freeze/Reset 0 to 4294967295 1 F300 0 A319 Digital Counter 1 Freeze/Count 0 to 4294967295 1 F300 0 A31B Digital Counter 1 Set To Preset 0 to 4294967295 1 F300 0 A31D Reserved (11 items) F001 0 A32B Repeated for Digital Counter 2 F001 0 A32B Repeated for Digital Counter 3 F001 0 A37B Repeated for Digital Counter 4 F001 0 A37B Repeated for Digital Counter 5 F001 0 A380 Repeated for Digital Counter 6 F001 0 A380 Repeated for Digital Counter 7 F001 0 A41B Repeated for Digital Counter 8 F001 0 Flexcurves C and D (Read/Write Setting) 0 to 65535 ms	A313	Digital Counter 1 Compare			1	F004	0
A319 Digital Counter 1 Freeze/Count 0 to 4294967295 1 F300 0 A31B Digital Counter 1 Set To Preset 0 to 4294967295 1 F300 0 A31D Reserved (11 items) F001 0 A32B Repeated for Digital Counter 2 F001 0 A350 Repeated for Digital Counter 3 F001 0 A378 Repeated for Digital Counter 4 </td <td>A315</td> <td>Digital Counter 1 Reset</td> <td>0 to 4294967295</td> <td></td> <td>1</td> <td>F300</td> <td>0</td>	A315	Digital Counter 1 Reset	0 to 4294967295		1	F300	0
A31B Digital Counter 1 Set To Preset 0 to 4294967295 1 F300 0 A31D Reserved (11 items) F001 0 A32B Repeated for Digital Counter 2 F001 0 A350 Repeated for Digital Counter 3	A317	Digital Counter 1 Freeze/Reset	0 to 4294967295		1	F300	0
A31D Reserved (11 items) F001 0 A328 Repeated for Digital Counter 2 F001 0 A350 Repeated for Digital Counter 3	A319	Digital Counter 1 Freeze/Count	0 to 4294967295		1	F300	0
A328 Repeated for Digital Counter 2 Repeated for Digital Counter 3 A350 Repeated for Digital Counter 3 Repeated for Digital Counter 4 A378 Repeated for Digital Counter 5	A31B	Digital Counter 1 Set To Preset	0 to 4294967295		1	F300	0
A350Repeated for Digital Counter 3 A378Repeated for Digital Counter 4 A3A0Repeated for Digital Counter 5 A3C8Repeated for Digital Counter 6 A3F0Repeated for Digital Counter 7 A418Repeated for Digital Counter 8 Flexcurves C and D (Read/Write Setting) A600 FlexCurve C (120 items) A680 FlexCurve D (120 items) Non Volatile Latches (Read/Write Setting) (16 Modules) A701 Non-Volatile Latch 1 Function O to 1 O to 1 1 F519 O (Reset Dominant)	A31D	Reserved (11 items)				F001	0
A378 Repeated for Digital Counter 4 Repeated for Digital Counter 5	A328	Repeated for Digital Counter 2					
A3A0Repeated for Digital Counter 5 A3C8Repeated for Digital Counter 6 A3F0Repeated for Digital Counter 7 A418Repeated for Digital Counter 8 Flexcurves C and D (Read/Write Setting) A600 FlexCurve C (120 items) 0 to 65535 ms 1 F011 0 A680 FlexCurve D (120 items) 0 to 65535 ms 1 F011 0 Non Volatile Latches (Read/Write Setting) (16 Modules) A700 Non-Volatile Latch 1 Function 0 to 1 1 F102 0 (Disabled) A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)	A350						
A3C8Repeated for Digital Counter 6 A3F0Repeated for Digital Counter 7 A418Repeated for Digital Counter 8 Flexcurves C and D (Read/Write Setting) A600 FlexCurve C (120 items) A680 FlexCurve D (120 items) Non Volatile Latches (Read/Write Setting) (16 Modules) A700 Non-Volatile Latch 1 Function O to 1 A701 Non-Volatile Latch 1 Type O to 1 O to 1 F519 O (Reset Dominant)							
A3F0Repeated for Digital Counter 7 A418Repeated for Digital Counter 8 Flexcurves C and D (Read/Write Setting) A600 FlexCurve C (120 items) 0 to 65535 ms 1 F011 0 A680 FlexCurve D (120 items) 0 to 65535 ms 1 F011 0 Non Volatile Latches (Read/Write Setting) (16 Modules) A700 Non-Volatile Latch 1 Function 0 to 1 1 F102 0 (Disabled) A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)							
A418 Repeated for Digital Counter 8 Security Flexcurves C and D (Read/Write Setting) 0 to 65535 ms 1 F011 0 A600 FlexCurve C (120 items) 0 to 65535 ms 1 F011 0 Non Volatile Latches (Read/Write Setting) (16 Modules) Non-Volatile Latch 1 Function 0 to 1 1 F102 0 (Disabled) A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)		Repeated for Digital Counter 6					
Flexcurves C and D (Read/Write Setting)	A3F0	Repeated for Digital Counter 7					
A600 FlexCurve C (120 items) 0 to 65535 ms 1 F011 0 A680 FlexCurve D (120 items) 0 to 65535 ms 1 F011 0 Non Volatile Latches (Read/Write Setting) (16 Modules) Temporal Read Read/Write Setting) (16 Modules) A700 Non-Volatile Latch 1 Function 0 to 1 1 F102 0 (Disabled) A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)							
A680 FlexCurve D (120 items) 0 to 65535 ms 1 F011 0 Non Volatile Latches (Read/Write Setting) (16 Modules) ———————————————————————————————————	Flexcurve						
Non Volatile Latches (Read/Write Setting) (16 Modules) A700 Non-Volatile Latch 1 Function 0 to 1 1 F102 0 (Disabled) A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)	A600		0 to 65535	ms	1	F011	0
A700 Non-Volatile Latch 1 Function 0 to 1 1 F102 0 (Disabled) A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)		,	0 to 65535	ms	1	F011	0
A701 Non-Volatile Latch 1 Type 0 to 1 1 F519 0 (Reset Dominant)	Non Volat	ile Latches (Read/Write Setting) (16 Modules)					
Dominant)	A700	Non-Volatile Latch 1 Function	0 to 1		1	F102	0 (Disabled)
A702 Non-Volatile Latch 1 Set 0 to 4294967295 1 F300 0	A701	Non-Volatile Latch 1 Type	0 to 1		1	F519	
	A702	Non-Volatile Latch 1 Set	0 to 4294967295		1	F300	0

Table B-9: MODBUS MEMORY MAP (Sheet 49 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
A704	Non-Volatile Latch 1 Reset	0 to 4294967295		1	F300	0
A706	Non-Volatile Latch 1 Target	0 to 2		1	F109	0 (Self-reset)
A707	Non-Volatile Latch 1 Events	0 to 1		1	F102	0 (Disabled)
A708	Reserved (4 items)				F001	0
A70C	Repeated for Non-Volatile Latch 2					
A718	Repeated for Non-Volatile Latch 3					
A724	Repeated for Non-Volatile Latch 4					
A730	Repeated for Non-Volatile Latch 5					
A73C	Repeated for Non-Volatile Latch 6					
A748	Repeated for Non-Volatile Latch 7					
A754	Repeated for Non-Volatile Latch 8					
A760	Repeated for Non-Volatile Latch 9					
A76C	Repeated for Non-Volatile Latch 10					
A778	Repeated for Non-Volatile Latch 11					
A784	Repeated for Non-Volatile Latch 12					
A790	Repeated for Non-Volatile Latch 13					
A79C	Repeated for Non-Volatile Latch 14					
A7A8	Repeated for Non-Volatile Latch 15					
A7B4	Repeated for Non-Volatile Latch 16					
Frequenc	y Rate of Change (Read/Write Setting) (4 Modules)			L		
A900	Frequency Rate of Change 1 Function	0 to 1		1	F102	0 (Disabled)
A901	Frequency Rate of Change 1 OC Supervision	0 to 30	pu	0.001	F001	200
A902	Frequency Rate of Change 1 Min	20 to 80	Hz	0.01	F001	4500
A903	Frequency Rate of Change 1 Max	20 to 80	Hz	0.01	F001	6500
A904	Frequency Rate of Change 1 Pickup Delay	0 to 65.535	s	0.001	F001	0
A905	Frequency Rate of Change 1 Reset Delay	0 to 65.535	S	0.001	F001	0
A906	Frequency Rate of Change 1 Block	0 to 4294967295		1	F300	0
A908	Frequency Rate of Change 1 Target	0 to 2		1	F109	0 (Self-reset)
A909	Frequency Rate of Change 1 Events	0 to 1		1	F102	0 (Disabled)
A90A	Frequency Rate of Change 1 Source	0 to 5		1	F167	0 (SRC 1)
A90B	Frequency Rate of Change 1 Trend	0 to 2		1	F224	0 (Increasing)
A90C	Frequency Rate of Change 1 Pickup	0.1 to 15	Hz/s	0.01	F001	50
A90D	Frequency Rate of Change 1 OV Supervision	0.1 to 3	pu	0.001	F001	700
A90E	Frequency Rate of Change 1 Reserved (3 items)	0 to 1		1	F001	0
A911	Repeated for Frequency Rate of Change 2					
A922	Repeated for Frequency Rate of Change 3					
A933	Repeated for Frequency Rate of Change 4					
IEC 61850	Received Analog Settings (Read/Write) (32 Modules)			L		
AA00	IEC 61850 GOOSE analog 1 default value	-1000000 to 1000000		0.001	F060	1000
AA02	IEC 61850 GOOSE analog input 1 mode	0 to 1		1	F491	0 (Default Value)
AA03	IEC 61850 GOOSE analog input 1 units				F207	(none)
AA05	IEC 61850 GOOSE analog input 1 per-unit base	0 to 999999999.999		0.001	F060	1
AA07	Repeated for IEC 61850 GOOSE analog input 2					
AA0E	Repeated for IEC 61850 GOOSE analog input 3					
AA15	Repeated for IEC 61850 GOOSE analog input 4					
AA1C	Repeated for IEC 61850 GOOSE analog input 5					
AA23	Repeated for IEC 61850 GOOSE analog input 6					
AA2A	Repeated for IEC 61850 GOOSE analog input 7					
AA31	Repeated for IEC 61850 GOOSE analog input 8					
AA38	Repeated for IEC 61850 GOOSE analog input 9					
AA3F	Repeated for IEC 61850 GOOSE analog input 10					
AA46	Repeated for IEC 61850 GOOSE analog input 11					
AA4D	Repeated for IEC 61850 GOOSE analog input 12					
AA54	Repeated for IEC 61850 GOOSE analog input 13					
	and of the state of the	l .	ĺ	Ī		1

Table B-9: MODBUS MEMORY MAP (Sheet 50 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
AA5B	Repeated for IEC 61850 GOOSE analog input 14					
AA62	Repeated for IEC 61850 GOOSE analog input 15					
AA69	Repeated for IEC 61850 GOOSE analog input 16					
AA70	Repeated for IEC 61850 GOOSE analog input 17					
AA77	Repeated for IEC 61850 GOOSE analog input 18					
AA7E	Repeated for IEC 61850 GOOSE analog input 19					
AA85	Repeated for IEC 61850 GOOSE analog input 20					
AA8C	Repeated for IEC 61850 GOOSE analog input 21					
AA93	Repeated for IEC 61850 GOOSE analog input 22					
AA9A	Repeated for IEC 61850 GOOSE analog input 23					
AAA1	Repeated for IEC 61850 GOOSE analog input 24					
AAA8	Repeated for IEC 61850 GOOSE analog input 25					
AAAF	Repeated for IEC 61850 GOOSE analog input 26					
AAB6	Repeated for IEC 61850 GOOSE analog input 27					
AABD	Repeated for IEC 61850 GOOSE analog input 28					
AAC4	Repeated for IEC 61850 GOOSE analog input 29					
AACB	Repeated for IEC 61850 GOOSE analog input 30					
AAD2	Repeated for IEC 61850 GOOSE analog input 31					
AAD9	Repeated for IEC 61850 GOOSE analog input 32					
	XCBR configuration (read/write settings) (6 Modules)					
AB00	Operand for IEC 61850 XCBR1.ST.Loc status	0 to 4294967295		1	F300	0
AB02	Command to clear XCBR1 OpCnt (operation counter)	0 to 1		1	F126	0 (No)
AB03	Operand for IEC 61850 XCBR Check Sync Release	0 to 4294967295		1	F300	0
AB05	Operand for IEC 6185 XCBR Open Interlock	0 to 4294967295		1	F300	0
AB07	Operand for IEC 61850 XCBR Close Interlock	0 to 4294967295		1	F300	0
AB09	Operand for IEC 61850 XCBR Pos ct1Model	0 to 4		1	F001	2
AB0A	Operand for IEC 61850 XCBR Pos sboTimeout	2 to 60	S	1	F001	30
AB0B	Repeated for Module 2	2 10 00			1 00 1	
7,000	repeated for Module 2					
AB16	Repeated for Module 3					
AB21	Repeated for Module 4					
AB2C	Repeated for Module 5					
AB37	Repeated for Module 6					
IEC 61850	LN name prefixes (Read/Write Settings)					
AB48	IEC 61850 logical node LPHD1 name prefix	0 to 65534		1	F206	(none)
AB4B	IEC 61850 logical node PIOCx name prefix (72 items)	0 to 65534		1	F206	(none)
AC23	IEC 61850 logical node PTOCx name prefix (24 items)	0 to 65534		1	F206	(none)
AC6B	IEC 61850 logical node PTUVx name prefix (13 items)	0 to 65534		1	F206	(none)
AC92	IEC 61850 logical node PTOVx name prefix (10 items)	0 to 65534		1	F206	(none)
ACB0	IEC 61850 logical node PDISx name prefix (10 items)	0 to 65534		1	F206	(none)
ACCE	IEC 61850 logical node RBRFx name prefix (24 items)	0 to 65534		1	F206	(none)
AD16	IEC 61850 logical node RPSBx name prefix	0 to 65534		1	F206	(none)
AD19	IEC 61850 logical node RRECx name prefix (6 items)	0 to 65534		1	F206	(none)
AD2B	IEC 61850 logical node MMXUx name prefix (6 items)	0 to 65534		1	F206	(none)
AD3D	IEC 61850 logical node GGIOx name prefix (5 items)	0 to 65534		1	F206	(none)
AD4C	IEC 61850 logical node RFLOx name prefix (5 items)	0 to 65534		1	F206	(none)
AD5B	IEC 61850 logical node XCBRx name prefix (6 items)	0 to 65534		1	F206	(none)
AD6D	IEC 61850 logical node PTRCx name prefix (6 items)	0 to 65534		1	F206	(none)
AD7F	IEC 61850 logical node PDIFx name prefix (6 items)	0 to 65534		1	F206	(none)
AD8B	IEC 61850 logical node MMXNx name prefix (6 items)	0 to 65534		1	F206	(none)
ADFA	IEC 61850 logical node CSWIx name prefix (6 items)	0 to 65534		1	F206	(none)
AE54	IEC 61850 logical node XSWIx name prefix (6 items)	0 to 65534		1	F206	(none)
IEC 61850	GGIO4 General Analog Configuration Settings (Read/W	rite)				
AF00	Number of analog points in GGIO4	4 to 32		4	F001	4
		ı	1	1	ı	

Table B-9: MODBUS MEMORY MAP (Sheet 51 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
AF01	GOOSE analog scan period	100 to 5000		10	F001	1000
IEC 61850	GGIO4 Analog Input Points Configuration Settings (Rea	d/Write)				
AF10	IEC 61850 GGIO4 analog input 1 value				F600	0
AF11	IEC 61850 GGIO4 analog input 1 deadband	0.001 to 100	%	0.001	F003	100000
AF13	IEC 61850 GGIO4 analog input 1 minimum	-1000000000000 to 1000000000000		0.001	F060	0
AF15	IEC 61850 GGIO4 analog input 1 maximum	-1000000000000 to 1000000000000		0.001	F060	1000000
AF17	Repeated for IEC 61850 GGIO4 analog input 2					
AF1E	Repeated for IEC 61850 GGIO4 analog input 3					
AF25	Repeated for IEC 61850 GGIO4 analog input 4					
AF2C	Repeated for IEC 61850 GGIO4 analog input 5					
AF33	Repeated for IEC 61850 GGIO4 analog input 6					
AF3A	Repeated for IEC 61850 GGIO4 analog input 7					
AF41	Repeated for IEC 61850 GGIO4 analog input 8					
AF48	Repeated for IEC 61850 GGIO4 analog input 9					
AF4F	Repeated for IEC 61850 GGIO4 analog input 10					
AF56	Repeated for IEC 61850 GGIO4 analog input 11					
AF5D	Repeated for IEC 61850 GGIO4 analog input 12					
AF64	Repeated for IEC 61850 GGIO4 analog input 13					
AF6B	Repeated for IEC 61850 GGIO4 analog input 14					
AF72	Repeated for IEC 61850 GGIO4 analog input 15					
AF79	Repeated for IEC 61850 GGIO4 analog input 16					
AF80	Repeated for IEC 61850 GGIO4 analog input 17					
AF87	Repeated for IEC 61850 GGIO4 analog input 18					
AF8E	Repeated for IEC 61850 GGIO4 analog input 19					
AF95	Repeated for IEC 61850 GGIO4 analog input 20					
AF9C	Repeated for IEC 61850 GGIO4 analog input 21					
AFA3	Repeated for IEC 61850 GGIO4 analog input 22					
AFAA	Repeated for IEC 61850 GGIO4 analog input 23					
AFB1	Repeated for IEC 61850 GGIO4 analog input 24					
AFB8	Repeated for IEC 61850 GGIO4 analog input 25					
AFBF	Repeated for IEC 61850 GGIO4 analog input 26					
AFC6	Repeated for IEC 61850 GGIO4 analog input 27					
AFCD	Repeated for IEC 61850 GGIO4 analog input 28					
AFD4	Repeated for IEC 61850 GGIO4 analog input 29					
AFDB	Repeated for IEC 61850 GGIO4 analog input 30					
AFE2	Repeated for IEC 61850 GGIO4 analog input 31					
AFE9	Repeated for IEC 61850 GGIO4 analog input 32					
IEC 61850	GOOSE/GSSE Configuration (Read/Write Setting)					
B01C	Default GOOSE/GSSE Update Time	1 to 60	S	1	F001	60
B01D	IEC 61850 GSSE Function (GsEna)	0 to 1		1	F102	1 (Enabled)
B013	IEC 61850 GSSE ID				F209	"GSSEOut"
B03F	IEC 61850 GOOSE Function (GoEna)	0 to 1		1	F102	0 (Disabled)
B040	IEC 61850 GSSE Destination MAC Address				F072	0
B043	IEC 61850 Standard GOOSE ID				F209	"GOOSEOut"
B064	IEC 61850 Standard GOOSE Destination MAC Address				F072	0
B067	IEC 61850 GOOSE VLAN Transmit Priority	0 to 7		1	F001	4
B068	IEC 61850 GOOSE VLAN ID	0 to 4095		1	F001	0
B069	IEC 61850 GOOSE ETYPE APPID	0 to 16383		1	F001	0
B06A	Reserved (2 items)	0 to 1		1	F001	0
IEC 61850	Server Configuration (Read/Write Settings/Commands)					
B06C	TCP Port Number for the IEC 61850 / MMS Protocol	0 to 65535		1	F001	102
B06D	IEC 61850 Logical Device Name				F213	"IECName"
B07D	IEC 61850 Logical Device Instance				F213	"LDInst"

Table B-9: MODBUS MEMORY MAP (Sheet 52 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B08D	IEC 61850 LPHD Location	0 to 65534			F204	"Location"
B0B5	Include non-IEC 61850 Data	0 to 1		1	F102	0 (Disabled)
B0B6	IEC 61850 Server Data Scanning Function	0 to 1		1	F102	0 (Disabled)
B0B7	IEC 61850 LPHD Latitude	-90 to 90	degree	0.001	F004	0
B0B9	IEC 61850 LPHD DC PhyNam Longitude	-180 to 180	degree	0.001	F004	0
B9BB	IEC 61850 LPHD DC PhyNam Altitude	0 to 10000	m	1	F003	0
B0BD	Reserved (3 items)	0 to 1		1	F001	0
IEC 61850	MMXU Deadbands (Read/Write Setting) (6 Modules)					
B0C0	IEC 61850 MMXU TotW Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C2	IEC 61850 MMXU TotVAr Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C4	IEC 61850 MMXU TotVA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C6	IEC 61850 MMXU TotPF Deadband 1	0.001 to 100	%	0.001	F003	10000
B0C8	IEC 61850 MMXU Hz Deadband 1	0.001 to 100	%	0.001	F003	10000
B0CA	IEC 61850 MMXU PPV.phsAB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0CC	IEC 61850 MMXU PPV.phsBC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0CE	IEC 61850 MMXU PPV.phsCA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D0	IEC 61850 MMXU PhV.phsADeadband 1	0.001 to 100	%	0.001	F003	10000
B0D2	IEC 61850 MMXU PhV.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D4	IEC 61850 MMXU PhV.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D6	IEC 61850 MMXU A.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0D8	IEC 61850 MMXU A.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0DA	IEC 61850 MMXU A.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0DC	IEC 61850 MMXU A.neut Deadband 1	0.001 to 100	%	0.001	F003	10000
B0DE	IEC 61850 MMXU W.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E0	IEC 61850 MMXU W.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E2	IEC 61850 MMXU W.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E4	IEC 61850 MMXU VAr.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E6	IEC 61850 MMXU VAr.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0E8	IEC 61850 MMXU VAr.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0EA	IEC 61850 MMXU VA.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0EC	IEC 61850 MMXU VA.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0EE	IEC 61850 MMXU VA.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F0	IEC 61850 MMXU PF.phsA Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F2	IEC 61850 MMXU PF.phsB Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F4	IEC 61850 MMXU PF.phsC Deadband 1	0.001 to 100	%	0.001	F003	10000
B0F6	Repeated for Deadband 2					
B12C	Repeated for Deadband 3					
B162	Repeated for Deadband 4					
B198	Repeated for Deadband 5					
B1CE	Repeated for Deadband 6					
	Received Analogs (Read Only) (32 Modules)					
B210	IEC 61850 Received Analog 1	-100000000000 to		0.001	F060	0
		100000000000				
B212	Repeated for Received Analog 2					
B214	Repeated for Received Analog 3					
B216	Repeated for Received Analog 4					
B218	Repeated for Received Analog 5					
B21A	Repeated for Received Analog 6					
B21C	Repeated for Received Analog 7					
B21E	Repeated for Received Analog 8					
B220	Repeated for Received Analog 9					
B222	Repeated for Received Analog 10					
B224	Repeated for Received Analog 11					
B226	Repeated for Received Analog 12					

Table B-9: MODBUS MEMORY MAP (Sheet 53 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B228	Repeated for Received Analog 13					
B22A	Repeated for Received Analog 14					
B22C	Repeated for Received Analog 15					
B22E	Repeated for Received Analog 16					
B230	Repeated for Received Analog 17					
B232	Repeated for Received Analog 18					
B234	Repeated for Received Analog 19					
B236	Repeated for Received Analog 20					
B238	Repeated for Received Analog 21					
B23A	Repeated for Received Analog 22					
B23C	Repeated for Received Analog 23					
B23E	Repeated for Received Analog 24					
B240	Repeated for Received Analog 25					
B242	Repeated for Received Analog 26					
B244	Repeated for Received Analog 27					
B246	Repeated for Received Analog 28					
B248	Repeated for Received Analog 29					
B24A	Repeated for Received Analog 30					
B24C	Repeated for Received Analog 31					
B24E	Repeated for Received Analog 32		1			
	Configurable Report Settings (Read/Write Setting)					
B290	IEC 61850 configurable reports dataset items (64 items)	0 to 848		1	F615	0 (None)
	c Ground Fault Settings (read/write grouped, 5 Modules)	0 10 040		'	1010	o (None)
B300	Wattmetric ground fault 1 function	0 to 1		1	F102	0 (Disabled)
B301	Wattmetric ground fault 1 source	0 to 5		1	F167	0 (SRC 1)
B302	Wattmetric ground fault 1 voltage	0 to 1		1	F234	0 (Calculated VN)
B303	Wattmetric ground fault 1 vorlage	0.02 to 3.00	pu	0.01	F001	20
B304	Wattmetric ground fault 1 current	0 to 1		1	F235	(Calculated IN)
B305	Wattmetric ground fault 1 overcurrent pickup	0.002 to 30.000		0.001	F001	60
B306	Wattmetric ground fault 1 overcurrent pickup delay	0 to 600	pu s	0.001	F001	20
B307	Wattmetric ground fault 1 power pickup	0.001 to 1.2	pu	0.001	F001	100
B308	Wattmetric ground fault 1 ECA	0 to 360	° Lag	1	F001	0
B309	Wattmetric ground fault 1 power pickup delay	0 to 600	S	0.01	F001	20
B30A	Wattmetric ground fault 1 curve	0 to 5		1	F236	0 (Definite Time)
B30B	Wattmetric ground fault 1 multiplier	0.01 to 2		0.01	F001	100
B30C	Wattmetric ground fault 1 block	0.01 to 2	S	1	F300	0
B30E	Wattmetric ground fault 1 target	0 to 2		1	F109	0 (Self-reset)
	Wattmetric ground fault 1 events					` ′
B30F B310	Wattmetric ground fault 1 events Wattmetric ground fault 1 reference power	0 to 1 0.001 to 1.2	 nu	0.001	F102 F001	0 (Disabled) 500
B310 B311	, ,	0.001 to 1.2	pu	1	F001	0
	Wattmetric ground fault x ReservedRepeated for wattmetric ground fault 2	0 (0 1		1	FUUI	U
B312 B324						
	Repeated for wattmetric ground fault 3		1			
B336	Repeated for wattmetric ground fault 4					
B348	Repeated for wattmetric ground fault 5					
	c Ground Fault Actual Values (Read Only) (5 Modules)	0 to 000000 000	14/	0.004	F060	
B360	Wattmetric ground fault 1 operating power	0 to 999999.999	W	0.001	F060	0
B362	Repeated for wattmetric ground fault 2		1			
B364	Repeated for wattmetric ground fault 3					
B366	Repeated for wattmetric ground fault 4					
B368	Repeated for wattmetric ground fault 5					
	XSWI Configuration (Read/Write Setting) (24 Modules)	0.4				
B370	Flexlogic Operand for IEC 61850 XSWI.ST.Loc Status	0 to 4294967295		1	F300	0
	XSWI Configuration (Read/Write Command) (24 Modules	,	,			
B372	Command to Clear XSWI OpCnt (Operation Counter)	0 to 1		1	F126	0 (No)

Table B-9: MODBUS MEMORY MAP (Sheet 54 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
B373	Repeated for module number 2					
B376	Repeated for module number 3					
B379	Repeated for module number 4					
B37C	Repeated for module number 5					
B37F	Repeated for module number 6					
B382	Repeated for module number 7					
B385	Repeated for module number 8					
B388	Repeated for module number 9					
B38B	Repeated for module number 10					
B38E	Repeated for module number 11					
B391	Repeated for module number 12					
B394	Repeated for module number 13					
B397	Repeated for module number 14					
B39A	Repeated for module number 15					
B39D	Repeated for module number 16					
B3A0	Repeated for module number 17					
B3A3	Repeated for module number 18					
B3A6	Repeated for module number 19					
B3AC	Repeated for module number 20					
B3AF	Repeated for module number 22					
B3B2	Repeated for module number 23					
B3B5	Repeated for module number 24					
IEC 61850) GGIO1 Configuration Settings (Read/Write Setting)					
B400	Number of Status Indications in GGIO1	8 to 128		8	F001	8
B402	IEC 61850 GGIO1 Indication FlexLogic operands (128	0 to 4294967295		1	F300	0
	items)					
IEC 61850	Configurable GOOSE Transmission (Read/Write Setting) (8 Modules)				
B5A0	IEC 61850 Configurable GOOSE Function	0 to 1		1	F102	0 (None)
B5A1	IEC 61850 Configurable GOOSE ID				F209	"GOOSEOut_x_"
B5C2	Configurable GOOSE Destination MAC Address				F072	0
B5C5	IEC 61850 Configurable GOOSE VLAN Transmit Priority	0 to 7		1	F001	4
B5C6	IEC 61850 Configurable GOOSE VLAN ID	0 to 4095		1	F001	0
B5C7	IEC 61850 Configurable GOOSE ETYPE APPID	0 to 16383		1	F001	0
B5C8	IEC 61850 Configurable GOOSE ConfRev	1 to 4294967295		1	F003	1
B5CA	IEC 61850 Configurable GOOSE Retransmission Curve	0 to 3		1	F611	3 (Relaxed)
B5CB	Configurable GOOSE dataset items for transmission (64 items)	0 to 1008		1	F616	0 (None)
B60B	Repeated for Module 2					
B676	Repeated for Module 3					
B6E1	Repeated for Module 4					
B74C	Repeated for Module 5					
B7B7	Repeated for Module 6		1			
B822						1
	Repeated for Module 7					
B88D	Repeated for Module 7Repeated for Module 8					
B88D		6 Modules)				
B88D	Repeated for Module 8	6 Modules) 0 to 197		1	F233	0 (None)
B88D IEC 61850	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception	,		1	F233	0 (None)
B88D IEC 61850 B900	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items)	,		1	F233	0 (None)
B88D IEC 61850 B900	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items) Repeated for Module 2	,		1	F233	0 (None)
B88D IEC 61850 B900 B920 B940	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items) Repeated for Module 2 Repeated for Module 3	,		1	F233	0 (None)
B88D IEC 61850 B900 B920 B940 B960	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items)Repeated for Module 2Repeated for Module 3Repeated for Module 4	,		1	F233	0 (None)
B88D IEC 61850 B900 B920 B940 B960 B980	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items) Repeated for Module 2 Repeated for Module 3 Repeated for Module 4 Repeated for Module 5	,		1	F233	0 (None)
B88D IEC 61850 B900 B920 B940 B960 B980 B9A0	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items)Repeated for Module 2Repeated for Module 3Repeated for Module 4Repeated for Module 5Repeated for Module 6	,		1	F233	0 (None)
B88D IEC 61850 B900 B920 B940 B960 B980 B9A0 B9C0	Repeated for Module 8 Configurable GOOSE Reception (Read/Write Setting) (1 Configurable GOOSE dataset items for reception (32 items)Repeated for Module 2Repeated for Module 3Repeated for Module 4Repeated for Module 5Repeated for Module 6Repeated for Module 7	,		1	F233	0 (None)

Table B-9: MODBUS MEMORY MAP (Sheet 55 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
BA20	Repeated for Module 10					
BA40	Repeated for Module 11					
BA60	Repeated for Module 12					
BA80	Repeated for Module 13					
BAA0	Repeated for Module 14					
BAC0	Repeated for Module 15					
BAE0	Repeated for Module 16					
Contact Ir	nputs (Read/Write Setting) (96 Modules)			l		
BB00	Contact Input 1 Name				F205	"Cont lp 1"
BB06	Contact Input 1 Events	0 to 1		1	F102	0 (Disabled)
BB07	Contact Input 1 Debounce Time	0 to 16	ms	0.5	F001	20
BB08	Repeated for Contact Input 2					
BB10	Repeated for Contact Input 3					
BB18	Repeated for Contact Input 4					
BB20	Repeated for Contact Input 5					
BB28	Repeated for Contact Input 6					
BB30	Repeated for Contact Input 7					
BB38	Repeated for Contact Input 8					
BB40	Repeated for Contact Input 9					
BB48	Repeated for Contact Input 10					
BB50	Repeated for Contact Input 11					
BB58	Repeated for Contact Input 12					
BB60	Repeated for Contact Input 13					
BB68	Repeated for Contact Input 14					
BB70	Repeated for Contact Input 15					
BB78	Repeated for Contact Input 16					
BB80	Repeated for Contact Input 17					
BB88	Repeated for Contact Input 18					
BB90	Repeated for Contact Input 19					
BB98	Repeated for Contact Input 20					
BBA0	Repeated for Contact Input 21					
BBA8	Repeated for Contact Input 22					
BBB0	Repeated for Contact Input 23					
BBB8	Repeated for Contact Input 24					
BBC0	Repeated for Contact Input 25					
BBC8	Repeated for Contact Input 26					
BBD0	Repeated for Contact Input 27					
BBD8	Repeated for Contact Input 28					
BBE0	Repeated for Contact Input 29					
BBE8	Repeated for Contact Input 30					
BBF0	Repeated for Contact Input 31					
BBF8	Repeated for Contact Input 32					
BC00	Repeated for Contact Input 33					
BC08	Repeated for Contact Input 34					
BC10	Repeated for Contact Input 35					
BC18	Repeated for Contact Input 36					
BC20	Repeated for Contact Input 37					
BC28	Repeated for Contact Input 38					
BC30	Repeated for Contact Input 39					
BC38	Repeated for Contact Input 40					
BC40	Repeated for Contact Input 41					
BC48	Repeated for Contact Input 42					
BC48	Repeated for Contact Input 43					
BC58	Repeated for Contact Input 44					
D000						

Table B-9: MODBUS MEMORY MAP (Sheet 56 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
BC60	Repeated for Contact Input 45					
BC68	Repeated for Contact Input 46					
BC70	Repeated for Contact Input 47					
BC78	Repeated for Contact Input 48					
BC80	Repeated for Contact Input 49					
BC88	Repeated for Contact Input 50					
BC90	Repeated for Contact Input 51					
BC98	Repeated for Contact Input 52					
BCA0	Repeated for Contact Input 53					
BCA8	Repeated for Contact Input 54					
BCB0	Repeated for Contact Input 55					
BCB8	Repeated for Contact Input 56					
BCC0	Repeated for Contact Input 57					
BCC8	Repeated for Contact Input 58					
BCD0	Repeated for Contact Input 59					
BCD8	Repeated for Contact Input 60					
BCE0	Repeated for Contact Input 61					
BCE8	Repeated for Contact Input 62					
BCF0	Repeated for Contact Input 63					
BCF8	Repeated for Contact Input 64					
BD00	Repeated for Contact Input 65					
BD08	Repeated for Contact Input 66					
BD10	Repeated for Contact Input 67					
BD18	Repeated for Contact Input 68					
BD20	Repeated for Contact Input 69					
BD28	Repeated for Contact Input 70					
BD30	Repeated for Contact Input 71					
BD38	Repeated for Contact Input 72					
BD40	Repeated for Contact Input 73					
BD48	Repeated for Contact Input 74					
BD50	Repeated for Contact Input 75					
BD58	Repeated for Contact Input 76					
BD60	Repeated for Contact Input 77					
BD68	Repeated for Contact Input 78					
BD70	Repeated for Contact Input 79					
BD78	Repeated for Contact Input 80					
BD80	Repeated for Contact Input 81					
BD88	Repeated for Contact Input 82					
BD90	Repeated for Contact Input 83					
BD98	Repeated for Contact Input 84					
BDA0	Repeated for Contact Input 85					
BDA8	Repeated for Contact Input 86					
BDB0	Repeated for Contact Input 87					
BDB8	Repeated for Contact Input 88					
BDC0	Repeated for Contact Input 89					
BDC8	Repeated for Contact Input 90					
BDD0	Repeated for Contact Input 91					
BDD8	Repeated for Contact Input 92					
BDE0	Repeated for Contact Input 93					
BDE8	Repeated for Contact Input 94					
BDF0	Repeated for Contact Input 95					
BDF8	Repeated for Contact Input 96					
	nput Thresholds (Read/Write Setting)	1				
BE00	Contact Input <i>n</i> Threshold, <i>n</i> = 1 to 48 (48 items)	0 to 3		1	F128	1 (33 Vdc)

Table B-9: MODBUS MEMORY MAP (Sheet 57 of 72)

ADDR REGISTER NAME RANGE UNITS STEP Virtual Inputs (Read/Write Setting) (64 Modules) BE30 Virtual Input 1 Function 0 to 1 1 BE31 Virtual Input 1 Name 1 BE37 Virtual Input 1 Programmed Type 0 to 1 1 BE38 Virtual Input 1 Events 0 to 1 1 BE39 Reserved (3 items) BE3C Repeated for Virtual Input 2	F102 F205 F127 F102	0 (Disabled) "Virt lp 1"
BE31 Virtual Input 1 Name BE37 Virtual Input 1 Programmed Type 0 to 1 1 BE38 Virtual Input 1 Events 0 to 1 1 BE39 Reserved (3 items) BE3C Repeated for Virtual Input 2	F205 F127	"Virt Ip 1"
BE37 Virtual Input 1 Programmed Type 0 to 1 1 BE38 Virtual Input 1 Events 0 to 1 1 BE39 Reserved (3 items) BE3C Repeated for Virtual Input 2	F127	·
BE38 Virtual Input 1 Events 0 to 1 1 BE39 Reserved (3 items) BE3C Repeated for Virtual Input 2		0 (1 - (- 1 1)
BE39 Reserved (3 items) BE3C Repeated for Virtual Input 2	F102	0 (Latched)
BE3CRepeated for Virtual Input 2		0 (Disabled)
	F001	0
BE48Repeated for Virtual Input 3		
BE54Repeated for Virtual Input 4		
BE60Repeated for Virtual Input 5		
BE6CRepeated for Virtual Input 6		
BE78Repeated for Virtual Input 7		
BE84Repeated for Virtual Input 8		
BE90Repeated for Virtual Input 9		
BE9CRepeated for Virtual Input 10		
BEA8Repeated for Virtual Input 11		
BEB4Repeated for Virtual Input 12		
BEC0Repeated for Virtual Input 13		
BECCRepeated for Virtual Input 14		
BED8Repeated for Virtual Input 15		
BEE4Repeated for Virtual Input 16		
BEF0Repeated for Virtual Input 17		
BEFCRepeated for Virtual Input 18		
BF08Repeated for Virtual Input 19		
BF14Repeated for Virtual Input 20		
BF20Repeated for Virtual Input 21		
BF2CRepeated for Virtual Input 22		
BF38Repeated for Virtual Input 23		
BF44Repeated for Virtual Input 24		
BF50Repeated for Virtual Input 25		
BF5CRepeated for Virtual Input 26		
BF68Repeated for Virtual Input 27		
BF74Repeated for Virtual Input 28		
BF80Repeated for Virtual Input 29		
BF8CRepeated for Virtual Input 30		
BF98Repeated for Virtual Input 31		
BFA4Repeated for Virtual Input 32		
BFB0Repeated for Virtual Input 33		
BFBCRepeated for Virtual Input 34	·	
BFC8Repeated for Virtual Input 35		
BFD4Repeated for Virtual Input 36		
BFE0Repeated for Virtual Input 37		
BFECRepeated for Virtual Input 38		
BFF8Repeated for Virtual Input 39		
C004Repeated for Virtual Input 40		
C010Repeated for Virtual Input 41		
C01CRepeated for Virtual Input 42		
C028Repeated for Virtual Input 43		
C034Repeated for Virtual Input 44		
C040Repeated for Virtual Input 45		
C04CRepeated for Virtual Input 46		
C058Repeated for Virtual Input 47		
C064Repeated for Virtual Input 48		
C070Repeated for Virtual Input 49		

Table B-9: MODBUS MEMORY MAP (Sheet 58 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C07C	Repeated for Virtual Input 50					
C088	Repeated for Virtual Input 51					
C094	Repeated for Virtual Input 52					
C0A0	Repeated for Virtual Input 53					
C0AC	Repeated for Virtual Input 54					
C0B8	Repeated for Virtual Input 55					
C0C4	Repeated for Virtual Input 56					
C0D0	Repeated for Virtual Input 57					
C0DC	Repeated for Virtual Input 58					
C0E8	Repeated for Virtual Input 59					
C0F4	Repeated for Virtual Input 60					
C100	Repeated for Virtual Input 61					
C10C	Repeated for Virtual Input 62					
C118	Repeated for Virtual Input 63					
C124	Repeated for Virtual Input 64					
Virtual Ou	tputs (Read/Write Setting) (96 Modules)		•			
C130	Virtual Output 1 Name				F205	"Virt Op 1 "
C136	Virtual Output 1 Events	0 to 1		1	F102	0 (Disabled)
C137	Reserved				F001	0
C138	Repeated for Virtual Output 2					
C140	Repeated for Virtual Output 3					
C148	Repeated for Virtual Output 4					
C150	Repeated for Virtual Output 5					
C158	Repeated for Virtual Output 6					
C160	Repeated for Virtual Output 7					
C168	Repeated for Virtual Output 8					
C170	Repeated for Virtual Output 9					
C178	Repeated for Virtual Output 10					
C180	Repeated for Virtual Output 11					
C188	Repeated for Virtual Output 12					
C190	Repeated for Virtual Output 13					
C198	Repeated for Virtual Output 14					
C1A0	Repeated for Virtual Output 15					
C1A8	Repeated for Virtual Output 16					
C1B0	Repeated for Virtual Output 17					
C1B8	Repeated for Virtual Output 18					
C1C0	Repeated for Virtual Output 19					
C1C8	Repeated for Virtual Output 20					
C1D0	Repeated for Virtual Output 21					
C1D8	Repeated for Virtual Output 22					
C1E0	Repeated for Virtual Output 23					
C1E8	Repeated for Virtual Output 24					
C1F0	Repeated for Virtual Output 25					
C1F8	Repeated for Virtual Output 26					
C200	Repeated for Virtual Output 27					
C208	Repeated for Virtual Output 28					
C210	Repeated for Virtual Output 29					
C218	Repeated for Virtual Output 30					
C220	Repeated for Virtual Output 31					
C228	Repeated for Virtual Output 32					
C230	Repeated for Virtual Output 33					
C238	Repeated for Virtual Output 34					
C240	Repeated for Virtual Output 35					
C248	Repeated for Virtual Output 36					

Table B-9: MODBUS MEMORY MAP (Sheet 59 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C250	Repeated for Virtual Output 37	-				-
C258	Repeated for Virtual Output 38					
C260	Repeated for Virtual Output 39					
C268	Repeated for Virtual Output 40					
C270	Repeated for Virtual Output 41					
C278	Repeated for Virtual Output 42					
C280	Repeated for Virtual Output 43					
C288	Repeated for Virtual Output 44					
C290	Repeated for Virtual Output 45					
C298	Repeated for Virtual Output 46					
C2A0	Repeated for Virtual Output 47					
C2A8	Repeated for Virtual Output 48					
C2B0	Repeated for Virtual Output 49					
C2B8	Repeated for Virtual Output 50					
C2C0	Repeated for Virtual Output 51					
C2C8	Repeated for Virtual Output 52					
C2D0	Repeated for Virtual Output 53					
C2D8	Repeated for Virtual Output 54					
C2E0	Repeated for Virtual Output 55					
C2E8	Repeated for Virtual Output 56					
C2F0	Repeated for Virtual Output 57					
C2F8	Repeated for Virtual Output 58					
C300	Repeated for Virtual Output 59					
C308	Repeated for Virtual Output 60					
C310	Repeated for Virtual Output 61					
C318	Repeated for Virtual Output 62					
C320	Repeated for Virtual Output 63					
C328	Repeated for Virtual Output 64					
C330	Repeated for Virtual Output 65					
C338	Repeated for Virtual Output 66					
C340	Repeated for Virtual Output 67					
C348	Repeated for Virtual Output 68					
C350	Repeated for Virtual Output 69					
C358	Repeated for Virtual Output 70					
C360	Repeated for Virtual Output 71					
C368	Repeated for Virtual Output 72					
C370	Repeated for Virtual Output 73					
C378	Repeated for Virtual Output 74					
C380	Repeated for Virtual Output 75					
C388	Repeated for Virtual Output 76					
C390	Repeated for Virtual Output 77					
C398	Repeated for Virtual Output 78					
C3A0	Repeated for Virtual Output 79					
C3A8	Repeated for Virtual Output 80					
C3B0	Repeated for Virtual Output 81					
C3B8	Repeated for Virtual Output 82					
C3C0	Repeated for Virtual Output 83					
C3C8	Repeated for Virtual Output 84					
C3D0	Repeated for Virtual Output 85					
C3D8	Repeated for Virtual Output 86					
C3E0	Repeated for Virtual Output 87					
C3E8	Repeated for Virtual Output 88					
C3F0	Repeated for Virtual Output 89					
C3F8	Repeated for Virtual Output 90					

Table B-9: MODBUS MEMORY MAP (Sheet 60 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C400	Repeated for Virtual Output 91					
C408	Repeated for Virtual Output 92		1			
C410	Repeated for Virtual Output 93					
C418	Repeated for Virtual Output 94					
C420	Repeated for Virtual Output 95					
C428	Repeated for Virtual Output 96					
	y (Read/Write Setting)			<u> </u>		
C430	Test Mode Function	0 to 2		1	F245	0 (Disabled)
C431	Force VFD and LED	0 to 1		1	F126	0 (No)
C432	Test Mode Initiate	0 to 4294967295		1	F300	1
Clear Con	nmands (Read/Write)		_			
C434	Clear All Relay Records Command	0 to 1		1	F126	0 (No)
Mandator	y (Read Only)			ı		, ,
C435	DSP Advanced Diagnostics Active	0 to 1		1	F126	0 (No)
C436	Synchrophasor Feature Active	0 to 1		1	F126	0 (No)
Mandator	y (Read/Write Command)		_			,
C437	Relay Reboot Command	0 to 1		1	F126	0 (No)
C438	Save Volatile Data	0 to 1		1	F126	0 (No)
	cords (Read/Write Setting)			<u> </u>		- (- /
C446	Clear Demand Operand	0 to 4294967295		1	F300	0
C450	Clear Fault Reports operand	0 to 4294967295		1	F300	0
C454	Clear Event Records operand	0 to 4294967295		1	F300	0
C456	Clear Oscillography operand	0 to 4294967295		1	F300	0
C458	Clear Data Logger operand	0 to 4294967295		1	F300	0
C45A	Clear Breaker 1 Arcing Current operand	0 to 4294967295		1	F300	0
C45C	Clear Breaker 2 Arcing Current operand	0 to 4294967295		1	F300	0
C468	Clear Energy operand	0 to 4294967295		1	F300	0
C46A	Clear Hi-Z Records operand	0 to 4294967295		1	F300	0
C46C	Clear Unauthorized Access operand	0 to 4294967295		1	F300	0
C470	Clear Platform Direct Input/Output Statistics operand	0 to 4294967295		1	F300	0
C472	Reserved (13 items)				F001	0
	Direct Outputs (Read/Write Setting) (32 Modules)					-
C600	Direct Output 1 Operand	0 to 4294967295		1	F300	0
C602	Direct Output 1 Events	0 to 1		1	F102	0 (Disabled)
C603	Repeated for Direct Output 2					, , , , ,
C606	Repeated for Direct Output 3					
C609	Repeated for Direct Output 4					
C60C	Repeated for Direct Output 5		†			
C60F	Repeated for Direct Output 6		†			
C612	Repeated for Direct Output 7					
C615	Repeated for Direct Output 8		1			
C618	Repeated for Direct Output 9		†			
C61B	Repeated for Direct Output 10		1			
C61E	Repeated for Direct Output 11		1			
C621	Repeated for Direct Output 12		1			
C624	Repeated for Direct Output 13		1			
C627	Repeated for Direct Output 14					
C62A	Repeated for Direct Output 15		†			
C62D	Repeated for Direct Output 16		1			
C630	Repeated for Direct Output 17		†			
C633	Repeated for Direct Output 18					
C636	Repeated for Direct Output 19		†			
C639	Repeated for Direct Output 20		†			
C63C	Repeated for Direct Output 21					
	-p			I	l	

Table B-9: MODBUS MEMORY MAP (Sheet 61 of 72)

ADDR REGISTER NAME RANGE UNITS STEP C63FRepeated for Direct Output 22 C642Repeated for Direct Output 23 C645Repeated for Direct Output 24 C648Repeated for Direct Output 25 C64BRepeated for Direct Output 26 C64ERepeated for Direct Output 27 C651Repeated for Direct Output 28	FORMAT	DEFAULT
C642Repeated for Direct Output 23 C645Repeated for Direct Output 24 C648Repeated for Direct Output 25 C64BRepeated for Direct Output 26 C64ERepeated for Direct Output 27		
C645Repeated for Direct Output 24 C648Repeated for Direct Output 25 C64BRepeated for Direct Output 26 C64ERepeated for Direct Output 27		
C648Repeated for Direct Output 25 C64BRepeated for Direct Output 26 C64ERepeated for Direct Output 27		
C64BRepeated for Direct Output 26 C64ERepeated for Direct Output 27		1
C64ERepeated for Direct Output 27		
·		
Cos iRepeated for Direct Output 26		
OCEA Deposits of few Direct Output 00		
C654Repeated for Direct Output 29		-
C657Repeated for Direct Output 30		-
C65ARepeated for Direct Output 31		
C65ERepeated for Direct Output 32		
Reset (Read/Write Setting)		
C750 FlexLogic operand which initiates a reset 0 to 4294967295 1	F300	0
Control Pushbuttons (Read/Write Setting) (7 Modules)		
C760 Control Pushbutton 1 Function 0 to 1 1	F102	0 (Disabled)
C761 Control Pushbutton 1 Events 0 to 1 1	F102	0 (Disabled)
C762Repeated for Control Pushbutton 2		
C764Repeated for Control Pushbutton 3		
C766Repeated for Control Pushbutton 4		
C768Repeated for Control Pushbutton 5		
C76ARepeated for Control Pushbutton 6		
C76CRepeated for Control Pushbutton 7		
Force Contact Inputs/Outputs (Read/Write Settings)		
C7A0 Force Contact Input x State (96 items) 0 to 2 1	F144	0 (Disabled)
C800 Force Contact Output x State (64 items) 0 to 3 1	F131	0 (Disabled)
Direct Inputs/Outputs (Read/Write Setting)		
C880 Direct Device ID	F001	1
C881 Direct I/O Channel 1 Ring Configuration Function 0 to 1 1	F126	0 (No)
C882 Platform Direct I/O Data Rate 64 to 128 kbps 64	F001	64
C883 Direct I/O Channel 2 Ring Configuration Function 0 to 1 1	F126	0 (No)
C884 Platform Direct I/O Crossover Function 0 to 1 1	F102	0 (Disabled)
Direct input/output commands (Read/Write Command)		,
C888 Direct input/output clear counters command 0 to 1 1	F126	0 (No)
Direct inputs (Read/Write Setting) (32 Modules)		5 (115)
C890 Direct Input 1 Device Number 0 to 16 1	F001	0
C891 Direct Input 1 Number 0 to 96 1	F001	0
C892 Direct Input 1 Default State 0 to 3 1	F086	0 (Off)
·	F102	` ,
C893 Direct Input 1 Events 0 to 1 1 C894 Repeated for Direct Input 2 1	1 102	0 (Disabled)
C898Repeated for Direct Input 2		
C89CRepeated for Direct Input 4		
		-
C8A0Repeated for Direct Input 5		
C8A4Repeated for Direct Input 6		
C8A8Repeated for Direct Input 7		
C8ACRepeated for Direct Input 8		
C8B0Repeated for Direct Input 9		
C8B4Repeated for Direct Input 10		
C8B8Repeated for Direct Input 11		
C8BCRepeated for Direct Input 12		
C8C0Repeated for Direct Input 13		
C8C4Repeated for Direct Input 14		
C8C8Repeated for Direct Input 15		
C8C8Repeated for Direct Input 15 C8CCRepeated for Direct Input 16		

Table B-9: MODBUS MEMORY MAP (Sheet 62 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
C8D4	Repeated for Direct Input 18					
C8D8	Repeated for Direct Input 19					
C8DC	Repeated for Direct Input 20					
C8E0	Repeated for Direct Input 21					
C8E4	Repeated for Direct Input 22					
C8E8	Repeated for Direct Input 23					
C8EC	Repeated for Direct Input 24					
C8F0	Repeated for Direct Input 25					
C8F4	Repeated for Direct Input 26					
C8F8	Repeated for Direct Input 27					
C8FC	Repeated for Direct Input 28					
C900	Repeated for Direct Input 29					
C904	Repeated for Direct Input 30					
C908	Repeated for Direct Input 31					
C90C	Repeated for Direct Input 32					
Direct Inp	out/Output Alarms (Read/Write Setting)			ı		
CAD0	Direct Input/Output Channel 1 CRC Alarm Function	0 to 1		1	F102	0 (Disabled)
CAD1	Direct I/O Channel 1 CRC Alarm Message Count	100 to 10000		1	F001	600
CAD2	Direct Input/Output Channel 1 CRC Alarm Threshold	1 to 1000		1	F001	10
CAD3	Direct Input/Output Channel 1 CRC Alarm Events	0 to 1		1	F102	0 (Disabled)
CAD4	Reserved (4 items)	1 to 1000		1	F001	10
CAD8	Direct Input/Output Channel 2 CRC Alarm Function	0 to 1		1	F102	0 (Disabled)
CAD9	Direct I/O Channel 2 CRC Alarm Message Count	100 to 10000		1	F001	600
CADA	Direct Input/Output Channel 2 CRC Alarm Threshold	1 to 1000		1	F001	10
CADB	Direct Input/Output Channel 2 CRC Alarm Events	0 to 1		1	F102	0 (Disabled)
CADC	Reserved (4 items)	1 to 1000		1	F001	10
CAE0	Direct I/O Ch 1 Unreturned Messages Alarm Function	0 to 1		1	F102	0 (Disabled)
CAE1	Direct I/O Ch 1 Unreturned Messages Alarm Msg Count	100 to 10000		1	F001	600
CAE2	Direct I/O Ch 1 Unreturned Messages Alarm Threshold	1 to 1000		1	F001	10
CAE3	Direct I/O Ch 1 Unreturned Messages Alarm Events	0 to 1		1	F102	0 (Disabled)
CAE4	Reserved (4 items)	1 to 1000		1	F001	10
CAE8	Direct IO Ch 2 Unreturned Messages Alarm Function	0 to 1		1	F102	0 (Disabled)
CAE9	Direct I/O Ch 2 Unreturned Messages Alarm Msg Count	100 to 10000		1	F001	600
CAEA	Direct I/O Ch 2 Unreturned Messages Alarm Threshold	1 to 1000		1	F001	10
CAEB	Direct I/O Channel 2 Unreturned Messages Alarm Events	0 to 1		1	F102	0 (Disabled)
CAEC	Reserved (4 items)			1	F001	10
Remote D	Devices (Read/Write Setting) (32 Modules)			l.		
CB00	Remote Device 1 GSSE/GOOSE Application ID				F209	"Remote Device
						1"
CB21	Remote Device 1 GOOSE Ethernet APPID	0 to 16383		1	F001	0
CB22	Remote Device 1 GOOSE Dataset	0 to 16		1	F184	0 (Fixed)
CB24	Undefined	0 to 3		1	F626	0 (None)
CB25	Repeated for Device 2					
CB4A	Repeated for Device 3					
CB6F	Repeated for Device 4					
CB94	Repeated for Device 5					
CBB9	Repeated for Device 6					
CBDE	Repeated for Device 7			ļ		
CC03	Repeated for Device 8					
CC28	Repeated for Device 9					
CC4D	Repeated for Device 10					
CC72	Repeated for Device 11					
CC97	Repeated for Device 12					
CCBC	Repeated for Device 13					

Table B-9: MODBUS MEMORY MAP (Sheet 63 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
CCE1	Repeated for Device 14	NANGE	ONITO	OILI	TORMA	DEIAGEI
	'					
CD06	Repeated for Device 15					
CD2B	Repeated for Device 16					
CD50	Repeated for Device 17					
CD75	Repeated for Device 18					
CD9A	Repeated for Device 19					
CDBF	Repeated for Device 20					
CDE4	Repeated for Device 21					
CE09	Repeated for Device 22					
CE2E	Repeated for Device 23					
CE53	Repeated for Device 24					
CE78	Repeated for Device 25					
CE9D	Repeated for Device 26					
CEC2	Repeated for Device 27					
CEE7	Repeated for Device 28					
CF0C	Repeated for Device 29					
CF31	Repeated for Device 30					
CF56	Repeated for Device 31					
CF7B	Repeated for Device 32					
	nputs (Read/Write Setting) (64 Modules)					
CFA0	Remote Input 1 Device	1 to 32		1	F001	1
CFA1	Remote Input 1 Bit Pair	0 to 96		1	F156	0 (None)
CFA2	Remote Input 1 Default State	0 to 3		1	F086	0 (Off)
CFA3	Remote Input 1 Events	0 to 1		1	F102	0 (Disabled)
CFA4	Remote Input 1 Name	1 to 64		1	F205	"Rem lp 1"
CFAA	Repeated for Remote Input 2					
CFB4	Repeated for Remote Input 3					
CFBE	Repeated for Remote Input 4					
CFC8	Repeated for Remote Input 5					
CFD2	Repeated for Remote Input 6					
CFDC	Repeated for Remote Input 7					
CFE6	Repeated for Remote Input 8					
CFF0	Repeated for Remote Input 9					
CFFA	Repeated for Remote Input 10					
D004	Repeated for Remote Input 11					
D00E	Repeated for Remote Input 12					
D018	Repeated for Remote Input 13					
D022	Repeated for Remote Input 14					
D02C	Repeated for Remote Input 15					
D036	Repeated for Remote Input 16					
D040	Repeated for Remote Input 17					
D04A	Repeated for Remote Input 18					
D054	Repeated for Remote Input 19					
D05E	Repeated for Remote Input 20					
D068	Repeated for Remote Input 21					
D072	Repeated for Remote Input 22					
D07C	Repeated for Remote Input 23					
D086	Repeated for Remote Input 24					
D090	Repeated for Remote Input 25					
D09A	Repeated for Remote Input 26					
D0A4	Repeated for Remote Input 27					
D0AE	Repeated for Remote Input 28					
D0B8	Repeated for Remote Input 29					
D0C2	Repeated for Remote Input 30					
		İ	1	l .		

Table B-9: MODBUS MEMORY MAP (Sheet 64 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D0CC	Repeated for Remote Input 31					
D0D6	Repeated for Remote Input 32					
D0E0	Repeated for Remote Input 33					
D0EA	Repeated for Remote Input 34					
D0F4	Repeated for Remote Input 35					
D0FE	Repeated for Remote Input 36					
D108	Repeated for Remote Input 37					
D112	Repeated for Remote Input 38					
D11C	Repeated for Remote Input 39					
D126	Repeated for Remote Input 40					
D130	Repeated for Remote Input 41					
D13A	Repeated for Remote Input 42					
D144	Repeated for Remote Input 43					
D14E	Repeated for Remote Input 44					
D158	Repeated for Remote Input 45					
D162	Repeated for Remote Input 46					
D16C	Repeated for Remote Input 47					
D176	Repeated for Remote Input 48					
D180	Repeated for Remote Input 49					
D18A	Repeated for Remote Input 50					
D194	Repeated for Remote Input 51					
D19E	Repeated for Remote Input 52					
D1A8	Repeated for Remote Input 53					
D1B2	Repeated for Remote Input 54					
D1BC	Repeated for Remote Input 55					
D1C6	Repeated for Remote Input 56					
D1D0	Repeated for Remote Input 57					
D1DA	Repeated for Remote Input 58					
D1E4	Repeated for Remote Input 59					
D1EE	Repeated for Remote Input 60					
D1F8	Repeated for Remote Input 61					
D202	Repeated for Remote Input 62					
D20C	Repeated for Remote Input 63					
D216	Repeated for Remote Input 64					
	Output DNA Pairs (Read/Write Setting) (32 Modules)					
D220	Remote Output DNA 1 Operand	0 to 4294967295		1	F300	0
D222	Remote Output DNA 1 Events	0 to 1		1	F102	0 (Disabled)
D223	Reserved	0 to 1		1	F001	0
D224	Repeated for Remote Output 2	0 10 1			1 00 1	0
D228	Repeated for Remote Output 3					
D22C	Repeated for Remote Output 3					
D230	Repeated for Remote Output 5					
D234	Repeated for Remote Output 6					
D234	Repeated for Remote Output 7					
D23C	Repeated for Remote Output 8					
D240	Repeated for Remote Output 9					
D240	Repeated for Remote Output 10					
D244 D248	Repeated for Remote Output 10					
D246	Repeated for Remote Output 12					
D24C	Repeated for Remote Output 12					
D250	Repeated for Remote Output 13Repeated for Remote Output 14					
D254 D258	Repeated for Remote Output 14					
	Repeated for Remote Output 15Repeated for Remote Output 16					
D25C D260	Repeated for Remote Output 16Repeated for Remote Output 17					
D200	Nepeated for Remote Output 17		1			

Table B-9: MODBUS MEMORY MAP (Sheet 65 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D264	Repeated for Remote Output 18					
D268	Repeated for Remote Output 19					
D26C	Repeated for Remote Output 20					
D270	Repeated for Remote Output 21					
D274	Repeated for Remote Output 22					
D278	Repeated for Remote Output 23					
D27C	Repeated for Remote Output 24					
D280	Repeated for Remote Output 25					
D284	Repeated for Remote Output 26					
D288	Repeated for Remote Output 27					
D28C	Repeated for Remote Output 28					
D290	Repeated for Remote Output 29					
D294	Repeated for Remote Output 30					
D298	Repeated for Remote Output 31					
D29C	Repeated for Remote Output 32					
Remote O	utput UserSt Pairs (Read/Write Setting) (32 Modules)					
D2A0	Remote Output UserSt 1 Operand	0 to 4294967295		1	F300	0
D2A2	Remote Output UserSt 1 Events	0 to 1		1	F102	0 (Disabled)
D2A3	Reserved	0 to 1		1	F001	0
D2A4	Repeated for Remote Output 2					
D2A8	Repeated for Remote Output 3					
D2AC	Repeated for Remote Output 4					
D2B0	Repeated for Remote Output 5					
D2B4	Repeated for Remote Output 6					
D2B8	Repeated for Remote Output 7					
D2BC	Repeated for Remote Output 8					
D2C0	Repeated for Remote Output 9					
D2C4	Repeated for Remote Output 10					
D2C8	Repeated for Remote Output 11					
D2CC	Repeated for Remote Output 12					
D2D0	Repeated for Remote Output 13					
D2D4	Repeated for Remote Output 14					
D2D8	Repeated for Remote Output 15					
D2DC	Repeated for Remote Output 16					
D2E0	Repeated for Remote Output 17					
D2E4	Repeated for Remote Output 18					
D2E8	Repeated for Remote Output 19					
D2EC	Repeated for Remote Output 20					
D2F0	Repeated for Remote Output 21					
D2F4	Repeated for Remote Output 22					
D2F8	Repeated for Remote Output 23					
D2FC	Repeated for Remote Output 24					
D300	Repeated for Remote Output 25					
D304	Repeated for Remote Output 26					
D308	Repeated for Remote Output 27					
D30C	Repeated for Remote Output 28					
D310	Repeated for Remote Output 29					
D314	Repeated for Remote Output 30					
D318	Repeated for Remote Output 31					
D31C	Repeated for Remote Output 32					
IEC 61850	GGIO2 Control Configuration (Read/Write Setting) (64 M	lodules)				
D320	IEC 61850 GGIO2.CF.SPCSO1.ctlModel Value	0 to 2		1	F001	1
D321	IEC 61850 GGIO2.CF.SPCSO2.ctlModel Value	0 to 2		1	F001	1
D322	IEC 61850 GGIO2.CF.SPCSO3.ctlModel Value	0 to 2		1	F001	1
D321	IEC 61850 GGIO2.CF.SPCSO2.ctlModel Value	0 to 2		1	F001	1

Table B-9: MODBUS MEMORY MAP (Sheet 66 of 72)

Dispay D	ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
1925 EC 81850 GGIOZ CF SPCSOC cittModel Value	D323	IEC 61850 GGIO2.CF.SPCSO4.ctlModel Value	0 to 2		1	F001	1
EC 91850 GGIOZ EFSPCSOZ callifloded Value	D324	IEC 61850 GGIO2.CF.SPCSO5.ctlModel Value	0 to 2		1	F001	1
EC 61850 GGIOZ CFSPCSOB cittModel Value	D325	IEC 61850 GGIO2.CF.SPCSO6.ctlModel Value	0 to 2		1	F001	1
FEG 61850 GGIOZ CF SPCSO10 citModel Value	D326	IEC 61850 GGIO2.CF.SPCSO7.ctlModel Value	0 to 2		1	F001	1
EC 61850 GGIOZ CF SPCSO10 ctlModel Value	D327	IEC 61850 GGIO2.CF.SPCSO8.ctlModel Value	0 to 2		1	F001	1
EC 61850 GGIOZ CFSPCSO11 cillifuded Value	D328	IEC 61850 GGIO2.CF.SPCSO9.ctlModel Value	0 to 2		1	F001	1
	D329	IEC 61850 GGIO2.CF.SPCSO10.ctlModel Value	0 to 2		1	F001	1
D32D IEC 61880 GGIOZ CF.SPCSO13 ctModel Value	D32A	IEC 61850 GGIO2.CF.SPCSO11.ctlModel Value	0 to 2		1	F001	1
D32D IEC 61850 GGIOZ CF.SPCS014 cttModel Value	D32B	IEC 61850 GGIO2.CF.SPCSO12.ctlModel Value	0 to 2		1	F001	1
D32F IEC 61850 GGIOZ CF.SPCS015 ctModel Value	D32C	IEC 61850 GGIO2.CF.SPCSO13.ctlModel Value	0 to 2		1	F001	1
D32F IEC 61850 GGIOZ CFSPCSO16 ctModel Value	D32D	IEC 61850 GGIO2.CF.SPCSO14.ctlModel Value	0 to 2		1	F001	1
D330 IEC 61850 GGIO2 CF.SPCS017.ctIModel Value 0 to 2	D32E	IEC 61850 GGIO2.CF.SPCSO15.ctlModel Value	0 to 2		1	F001	1
D331 IEC 61850 GGIO2 CF.SPCS018 ctModel Value	D32F	IEC 61850 GGIO2.CF.SPCSO16.ctlModel Value	0 to 2		1	F001	1
D332 IEC 61850 GGIO2 CF.SPCS019 ctModel Value	D330	IEC 61850 GGIO2.CF.SPCSO17.ctlModel Value	0 to 2		1	F001	1
D333 IEC 61850 GGIO2_CF.SPCSO20.ctlModel Value 0 to 2	D331	IEC 61850 GGIO2.CF.SPCSO18.ctlModel Value	0 to 2		1	F001	1
D334 IEC 61850 GGIO2_CF.SPCSO21_ctIModel Value	D332	IEC 61850 GGIO2.CF.SPCSO19.ctlModel Value	0 to 2		1	F001	1
D335 IEC 61850 GGIO2_CF.SPCSO22_ctlModel Value	D333	IEC 61850 GGIO2.CF.SPCSO20.ctlModel Value	0 to 2		1	F001	1
D336 IEC 61850 GGIO2_CF.SPCSO23_ctlModel Value	D334	IEC 61850 GGIO2.CF.SPCSO21.ctlModel Value	0 to 2		1	F001	1
D337 IEC 61850 GGIO2_CF.SPCSO24_ctlModel Value	D335	IEC 61850 GGIO2.CF.SPCSO22.ctlModel Value	0 to 2		1	F001	1
D338 IEC 61850 GGIO2.CF.SPCSO26.ctIModel Value 0 to 2	D336	IEC 61850 GGIO2.CF.SPCSO23.ctlModel Value	0 to 2		1	F001	1
D339 IEC 61850 GGIO2.CF.SPCSO27.ctIModel Value 0 to 2	D337	IEC 61850 GGIO2.CF.SPCSO24.ctlModel Value	0 to 2		1	F001	1
D33A IEC 61850 GGIO2.CF.SPCSO27.ctlModel Value 0 to 2	D338	IEC 61850 GGIO2.CF.SPCSO25.ctlModel Value	0 to 2		1	F001	1
D33B IEC 61850 GGIO2.CF.SPCSO28.ctlModel Value 0 to 2	D339	IEC 61850 GGIO2.CF.SPCSO26.ctlModel Value	0 to 2		1	F001	1
D33C IEC 61850 GGIO2.CF.SPCSO39.ctIModel Value 0 to 2	D33A	IEC 61850 GGIO2.CF.SPCSO27.ctlModel Value	0 to 2		1	F001	1
D33D IEC 61850 GGIO2.CF.SPCSO31.ctIModel Value 0 to 2	D33B	IEC 61850 GGIO2.CF.SPCSO28.ctlModel Value	0 to 2		1	F001	1
D33E IEC 61850 GGIO2.CF.SPCSO31.ctIModel Value 0 to 2	D33C	IEC 61850 GGIO2.CF.SPCSO29.ctlModel Value	0 to 2		1	F001	1
D33F IEC 61850 GGIO2.CF.SPCSO32.ctlModel Value 0 to 2	D33D	IEC 61850 GGIO2.CF.SPCSO30.ctlModel Value	0 to 2		1	F001	1
D340 IEC 61850 GGIO2.CF.SPCSO33.ctlModel Value 0 to 2	D33E	IEC 61850 GGIO2.CF.SPCSO31.ctlModel Value	0 to 2		1	F001	1
D341 IEC 61850 GGIO2.CF.SPCSO34.ctlModel Value	D33F	IEC 61850 GGIO2.CF.SPCSO32.ctlModel Value	0 to 2		1	F001	1
D342 IEC 61850 GGIO2.CF.SPCSO35.ctIModel Value 0 to 2	D340	IEC 61850 GGIO2.CF.SPCSO33.ctlModel Value	0 to 2		1	F001	1
D343 IEC 61850 GGIO2.CF.SPCSO36.ctlModel Value 0 to 2	D341	IEC 61850 GGIO2.CF.SPCSO34.ctlModel Value	0 to 2		1	F001	1
D344 IEC 61850 GGIO2.CF.SPCSO37.ctiModel Value	D342	IEC 61850 GGIO2.CF.SPCSO35.ctlModel Value	0 to 2		1	F001	1
D345 IEC 61850 GGIO2.CF.SPCSO38.ctIModel Value 0 to 2	D343	IEC 61850 GGIO2.CF.SPCSO36.ctlModel Value	0 to 2		1	F001	1
D346 IEC 61850 GGIO2.CF.SPCSO39.ctlModel Value 0 to 2	D344	IEC 61850 GGIO2.CF.SPCSO37.ctlModel Value	0 to 2		1	F001	1
D347 IEC 61850 GGIO2.CF.SPCSO40.ctiModel Value 0 to 2	D345	IEC 61850 GGIO2.CF.SPCSO38.ctlModel Value	0 to 2		1	F001	1
D348 IEC 61850 GGIO2.CF.SPCSO41.ctlModel Value 0 to 2	D346	IEC 61850 GGIO2.CF.SPCSO39.ctlModel Value	0 to 2		1	F001	1
D349 IEC 61850 GGIO2.CF.SPCSO42.ctIModel Value 0 to 2 1 F001 1 D34A IEC 61850 GGIO2.CF.SPCSO43.ctIModel Value 0 to 2 1 F001 1 D34B IEC 61850 GGIO2.CF.SPCSO44.ctIModel Value 0 to 2 1 F001 1 D34C IEC 61850 GGIO2.CF.SPCSO45.ctIModel Value 0 to 2 1 F001 1 D34D IEC 61850 GGIO2.CF.SPCSO46.ctIModel Value 0 to 2 1 F001 1 D34E IEC 61850 GGIO2.CF.SPCSO47.ctIModel Value 0 to 2 1 F001 1 D34F IEC 61850 GGIO2.CF.SPCSO48.ctIModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO50.ctIModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctIModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO52.ctIModel Value 0 to 2 1 F001 1	D347	IEC 61850 GGIO2.CF.SPCSO40.ctlModel Value	0 to 2		1	F001	1
D34A IEC 61850 GGIO2.CF.SPCSO43.ctlModel Value 0 to 2 1 F001 1 D34B IEC 61850 GGIO2.CF.SPCSO44.ctlModel Value 0 to 2 1 F001 1 D34C IEC 61850 GGIO2.CF.SPCSO45.ctlModel Value 0 to 2 1 F001 1 D34D IEC 61850 GGIO2.CF.SPCSO46.ctlModel Value 0 to 2 1 F001 1 D34E IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value 0 to 2 1 F001 1 D34F IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1	D348	IEC 61850 GGIO2.CF.SPCSO41.ctlModel Value	0 to 2		1	F001	1
D34B IEC 61850 GGIO2.CF.SPCSO44.ctlModel Value 0 to 2 1 F001 1 D34C IEC 61850 GGIO2.CF.SPCSO45.ctlModel Value 0 to 2 1 F001 1 D34D IEC 61850 GGIO2.CF.SPCSO46.ctlModel Value 0 to 2 1 F001 1 D34E IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value 0 to 2 1 F001 1 D34F IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1	D349	IEC 61850 GGIO2.CF.SPCSO42.ctlModel Value	0 to 2		1	F001	1
D34C IEC 61850 GGIO2.CF.SPCSO45.ctlModel Value 0 to 2 1 F001 1 D34D IEC 61850 GGIO2.CF.SPCSO46.ctlModel Value 0 to 2 1 F001 1 D34E IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value 0 to 2 1 F001 1 D34F IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1	D34A	IEC 61850 GGIO2.CF.SPCSO43.ctlModel Value	0 to 2		1	F001	1
D34D IEC 61850 GGIO2.CF.SPCSO46.ctlModel Value 0 to 2 1 F001 1 D34E IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value 0 to 2 1 F001 1 D34F IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1	D34B	IEC 61850 GGIO2.CF.SPCSO44.ctlModel Value	0 to 2		1	F001	1
D34E IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value 0 to 2 1 F001 1 D34F IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D34C	IEC 61850 GGIO2.CF.SPCSO45.ctlModel Value	0 to 2		1	F001	1
D34F IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value 0 to 2 1 F001 1 D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D34D	IEC 61850 GGIO2.CF.SPCSO46.ctlModel Value	0 to 2		1	F001	1
D350 IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value 0 to 2 1 F001 1 D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D34E	IEC 61850 GGIO2.CF.SPCSO47.ctlModel Value	0 to 2		1	F001	1
D351 IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value 0 to 2 1 F001 1 D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D34F	IEC 61850 GGIO2.CF.SPCSO48.ctlModel Value	0 to 2		1	F001	1
D352 IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value 0 to 2 1 F001 1 D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D350	IEC 61850 GGIO2.CF.SPCSO49.ctlModel Value	0 to 2		1	F001	1
D353 IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value 0 to 2 1 F001 1 D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D351	IEC 61850 GGIO2.CF.SPCSO50.ctlModel Value	0 to 2		1	F001	1
D354 IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value 0 to 2 1 F001 1 D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D352	IEC 61850 GGIO2.CF.SPCSO51.ctlModel Value	0 to 2		1	F001	1
D355 IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value 0 to 2 1 F001 1 D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D353	IEC 61850 GGIO2.CF.SPCSO52.ctlModel Value	0 to 2		1	F001	1
D356 IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value 0 to 2 1 F001 1 D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D354	IEC 61850 GGIO2.CF.SPCSO53.ctlModel Value	0 to 2		1	F001	1
D357 IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value 0 to 2 1 F001 1	D355	IEC 61850 GGIO2.CF.SPCSO54.ctlModel Value	0 to 2		1	F001	1
	D356	IEC 61850 GGIO2.CF.SPCSO55.ctlModel Value	0 to 2		1	F001	1
D358 IEC 61850 GGIO2.CF.SPCSO57.ctlModel Value 0 to 2 1 F001 1	D357	IEC 61850 GGIO2.CF.SPCSO56.ctlModel Value	0 to 2		1	F001	1
	D358	IEC 61850 GGIO2.CF.SPCSO57.ctlModel Value	0 to 2		1	F001	1

Table B-9: MODBUS MEMORY MAP (Sheet 67 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D359	IEC 61850 GGIO2.CF.SPCSO58.ctlModel Value	0 to 2		1	F001	1
D35A	IEC 61850 GGIO2.CF.SPCSO59.ctlModel Value	0 to 2		1	F001	1
D35B	IEC 61850 GGIO2.CF.SPCSO60.ctlModel Value	0 to 2		1	F001	1
D35C	IEC 61850 GGIO2.CF.SPCSO61.ctlModel Value	0 to 2		1	F001	1
D35D	IEC 61850 GGIO2.CF.SPCSO62.ctlModel Value	0 to 2		1	F001	1
D35E	IEC 61850 GGIO2.CF.SPCSO63.ctlModel Value	0 to 2		1	F001	1
D35F	IEC 61850 GGIO2.CF.SPCSO64.ctlModel Value	0 to 2		1	F001	1
Remote D	Device Status (Read Only) (32 Modules)	<u>'</u>				
D360	Remote Device 1 StNum	0 to 4294967295		1	F003	0
D362	Remote Device 1 SqNum	0 to 4294967295		1	F003	0
D364	Repeated for Remote Device 2					
D368	Repeated for Remote Device 3					
D36C	Repeated for Remote Device 4					
D370	Repeated for Remote Device 5					
D374	Repeated for Remote Device 6					
D378	Repeated for Remote Device 7					
D37C	Repeated for Remote Device 8					
D380	Repeated for Remote Device 9					
D384	Repeated for Remote Device 10					
D388	Repeated for Remote Device 11					
D38C	Repeated for Remote Device 12					
D390	Repeated for Remote Device 13					
D394	Repeated for Remote Device 14					
D398	Repeated for Remote Device 15					
D39C	Repeated for Remote Device 16					
D3A0	Repeated for Remote Device 17					
D3A4	Repeated for Remote Device 18					
D3A8	Repeated for Remote Device 19					
D3AC	Repeated for Remote Device 20					
D3B0	Repeated for Remote Device 21					
D3B4	Repeated for Remote Device 22					
D3B8	Repeated for Remote Device 23					
D3BC	Repeated for Remote Device 24					
D3C0	Repeated for Remote Device 25					
D3C4	Repeated for Remote Device 26					
D3C8	Repeated for Remote Device 27					
D3CC	Repeated for Remote Device 28					
D3D0	Repeated for Remote Device 29					
D3D4	Repeated for Remote Device 30					
D3D8	Repeated for Remote Device 31					
D3DC	Repeated for Remote Device 31					
	Outputs (Read/Write Setting) (64 Modules)					
D3E0	Contact Output 1 Name				F205	"Cont Op 1"
D3E6	Contact Output 1 Operation	0 to 4294967295		1	F300	0
D3E8	Contact Output 1 Seal In	0 to 4294967295		1	F300	0
D3EA	Latching Output 1 Reset	0 to 4294967295		1	F300	0
D3EC	Contact Output 1 Events	0 to 1		1	F102	1 (Enabled)
D3ED	Latching Output 1 Type	0 to 1		1	F090	0 (Operate- dominant)
D3EE	Reserved				F001	0
D3EF	Repeated for Contact Output 2	1				
D3FE	Repeated for Contact Output 3					
D40D	Repeated for Contact Output 4					
D41C	Repeated for Contact Output 5					
	,	L	1	I		

Table B-9: MODBUS MEMORY MAP (Sheet 68 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D42B	Repeated for Contact Output 6					
D43A	Repeated for Contact Output 7					
D449	Repeated for Contact Output 8					
D458	Repeated for Contact Output 9					
D467	Repeated for Contact Output 10					
D476	Repeated for Contact Output 11					
D485	Repeated for Contact Output 12					
D494	Repeated for Contact Output 13					
D4A3	Repeated for Contact Output 14					
D4B2	Repeated for Contact Output 15					
D4C1	Repeated for Contact Output 16					
D4D0	Repeated for Contact Output 17					
D4DF	Repeated for Contact Output 18					
D4EE	Repeated for Contact Output 19					
D4FD	Repeated for Contact Output 20					
D50C	Repeated for Contact Output 21					
D51B	Repeated for Contact Output 22					
D52A	Repeated for Contact Output 23					
D539	Repeated for Contact Output 24					
D548	Repeated for Contact Output 25					
D557	Repeated for Contact Output 26					
D566	Repeated for Contact Output 27					
D575	Repeated for Contact Output 28					
D584	Repeated for Contact Output 29					
D593	Repeated for Contact Output 30					
D5A2	Repeated for Contact Output 31					
D5B1	Repeated for Contact Output 32					
D5C0	Repeated for Contact Output 33					
D5CF	Repeated for Contact Output 34					
D5DE	Repeated for Contact Output 35					
D5ED	Repeated for Contact Output 36					
D5FC	Repeated for Contact Output 37					
D60B	Repeated for Contact Output 38					
D61A	Repeated for Contact Output 39					
D629	Repeated for Contact Output 40					
D638	Repeated for Contact Output 41					
D647	Repeated for Contact Output 42					
D656	Repeated for Contact Output 42					
D665	Repeated for Contact Output 45					
D674	Repeated for Contact Output 44					
D674 D683	Repeated for Contact Output 45					
D683	Repeated for Contact Output 46Repeated for Contact Output 47					
D6A1	Repeated for Contact Output 48Repeated for Contact Output 49					
D6B0 D6BF	Repeated for Contact Output 49Repeated for Contact Output 50					
	·					
D6CE	Repeated for Contact Output 51					
D6DD	Repeated for Contact Output 52					
D6EC	Repeated for Contact Output 53					
D6FB	Repeated for Contact Output 54					
D70A	Repeated for Contact Output 55					
D719	Repeated for Contact Output 56					
D728	Repeated for Contact Output 57					
D737	Repeated for Contact Output 58					
D746	Repeated for Contact Output 59					

Table B-9: MODBUS MEMORY MAP (Sheet 69 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
D755	Repeated for Contact Output 60					
D764	Repeated for Contact Output 61					
D773	Repeated for Contact Output 62					
D782	Repeated for Contact Output 63					
D791	Repeated for Contact Output 64					
dcmA Inp	uts (Read/Write Setting) (24 Modules)					
D7A0	dcmA Inputs 1 Function	0 to 1		1	F102	0 (Disabled)
D7A1	dcmA Inputs 1 ID				F205	"DCMA I 1"
D7A7	Reserved 1 (4 items)	0 to 65535		1	F001	0
D7AB	dcmA Inputs 1 Units				F206	"mA"
D7AE	dcmA Inputs 1 Range	0 to 6		1	F173	6 (4 to 20 mA)
D7AF	dcmA Inputs 1 Minimum Value	-9999.999 to 9999.999		0.001	F004	4000
D7B1	dcmA Inputs 1 Maximum Value	-9999.999 to 9999.999		0.001	F004	20000
D7B3	Repeated for dcmA Inputs 2					
D7C6	Repeated for dcmA Inputs 3					
D7D9	Repeated for dcmA Inputs 4					
D7EC	Repeated for dcmA Inputs 5					
D7FF	Repeated for dcmA Inputs 6					
D812	Repeated for dcmA Inputs 7					
D825	Repeated for dcmA Inputs 8					
D838	Repeated for dcmA Inputs 9					
D84B	Repeated for dcmA Inputs 10					
D85E	Repeated for dcmA Inputs 11					
D871	Repeated for dcmA Inputs 12					
D884	Repeated for dcmA Inputs 13					
D897	Repeated for dcmA Inputs 14					
D8AA	Repeated for dcmA Inputs 15					
D8BD	Repeated for dcmA Inputs 16					
D8D0	Repeated for dcmA Inputs 17					
D8E3	Repeated for dcmA Inputs 18					
D9F6	Repeated for dcmA Inputs 19					
D909	Repeated for dcmA Inputs 20					
D91C	Repeated for dcmA Inputs 21					
D92F	Repeated for dcmA Inputs 22					
D942	Repeated for dcmA Inputs 23					
D955	Repeated for dcmA Inputs 24					
	Points (Read/Write Setting)					
D968	DNP/IEC 60870-5-104 Binary Input Points (256 items)	0 to 4294967295		1	F300	0
DB68	DNP/IEC 60870-5-104 Analog Input Points (256 items)	0 to 65535		1	F600	0
_	heck (Read/Write Setting) (4 Modules)					
DC70	Synchrocheck 1 Function	0 to 1		1	F102	0 (Disabled)
DC71	Synchrocheck 1 V1 Source	0 to 5		1	F167	0 (SRC 1)
DC72	Synchrocheck 1 V2 Source	0 to 5		1	F167	1 (SRC 2)
DC73	Synchrocheck 1 Maximum Voltage Difference	0 to 400000	V	1	F060	10000
DC75	Synchrocheck 1 Maximum Angle Difference	0 to 100	degrees	1	F001	30
DC76	Synchrocheck 1 Maximum Frequency Difference	0 to 2	Hz	0.01	F001	100
DC77	Synchrocheck 1 Dead Source Select	0 to 5		1	F176	1 (LV1 and DV2)
DC78	Synchrocheck 1 Dead V1 Maximum Voltage	0 to 1.25	pu	0.01	F001	30
DC79	Synchrocheck 1 Dead V2 Maximum Voltage	0 to 1.25	pu	0.01	F001	30
DC7A	Synchrocheck 1 Live V1 Minimum Voltage	0 to 1.25	pu	0.01	F001	70
DC7B	Synchrocheck 1 Live V2 Minimum Voltage	0 to 1.25	pu	0.01	F001	70
DC7C	Synchrocheck 1 Target	0 to 2		1	F109	0 (Self-reset)
DC7D	Synchrocheck 1 Events	0 to 1		1	F102	0 (Disabled)
DC7E	Synchrocheck 1 Block	0 to 4294967295		1	F300	0

Table B-9: MODBUS MEMORY MAP (Sheet 70 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
DC80	Synchrocheck 1 Frequency Hysteresis	0 to 0.1	Hz	0.01	F001	6
DC81	Repeated for Synchrocheck 2					
DC92	Repeated for Synchrocheck 3					
DCA3	Repeated for Synchrocheck 4					
Phasor M	easurement Unit Basic Configuration (Read/Write Settin	ıg)				
DCB4	PMU x Function	0 to 1		1	F102	0 (Disabled)
DCB5	PMU x LDInst			1	F214	"PMUx \040"
DCD6	PMU x IDcode	1 to 65534		1	F001	1
DCD7	PMU x STN				F203	"GE-UR-PMU"
DCDF	PMU x Source	0 to 5		1	F167	0 (SRC 1)
DCE0	PMU x Class	0 to 2		1	F549	1 (Class M)
DCE1	PMU x Format	0 to 1		1	F547	0 (Integer)
DCE2	PMU x Style	0 to 1		1	F546	0 (Polar)
DCE3	PMU x Rate	0 to 13		1	F544	4 (10/sec)
DCE4	PMU x PHS-x (14 items)	0 to 14		1	F543	1 (Va)
DCF2	PMU x PHS-x Name (14 items)				F203	"GE-UR-PMU- PHS 1 "
DD62	PMU x A-CH-x (16 items)	0 to 65535		1	F600	0
DD72	PMU x A-CH-x (16 items)				F203	"AnalogChannel 1
DDF2	PMU x D-CH-x (16 items)	0 to 4294967295		1	F300	0
DE12	PMU x D-CH-x Name (16 items)				F203	"Dig Channel 1 "
DE92	PMU x D-CH-x Normal State (16 items)	0 to 1		1	F108	0 (Off)
DEA2	PMU x Reserved (16 items)	0 to 1		1	F001	0
	easurement Unit Aggregator (Read/Write Setting)	0.0.				
E8A8	PMU Aggregator 1 Name			1	F209	"MSVID 1 "
E8C9	Aggregator 1 IDcode	1 to 65534		1	F001	1
E8CA	Aggregator 1 Protocol	0 to 2		1	F001	0 (NONE)
E8CB	Aggregator 1 TCP Port	0 to 65534		1	F001	4712
E8CC	Aggregator 1 UDP Port	0 to 65534		1	F001	4713
E8CD	PMU Aggregator 1 90-5 UDP Port	0 to 65534		1	F001	102
E8CE	PMU Aggregator 1 PDC Network Control	0 to 1		1	F102	0 (Disabled)
E8CF	Aggregator 1 Include PMU1	0 to 1		1	F126	0 (No)
E8D0	Aggregator 1 Include PMU2	0 to 1		1	F126	0 (No)
E8D1	Aggregator 1 Include PMU3	0 to 1		1	F126	0 (No)
E8D2	Aggregator 1 Include PMU4	0 to 1		1	F126	0 (No)
E8D3	Aggregator 1 Include PMU5	0 to 1		1	F126	0 (No)
E8D4	Aggregator 1 Include PMU6	0 to 1		1	F126	0 (No)
E8D5	PMU Aggregator 1 ASDUS	1 to 4		1	F001	1
E8D6	PMU Aggregator 1 Port	1 to 3		1	F001	1
E8D7	PMU Aggregator 1 Reserved (3 items)	1 to 3		1	F001	0
Phasor M	easurement Unit Aggregator Control Block (Read/Write	Setting)				
E9C8	PMU Aggregator 1 Control Block SvEna	0 to 4294967295		1	F300	0
E9CA	PMU Aggregator 1 Control Block Client Control	0 to 4294967295		1	F300	0
E9CC	PMU Aggregator 1 CB SvEna Default	0 to 4294967295		1	F300	0
E9CE	PMU Aggregator 1 Control Block ConfRev	1 to 4294967295		1	F003	1
E9D0	PMU Aggregator 1 Control Block Priority	0 to 7		1	F001	4
E9D1	PMU Aggregator 1 Control Block IPClass	0 to 1		1	F563	1 (Expedited Forwarding)
E9D2	PMU Aggregator 1 Control Block VID	0 to 4095		1	F001	0
E9D3	PMU Aggregator 1 Control Block APPID	0 to 16383		1	F001	0
E9D4	PMU Aggregator 1 Control Block IP Address	0 to 4294967295		1	F003	0
E9D6	PMU Aggregator 1 Control Block Security	0 to 2		1	F001	0
	easurement Unit Recording Command (Read/Write Com		1	1	1	
EA22	PMU 1 Recording Clear Command	0 to 1		1	F126	0 (No)
-	·	1	1	1	I.	` '

Table B-9: MODBUS MEMORY MAP (Sheet 71 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
EA23	PMU 1 Recording Force Trigger	0 to 1		1	F126	0 (No)
Phasor Measurement Unit Recording (Read/Write Setting)						
EA2E	PMU 1 Record Function	0 to 1		1	F102	0 (Disabled)
EA2F	PMU 1 No Of Timed Records	2 to 128		1	F001	10
EA30	PMU 1 Trigger Mode Ex	0 to 1		1	F542	0 (Auto Overwrite)
EA31	.PMU 1 Timed Trigger Position	1 to 50	%	1	F001	10
Phasor Mo	easurement Unit Triggering (Read/Write Setting)		•			
EA4A	PMU 1 User Trigger	0 to 4294967295		1	F300	0
Phasor Me	easurement Unit Voltage Trigger (Read/Write Setting)		•		•	
EA56	PMU 1 Volt Trigger Function	0 to 1		1	F102	0 (Disabled)
EA57	PMU 1 Voltage Trigger Low Volt	0.25 to 1.25	pu	0.001	F001	800
EA58	PMU 1 Voltage Trigger High Volt	0.75 to 1.75	pu	0.001	F001	1200
EA59	PMU 1 Voltage Trigger Pkp Time	0 to 600	S	0.01	F001	10
EA5A	PMU 1 Voltage Trigger Dpo Time	0 to 600	S	0.01	F001	100
EA5B	PMU 1 Voltage Trigger Block (3 items)	0 to 4294967295		1	F300	0
EA61	PMU 1 Voltage Trigger Target	0 to 2		1	F109	0 (Self-reset)
EA62	PMU 1 Voltage Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor Mo	easurement Unit Current Trigger (Read/Write Setting					
EAA4	PMU 1 Current Trigger Function	0 to 1		1	F102	0 (Disabled)
EAA5	PMU 1 Current Trigger Pickup	0.1 to 30	pu	0.001	F001	1800
EAA6	PMU 1 Current Trigger Pkp Time	0 to 600	S	0.01	F001	10
EAA7	PMU 1 Current Trigger Dpo Time	0 to 600	S	0.01	F001	100
EAA8	PMU 1 Current Trigger Block (3 items)	0 to 4294967295		1	F300	0
EAAE	PMU 1 Current Trigger Target	0 to 2		1	F109	0 (Self-reset)
EAAF	PMU 1 Current Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor Mo	easurement Unit Frequency Trigger (Read/Write Setting)		•		•	
EAEC	PMU 1 Frequency Trigger Function	0 to 1		1	F102	0 (Disabled)
EAED	PMU 1 Frequency Trigger Low Frequency	20 to 70	Hz	0.01	F001	4900
EAEE	PMU 1 Frequency Trigger High Frequency	20 to 70	Hz	0.01	F001	6100
EAEF	PMU 1 Frequency Trigger Pickup Time	0 to 600	S	0.01	F001	10
EAF0	PMU 1 Frequency Trigger Dropout Time	0 to 600	S	0.01	F001	100
EAF1	PMU 1 Frequency Trigger Block (3 items)	0 to 4294967295		1	F300	0
EAF7	PMU 1 Frequency Trigger Target	0 to 2		1	F109	0 (Self-reset)
EAF8	PMU 1 Frequency Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor Mo	easurement Unit df/dt Trigger (Read/Write Setting)		•		•	
EB3A	PMU 1 df/dt Trigger Function	0 to 1		1	F102	0 (Disabled)
EB3B	PMU 1 df/dt Trigger Raise	0.1 to 15	Hz/s	0.01	F001	25
EB3C	PMU 1 df/dt Trigger Fall	0.1 to 15	Hz/s	0.01	F001	25
EB3D	PMU 1 df/dt Trigger Pkp Time	0 to 600	S	0.01	F001	10
EB3E	PMU 1 df/dt Trigger Dpo Time	0 to 600	S	0.01	F001	100
EB3F	PMU 1 df/dt Trigger Block (3 items)	0 to 4294967295		1	F300	0
EB45	PMU 1 df/dt Trigger Target	0 to 2		1	F109	0 (Self-reset)
EB46	PMU 1 df/dt Trigger Events	0 to 1		1	F102	0 (Disabled)
Phasor Mo	easurement Unit Power Trigger (Read/Write Setting)					
EB88	PMU 1 Power Trigger Function	0 to 1		1	F102	0 (Disabled)
EB89	PMU 1 Power Trigger Active	0.25 to 3	pu	0.01	F001	1250
EB8A	PMU 1 Power Trigger Reactive	0.25 to 3	pu	0.01	F001	1250
EB8B	PMU 1 Power Trigger Apparent	0.25 to 3	pu	0.01	F001	1250
EB8C	PMU 1 Power Trigger Pkp Time	0 to 600	s	0.01	F001	10
EB8D	PMU 1 Power Trigger Dpo Time	0 to 600	S	0.01	F001	100
EB8E	PMU 1 Power Trigger Block (3 items)	0 to 4294967295		1	F300	0
EB94	PMU 1 Power Trigger Target	0 to 2		1	F109	0 (Self-reset)
EB95	PMU 1 Power Trigger Events	0 to 1		1	F102	0 (Disabled)
	•		•		ı	

Table B-9: MODBUS MEMORY MAP (Sheet 72 of 72)

ADDR	REGISTER NAME	RANGE	UNITS	STEP	FORMAT	DEFAULT
Phasor M	easurement Unit Calibration (Read/Write Setting)					
EBDC	PMU Va Calibration Angle	-5 to 5	۰	0.05	F002	0
EBDD	PMU Va Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBDE	PMU Vb Calibration Angle	-5 to 5	٥	0.05	F002	0
EBDF	PMU Vb Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBE0	PMU Vc Calibration Angle	-5 to 5	٥	0.05	F002	0
EBE1	PMU Vc Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBE2	PMU Vx Calibration Angle	-5 to 5	۰	0.05	F002	0
EBE3	PMU Vx Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBE4	PMU la Calibration Angle	-5 to 5	۰	0.05	F002	0
EBE5	PMU la Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBE6	PMU lb Calibration Angle	-5 to 5	٥	0.05	F002	0
EBE7	PMU Ib Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBE8	PMU Ic Calibration Angle	-5 to 5	٥	0.05	F002	0
EBE9	PMU Ic Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBEA	PMU Ig Calibration Angle	-5 to 5	۰	0.05	F002	0
EBEB	PMU Ig Calibration Magnitude	95 to 105	%	0.1	F002	1000
EBEC	PMU Sequence Voltage Shift Angle	-180 to 180	٥	30	F002	0
EBED	PMU Sequence Current Shift Angle	-180 to 180	٥	30	F002	0
Phasor M	easurement Unit Network Reporting Configuration (Rea	d/Write Setting)				
EC48	PMU Network Reporting Function	0 to 1		1	F102	0 (Disabled)
EC49	PMU Network Reporting ID Code	1 to 65534		1	F001	1
EC4A	PMU TCP port number	1 to 65535		1	F001	4712
EC4B	PMU UDP port number 1	1 to 65535		1	F001	4713
EC4C	PMU UDP port number 2	1 to 65535		1	F001	4714
Settings F	ile Template (Read/Write Setting)					
ED00	FlexLogic Displays Active	0 to 1		1	F102	1 (Enabled)
ED01	Template Access				F205	(none)
	le Template (Read Only)					
ED07	Last Settings Change Date	0 to 4294967295		1	F050	0
	ile Template (Read/Write Setting)					
ED09	Template Bitmask (750 items)	0 to 65535		1	F001	0
	easurement Unit Records (Read Only)					
EFFF	PMU Recording Number of Triggers	0 to 65535		1	F001	0

B.4.2 DATA FORMATS

F001

UR_UINT16 UNSIGNED 16 BIT INTEGER

F002

UR_SINT16 SIGNED 16 BIT INTEGER

F003

UR UINT32 UNSIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register. Low order word is stored in the second register.

F004

UR_SINT32 SIGNED 32 BIT INTEGER (2 registers)

High order word is stored in the first register. Low order word is stored in the second register.

F011

UR_UINT16 FLEXCURVE DATA (120 points)

A FlexCurve is an array of 120 consecutive data points (x, y) which are interpolated to generate a smooth curve. The y-axis is the user defined trip or operation time setting; the x-axis is the pickup ratio and is pre-defined. Refer to format F119 for a listing of the pickup ratios; the enumeration value for the pickup ratio indicates the offset into the FlexCurve base address where the corresponding time value is stored.

F013

POWER_FACTOR (SIGNED 16 BIT INTEGER)

Positive values indicate lagging power factor; negative values indicate leading.

F050

UR_UINT32 TIME and DATE (UNSIGNED 32 BIT INTEGER)

Gives the current time in seconds elapsed since 00:00:00 January 1, 1970.

F051

UR_UINT32 DATE in SR format (alternate format for F050)

First 16 bits are Month/Day (MM/DD/xxxx). Month: 1=January, 2=February,...,12=December; Day: 1 to 31 in steps of 1 Last 16 bits are Year (xx/xx/YYYY): 1970 to 2106 in steps of 1

F052

UR_UINT32 TIME in SR format (alternate format for F050)

First 16 bits are Hours/Minutes (HH:MM:xx.xxx). Hours: 0=12am, 1=1am,...,12=12pm,...23=11pm; Minutes: 0 to 59 in steps of 1

Last 16 bits are Seconds (xx:xx:.SS.SSS): 0=00.000s, 1=00.001,...,59999=59.999s)

F060

FLOATING POINT IEEE FLOATING POINT (32 bits)

F072

HEX6 6 BYTES - 12 ASCII DIGITS

F073

HEX8 8 BYTES - 16 ASCII DIGITS

F074

HEX20 20 BYTES - 40 ASCII DIGITS

F083

ENUMERATION: SELECTOR MODES

0 = Time-Out, 1 = Acknowledge

F084

ENUMERATION: SELECTOR POWER UP

0 = Restore, 1 = Synchronize, 2 = Sync/Restore

F086

ENUMERATION: DIGITAL INPUT DEFAULT STATE

0 = Off, 1 = On, 2= Latest/Off, 3 = Latest/OnF090 ENUMERATION: LATCHING OUTPUT TYPE

0 = Operate-dominant, 1 = Reset-dominant

F100

ENUMERATION: VT CONNECTION TYPE

0 = Wye; 1 = Delta

F101

ENUMERATION: MESSAGE DISPLAY INTENSITY

0 = 25%, 1 = 50%, 2 = 75%, 3 = 100%

F102

ENUMERATION: DISABLED/ENABLED

0 = Disabled; 1 = Enabled

ENUMERATION: CURVE SHAPES

Bitmask	Curve shape
0	IEEE Mod Inv
1	IEEE Very Inv
2	IEEE Ext Inv
3	IEC Curve A
4	IEC Curve B
5	IEC Curve C
6	IEC Short Inv
7	IAC Ext Inv
8	IAC Very Inv

Bitmask	Curve shape
9	IAC Inverse
10	IAC Short Inv
11	I2t
12	Definite Time
13	FlexCurve A
14	FlexCurve B
15	FlexCurve C
16	FlexCurve D

F104

ENUMERATION: RESET TYPE

0 = Instantaneous, 1 = Timed, 2 = Linear

F106

ENUMERATION: PHASE ROTATION

0 = ABC, 1 = ACB

F108

ENUMERATION: OFF/ON

0 = Off, 1 = On

F109

ENUMERATION: CONTACT OUTPUT OPERATION

0 = Self-reset, 1 = Latched, 2 = Disabled

F111

ENUMERATION: UNDERVOLTAGE CURVE SHAPES

0 = Definite Time, 1 = Inverse Time

F112 ENUMERATION: RS485 BAUD RATES

Bitmask	Value
0	300
1	1200
2	2400
3	4800

Bitmask	Value
4	9600
5	19200
6	38400
7	57600

Bitmask	Value
8	115200
9	14400
10	28800
11	33600
	•

F113

ENUMERATION: PARITY

0 = None, 1 = Odd, 2 = Even

F114

ENUMERATION: IRIG-B SIGNAL TYPE

0 = None, 1 = DC Shift, 2 = Amplitude Modulated

F116

ENUMERATION: NEUTRAL OVERVOLTAGE CURVES

0 = Definite Time, 1 = FlexCurve A, 2 = FlexCurve B, 3 = FlexCurve C

F118

ENUMERATION: OSCILLOGRAPHY MODE

0 = Automatic Overwrite, 1 = Protected

F122

ENUMERATION: ELEMENT INPUT SIGNAL TYPE

0 = Phasor, 1 = RMS

F123

ENUMERATION: CT SECONDARY

0 = 1 A, 1 = 5 A

F124

ENUMERATION: LIST OF ELEMENTS

Bitmask	Element
0	Phase Instantaneous Overcurrent 1
1	Phase Instantaneous Overcurrent 2
2	Phase Instantaneous Overcurrent 3
3	Phase Instantaneous Overcurrent 4
4	Phase Instantaneous Overcurrent 5
5	Phase Instantaneous Overcurrent 6
6	Phase Instantaneous Overcurrent 7
7	Phase Instantaneous Overcurrent 8
8	Phase Instantaneous Overcurrent 9
9	Phase Instantaneous Overcurrent 10
10	Phase Instantaneous Overcurrent 11
11	Phase Instantaneous Overcurrent 12
16	Phase Time Overcurrent 1
17	Phase Time Overcurrent 2
18	Phase Time Overcurrent 3
19	Phase Time Overcurrent 4
20	Phase Time Overcurrent 5
21	Phase Time Overcurrent 6
24	Phase Directional Overcurrent 1
25	Phase Directional Overcurrent 2
32	Neutral Instantaneous Overcurrent 1
33	Neutral Instantaneous Overcurrent 2
34	Neutral Instantaneous Overcurrent 3
35	Neutral Instantaneous Overcurrent 4

Bitmask	Element
36	Neutral Instantaneous Overcurrent 5
37	Neutral Instantaneous Overcurrent 6
38	Neutral Instantaneous Overcurrent 7
39	Neutral Instantaneous Overcurrent 8
40	Neutral Instantaneous Overcurrent 9
41	Neutral Instantaneous Overcurrent 10
42	Neutral Instantaneous Overcurrent 11
43	Neutral Instantaneous Overcurrent 12
48	Neutral Time Overcurrent 1
49	Neutral Time Overcurrent 2
50	Neutral Time Overcurrent 3
51	Neutral Time Overcurrent 4
52	Neutral Time Overcurrent 5
53	Neutral Time Overcurrent 6
56	Neutral Directional Overcurrent 1
57	Neutral Directional Overcurrent 2
60	Negative Sequence Directional Overcurrent 1
61	Negative Sequence Directional Overcurrent 2
64	Ground Instantaneous Overcurrent 1
65	Ground Instantaneous Overcurrent 2
66	Ground Instantaneous Overcurrent 3
67	Ground Instantaneous Overcurrent 4
68	Ground Instantaneous Overcurrent 5
69	Ground Instantaneous Overcurrent 6
70	Ground Instantaneous Overcurrent 7
71	Ground Instantaneous Overcurrent 8
72	Ground Instantaneous Overcurrent 9
73	Ground Instantaneous Overcurrent 10
74	Ground Instantaneous Overcurrent 11
75	Ground Instantaneous Overcurrent 12
80	Ground Time Overcurrent 1
81	Ground Time Overcurrent 2
82	Ground Time Overcurrent 3
83	Ground Time Overcurrent 4
84	Ground Time Overcurrent 5
85	Ground Time Overcurrent 6
96	Negative Sequence Instantaneous Overcurrent 1
97	Negative Sequence Instantaneous Overcurrent 2
101	Opposite Phase Rotation
112	Negative Sequence Time Overcurrent 1
113	Negative Sequence Time Overcurrent 2
120	Negative Sequence Overvoltage 1
128	High Impedance Fault Detection (Hi-Z)
140	Auxiliary Undervoltage 1
144	Phase Undervoltage 1
145	Phase Undervoltage 2
148	Auxiliary Overvoltage 1
151	Phase Overvoltage 1
151	Phase Overvoltage 2
152	-
	Phase Overvoltage 3
154	Compensated Overvoltage 1
156	Neutral Overvoltage 1
190	Power Swing Detect

Bitmask	Element
214	Sensitive Directional Power 1
215	Sensitive Directional Power 2
224	SRC1 VT Fuse Failure
225	SRC2 VT Fuse Failure
226	SRC3 VT Fuse Failure
227	SRC4 VT Fuse Failure
228	SRC5 VT Fuse Failure
229	SRC6 VT Fuse Failure
232	SRC1 50DD (Disturbance Detection)
233	SRC2 50DD (Disturbance Detection)
280	Breaker Failure 1
281	Breaker Failure 2
288	Breaker Arcing Current 1
289	Breaker Arcing Current 2
290	Breaker Arcing Current 3
291	Breaker Arcing Current 4
292	Breaker Arcing Current 5
293	Breaker Arcing Current 6
294	Breaker 1 Flashover
295	Breaker 2 Flashover
304	Autoreclose (three-pole) 1
305	Autoreclose (three-pole) 2
306	Autoreclose (three-pole) 3
307	Autoreclose (three-pole) 4
308	Autoreclose (three-pole) 5
309	Autoreclose (three-pole) 6
311	Phasor measurement unit one-shot
312	Synchrocheck 1
313	Synchrocheck 2
320	Cold load pickup 1
321	Cold load pickup 2
336	Setting Group
337	Reset
344	Overfrequency 1
345	Overfrequency 2
346	Overfrequency 3
347	Overfrequency 4
352	Underfrequency 1
353	Underfrequency 2
354	Underfrequency 3
355	Underfrequency 4
356	Underfrequency 5
357	Underfrequency 6
375	Autoreclose (single-pole / three-pole)
388	Selector 1
389	Selector 2
390	Control pushbutton 1
391	Control pushbutton 2
392	Control pushbutton 3
393	Control pushbutton 4
394	Control pushbutton 5
395	Control pushbutton 6
396	Control pushbutton 7
	·

Bitmask	Element
400	FlexElement 1
401	FlexElement 2
402	FlexElement 3
403	FlexElement 4
404	FlexElement 5
405	FlexElement 6
406	FlexElemen 7
407	FlexElement 8
420	Non-volatile Latch 1
421	Non-volatile Latch 2
422	Non-volatile Latch 3
423	Non-volatile Latch 4
424	Non-volatile Latch 5
425	Non-volatile Latch 6
426	Non-volatile Latch 7
427	Non-volatile Latch 8
428	Non-volatile Latch 9
429	Non-volatile Latch 10
430	Non-volatile Latch 11
431	Non-volatile Latch 12
432	Non-volatile Latch 13
433	Non-volatile Latch 14
434	Non-volatile Latch 15
435	Non-volatile Latch 16
530	Frequency Rate of Change 1
531	Frequency Rate of Change 2
532	Frequency Rate of Change 3
533	Frequency Rate of Change 4
544	Digital Counter 1
545	Digital Counter 2
546	Digital Counter 3
547	Digital Counter 4
548	Digital Counter 5
549	Digital Counter 6
550 551	Digital Counter 7
	Digital Counter 8
692	Digital Element 1 Digital Element 2
693 694	Digital Element 3
695	Digital Element 4
696	Digital Element 5
697	Digital Element 6
698	Digital Element 7
699	Digital Element 8
700	Digital Element 9
700	Digital Element 10
701	Digital Element 11
702	Digital Element 12
703	Digital Element 13
705	Digital Element 14
706	Digital Element 15
707	Digital Element 16
708	Digital Element 17
	-

Bitmask	Element
709	Digital Element 18
710	Digital Element 19
711	Digital Element 20
712	Digital Element 21
713	Digital Element 22
714	Digital Element 23
715	Digital Element 24
716	Digital Element 25
717	Digital Element 26
718	Digital Element 27
719	Digital Element 28
720	Digital Element 29
721	Digital Element 30
722	Digital Element 31
723	Digital Element 32
724	Digital Element 33
725	Digital Element 34
726	Digital Element 35
727	Digital Element 36
728	Digital Element 37
729	Digital Element 38
730	Digital Element 39
731	Digital Element 40
732	Digital Element 41
733	Digital Element 42
734	Digital Element 43
735	Digital Element 44
736	Digital Element 45
737	Digital Element 46
738	Digital Element 47
739	Digital Element 48
740	Phasor Measurement Unit 1 Frequency
746	Phasor Measurement Unit 1 Voltage
752	Phasor Measurement Unit 1 Current
758	Phasor Measurement Unit 1 Power
764	PMU 1 Rate of Change of Frequency
842	Trip Bus 1
843	Trip Bus 2
844	Trip Bus 3
845	Trip Bus 4
846	Trip Bus 5
847	Trip Bus 6
849	RTD Input 1
850	RTD Input 2
851	RTD Input 3
852	RTD Input 4
853	RTD Input 5
854	RTD Input 6
855	RTD Input 7
856	RTD Input 8
	·
857	RTD Input 10
858	RTD Input 11
859	RTD Input 11

Bitmask	Element
860	RTD Input 12
861	RTD Input 13
862	RTD Input 14
863	RTD Input 15
864	RTD Input 16
865	RTD Input 17
866	RTD Input 18
867	RTD Input 19
868	RTD Input 20
869	RTD Input 21
870	RTD Input 22
871	RTD Input 23
872	RTD Input 24
873	RTD Input 25
874	RTD Input 26
875	RTD Input 27
876	RTD Input 28
877	RTD Input 29
878	RTD Input 30
879	RTD Input 31
880	RTD Input 32
881	RTD Input 33
882	RTD Input 34
883	RTD Input 35
884	RTD Input 36
885	RTD Input 37
886	RTD Input 38
887	RTD Input 39
888	RTD Input 40
889	RTD Input 41
890	RTD Input 42
891	RTD Input 43
892	RTD Input 44
893	RTD Input 45
894	RTD Input 46
895	RTD Input 47
896	RTD Input 48
900	User-Programmable Pushbutton 1
901	User-Programmable Pushbutton 2
902	User-Programmable Pushbutton 3
903	User-Programmable Pushbutton 4
904	User-Programmable Pushbutton 5
905	User-Programmable Pushbutton 6
906	User-Programmable Pushbutton 7
907	User-Programmable Pushbutton 8
908	User-Programmable Pushbutton 9
909	User-Programmable Pushbutton 10
910	User-Programmable Pushbutton 11
911	User-Programmable Pushbutton 12
912	User-Programmable Pushbutton 13
913	User-Programmable Pushbutton 14
914	User-Programmable Pushbutton 15
	-

Bitmask	Element
915	User-Programmable Pushbutton 16
920	Disconnect switch 1
921	Disconnect switch 2
922	Disconnect switch 3
923	Disconnect switch 4
924	Disconnect switch 5
925	Disconnect switch 6
926	Disconnect switch 7
927	Disconnect switch 8
968	Breaker 1
969	Breaker 2
980	Breaker restrike 1
983	Incipient cable fault detector 1
984	Incipient cable fault detector 2
1012	Thermal overload protection 1
1013	Thermal overload protection 2
1014	Broken conductor detection 1
1015	Broken conductor detection 2
1020	Wattmetric 1
1021	Wattmetric 2

ENUMERATION: NO/YES CHOICE

0 = No, 1 = Yes

F127

ENUMERATION: LATCHED OR SELF-RESETTING

0 = Latched, 1 = Self-Reset

F128

ENUMERATION: CONTACT INPUT THRESHOLD

0 = 17 V DC, 1 = 33 V DC, 2 = 84 V DC, 3 = 166 V DC

F129

ENUMERATION: FLEXLOGIC TIMER TYPE

0 = millisecond, 1 = second, 2 = minute

F131

ENUMERATION: FORCED CONTACT OUTPUT STATE

0 = Disabled, 1 = Energized, 2 = De-energized, 3 = Freeze

F132

ENUMERATION: DEMAND INTERVAL

0 = 5 min, 1 = 10 min, 2 = 15 min, 3 = 20 min, 4 = 30 min, 5 = 60 min

F133

ENUMERATION: PROGRAM STATE

0 = Not Programmed, 1 = Programmed

ENUMERATION: PASS/FAIL

0 = Fail, 1 = OK, 2 = n/a

F137

ENUMERATION: USER-PROGRAMMABLE PUSHBUTTON FUNCTION

0 = Disabled, 1 = Self-Reset, 2 = Latched

F139

ENUMERATION: DEMAND CALCULATIONS

0 = Thermal Exponential, 1 = Block Interval, 2 = Rolling Demand

F141 ENUMERATION: SELF TEST ERRORS

Bitmask	Error
0	Any Self Tests
1	IRIG-B Failure
2	Port 1 Offline
3	Port 2 Offline
4	Port 3 Offline
5	Port 4 Offline
6	Port 5 Offline
7	Port 6 Offline
8	RRTD Communications Failure
9	Voltage Monitor
10	FlexLogic Error Token
11	Equipment Mismatch
12	Process Bus Failure
13	Unit Not Programmed
14	System Exception
15	Latching Output Discrepancy
17	Maintenance Alert 01
18	SNTP Failure
19	Maintenance Alert
20	Maintenance Alert
21	Maintenance Alert
22	Temperature Monitor
23	Process Bus Trouble
24	Brick Trouble
25	Field RTD Trouble
26	Field TDR Trouble
27	Remote Device Offline
28	Direct Device Offline
29	Maintenance Alert

Bitmask	Error
30	Any Minor Error
31	Any Major Error
33	Maintenance Alert
64	Maintenance Alert
65	IEC 61850 Data Set
66	Aggregator Error
67	Unit Not Calibrated
68	Settings Save Error
69	SRAM Data Error
70	Program Memory
71	Watchdog Error
72	Low On Memory
73	Prototype Firmware
74	Module Failure 01
75	Module Failure 02
76	Module Failure 03
77	Module Failure 04
78	Module Failure 05
79	Module Failure 06
80	Module Failure 07
81	Module Failure 08
82	Module Failure 09
83	Incompatible H/W
84	Module Failure 10
85	Module Failure 11
86	Module Failure 12
87	High ENET Traffic
89	Relay Restart
90	FGM Failure
91	FGM Failure
92	FGM Failure
93	FGM Failure
94	FGM Failure
95	FGM Error
96	Maintenance Alert
97	PHY Monitor
98	Storage Media Alarm
99	Wrong Transceiver

F143

UR_UINT32: 32 BIT ERROR CODE (F141 specifies bit number)

A bit value of 0 = no error, 1 = error

F144

ENUMERATION: FORCED CONTACT INPUT STATE

0 = Disabled, 1 = Open, 2 = Closed

F146
ENUMERATION: MISCELLANEOUS EVENT CAUSES

Bitmask	Definition
0	Events Cleared
1	Oscillography Triggered
2	Date/time Changed
3	Default Settings Loaded
4	Test Mode Forcing On
5	Test Mode Forcing Off
6	Power On
7	Power Off
8	Relay In Service
9	Relay Out Of Service
10	Watchdog Reset
11	Oscillography Clear
12	Reboot Command
13	Led Test Initiated
14	Flash Programming
15	Fault Report Trigger
16	User Programmable Fault Report Trigger
17	
18	Reload CT/VT module Settings
19	
20	Ethernet Port 1 Offline
21	Ethernet Port 2 Offline
22	Ethernet Port 3 Offline
23	Ethernet Port 4 Offline
24	Ethernet Port 5 Offline
25	Ethernet Port 6 Offline
26	Test Mode Isolated
27	Test Mode Forcible
28	Test Mode Disabled
29	Temperature Warning On
30	Temperature Warning Off
31	Unauthorized Access
32	System Integrity Recovery
33	System Integrity Recovery 06
34	System Integrity Recovery 07

ENUMERATION: LINE LENGTH UNITS

0 = km, 1 = miles

F148 ENUMERATION: FAULT TYPE

Fault Type
NA
AG
BG
CG
AB
BC

Bitmask	Fault type
6	AC
7	ABG
8	BCG
9	ACG
10	ABC
11	ABCG

F152 ENUMERATION: SETTING GROUP

0 = Active Group, 1 = Group 1, 2 = Group 2, 3 = Group 3

4 = Group 4, 5 = Group 5, 6 = Group 6

ENUMERATION: REMOTE DEVICE STATE

0 = Offline, 1 = Online

F156 ENUMERATION: REMOTE INPUT BIT PAIRS

Bitmask	Value	Bitmask	Value
0	NONE	35	UserSt-3
1	DNA-1	36	UserSt-4
2	DNA-2	37	UserSt-5
3	DNA-3	38	UserSt-6
4	DNA-4	39	UserSt-7
5	DNA-5	40	UserSt-8
6	DNA-6	41	UserSt-9
7	DNA-7	42	UserSt-10
8	DNA-8	43	UserSt-11
9	DNA-9	44	UserSt-12
10	DNA-10	45	UserSt-13
11	DNA-11	46	UserSt-14
12	DNA-12	47	UserSt-15
13	DNA-13	48	UserSt-16
14	DNA-14	49	UserSt-17
15	DNA-15	50	UserSt-18
16	DNA-16	51	UserSt-19
17	DNA-17	52	UserSt-20
18	DNA-18	53	UserSt-21
19	DNA-19	54	UserSt-22
20	DNA-20	55	UserSt-23
21	DNA-21	56	UserSt-24
22	DNA-22	57	UserSt-25
23	DNA-23	58	UserSt-26
24	DNA-24	59	UserSt-27
25	DNA-25	60	UserSt-28
26	DNA-26	61	UserSt-29
27	DNA-27	62	UserSt-30
28	DNA-28	63	UserSt-31

Bitmask	Value	Bitmask	Value
29	DNA-29	64	UserSt-32
30	DNA-30	65	Dataset Item 1
31	DNA-31	66	Dataset Item 2
32	DNA-32	67	Dataset Item 3
33	UserSt-1	\	↓
34	UserSt-2	96	Dataset Item 32

ENUMERATION: BREAKER MODE

0 = 3-Pole, 1 = 1-Pole

F166

ENUMERATION: AUXILIARY VT CONNECTION TYPE

0 = Vn, 1 = Vag, 2 = Vbg, 3 = Vcg, 4 = Vab, 5 = Vbc, 6 = Vca

F167

ENUMERATION: SIGNAL SOURCE

0 = SRC 1, 1 = SRC 2, 2 = SRC 3, 3 = SRC 4, 4 = SRC 5, 5 = SRC 6

F172 ENUMERATION: SLOT LETTERS

Bitmas k	Slot
0	F
1	G
2	Н
3	J

Bitmas k	Slot
4	K
5	L
6	М
7	N

ENUMERATION: DCMA INPUT/OUTPUT RANGE

Bitmas k	Slot	Bitma k
8	Р	12
9	R	13
10	S	14
11	T	15

Bitmask	dcmA input/output range
0	0 to -1 mA
1	0 to 1 mA
2	–1 to 1 mA
3	0 to 5 mA
4	0 to 10 mA
5	0 to 20 mA
6	4 to 20 mA

F174

F173

ENUMERATION: TRANSDUCER RTD INPUT TYPE

0 = 100 Ohm Platinum, 1 = 120 Ohm Nickel, 2 = 100 Ohm Nickel, 3 = 10 Ohm Copper

F176 ENUMERATION: SYNCHROCHECK DEAD SOURCE SELECT

Bitmask	Synchrocheck dead source
0	None
1	LV1 and DV2
2	DV1 and LV2
3	DV1 or DV2
4	DV1 Xor DV2
5	DV1 and DV2

F177

ENUMERATION: COMMUNICATION PORT

0 = None, 1 = COM1-RS485 (not applicable to UR firmware 7.00), 2 = COM2-RS485, 3 = Front Panel-RS232, 4 = Network - TCP, 5 = Network - UDP

F179

U V W X

ENUMERATION: NEGATIVE SEQUENCE DIRECTIONAL OVERCURRENT TYPE

0 = Neg Sequence, 1 = Zero Sequence

F183 ENUMERATION: AC INPUT WAVEFORMS

Bitmask	Definition
0	Off
1	8 samples/cycle
2	16 samples/cycle
3	32 samples/cycle
4	64 samples/cycle

F184 ENUMERATION: REMOTE DEVICE GOOSE DATASET

Value	GOOSE dataset
0	Off
1	Gooseln 1
2	Gooseln 2
3	Gooseln 3
4	Gooseln 4
5	Gooseln 5
6	Gooseln 6
7	Gooseln 7
8	Gooseln 8
9	Gooseln 9
10	Gooseln 10
11	Gooseln 11
12	Gooseln 12
13	Gooseln 13
14	Gooseln 14
15	Gooseln 15
16	Gooseln 16

ENUMERATION: MEASUREMENT MODE

0 = Phase to Ground, 1 = Phase to Phase

F187

ENUMERATION: HI-Z STATES

Bitmask	Hi-Z State
0	NORMAL
1	COORDINAT ION TIMEOUT
2	ARMED
5	ARCING
9	DOWNED CONDUCTOR

F188

ENUMERATION: HI-Z CAPTURE TRIGGER TYPES

Bitmask	Trigger type
0	None
1	Loss Of Load
2	Arc Suspected
3	Arcing
4	Overcurrent
5	Down Conductor
6	External

F190

ENUMERATION: SIMULATED KEYPRESS

Bitmask	Keypress
0	use between real keys
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	0
11	Decimal Point
12	Plus/Minus
13	Value Up
14	Value Down
15	Message Up
16	Message Down
17	Message Left
18	Message Right
19	Menu

Bitmask	Keypress
23	Reset
24	User 1
25	User 2
26	User 3
27	User-programmable key 1
28	User-programmable key 2
29	User-programmable key 3
30	User-programmable key 4
31	User-programmable key 5
32	User-programmable key 6
33	User-programmable key 7
34	User-programmable key 8
35	User-programmable key 9
36	User-programmable key 10
37	User-programmable key 11
38	User-programmable key 12
43	User-programmable key 13
44	User-programmable key 14
45	User-programmable key 15
46	User-programmable key 16
47	User 4 (control pushbutton)

E	Bitmask	Keypress
r	20	Help
	21	Escape
Γ	22	

Bitmask	Keypress
48	User 5 (control pushbutton)
49	User 6 (control pushbutton)
50	User 7 (control pushbutton)

F192

ENUMERATION: ETHERNET OPERATION MODE

0 = Half-Duplex, 1 = Full-Duplex

F194

ENUMERATION: DNP SCALE

0 = 0.01, 1 = 0.1, 2 = 1, 3 = 10, 4 = 100, 5 = 1000, 6 = 10000, 7 = 100000, 8 = 0.001

F196

ENUMERATION: NEUTRAL DIRECTIONAL OVERCURRENT OPERATING CURRENT

0 = Calculated 3I0, 1 = Measured IG

F200

TEXT40: 40-CHARACTER ASCII TEXT

20 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F202

TEXT20: 20-CHARACTER ASCII TEXT

10 registers, 16 Bits: 1st Char MSB, 2nd Char. LSB

F203

TEXT16: 16-CHARACTER ASCII TEXT

F204

TEXT80: 80-CHARACTER ASCII TEXT

F205

TEXT12: 12-CHARACTER ASCII TEXT

F206

TEXT6: 6-CHARACTER ASCII TEXT

F207

TEXT4: 4-CHARACTER ASCII TEXT

F211

ENUMERATION: SOURCE SELECTION

0 = None, 1 = SRC 1, 2 = SRC 2, 3 = SRC 3, 4 = SRC 4, 5 = SRC 5, 6 = SRC 6

Value

GOOSE dataset item

F213

TEXT32: 32-CHARACTER ASCII TEXT

F214

TEXT64: 64-CHARACTER ASCII TEXTF220 ENUMERATION: PUSHBUTTON MESSAGE PRIORITY

Value	Priority
0	Disabled
1	Normal
2	High Priority

F224

ENUMERATION: RATE TREND FOR FREQ RATE OF CHANGE

0 = Increasing, 1 = Decreasing, 2 = Bidirectional

F230

ENUMERATION: DIRECTIONAL POLARIZING

0 = Voltage, 1 = Current, 2 = Dual, 3 = Dual-V, 4 = Dual-I

F231

ENUMERATION: POLARIZING VOLTAGE

0 = Calculated V0, 1 = Measured VX

F232
ENUMERATION: CONFIGURABLE GOOSE DATASET ITEMS
FOR TRANSMISSION

Value	GOOSE dataset item
0	None
1	GGIO1.ST.Ind1.q
2	GGIO1.ST.Ind1.stVal
3	GGIO1.ST.Ind2.q
4	GGIO1.ST.Ind2.stVal
+	↓
255	GGIO1.ST.Ind128.q
256	GGIO1.ST.Ind128.stVal
257	MMXU1.MX.TotW.mag.f
258	MMXU1.MX.TotVAr.mag.f
259	MMXU1.MX.TotVA.mag.f
260	MMXU1.MX.TotPF.mag.f
261	MMXU1.MX.Hz.mag.f
262	MMXU1.MX.PPV.phsAB.cVal.mag.f
263	MMXU1.MX.PPV.phsAB.cVal.ang.f
264	MMXU1.MX.PPV.phsBC.cVal.mag.f
265	MMXU1.MX.PPV.phsBC.cVal.ang.f
266	MMXU1.MX.PPV.phsCA.cVal.mag.f
267	MMXU1.MX.PPV.phsCA.cVal.ang.f
268	MMXU1.MX.PhV.phsA.cVal.mag.f
269	MMXU1.MX.PhV.phsA.cVal.ang.f

Value	GOOSE dataset item
270	MMXU1.MX.PhV.phsB.cVal.mag.f
271	MMXU1.MX.PhV.phsB.cVal.ang.f
272	MMXU1.MX.PhV.phsC.cVal.mag.f
273	MMXU1.MX.PhV.phsC.cVal.ang.f
274	MMXU1.MX.A.phsA.cVal.mag.f
275	MMXU1.MX.A.phsA.cVal.ang.f
276	MMXU1.MX.A.phsB.cVal.mag.f
277	MMXU1.MX.A.phsB.cVal.ang.f
278	MMXU1.MX.A.phsC.cVal.mag.f
279	MMXU1.MX.A.phsC.cVal.ang.f
280	MMXU1.MX.A.neut.cVal.mag.f
281	MMXU1.MX.A.neut.cVal.ang.f
282	MMXU1.MX.W.phsA.cVal.mag.f
283	MMXU1.MX.W.phsB.cVal.mag.f
284	MMXU1.MX.W.phsC.cVal.mag.f
285	MMXU1.MX.VAr.phsA.cVal.mag.f
286	MMXU1.MX.VAr.phsB.cVal.mag.f
287	MMXU1.MX.VAr.phsB.cval.mag.f
	MMXU1.MX.VA.phsA.cVal.mag.f
288	
289	MMXU1.MX.VA.phsB.cVal.mag.f
290	MMXU1.MX.VA.phsC.cVal.mag.f
291	MMXU1.MX.PF.phsA.cVal.mag.f
292	MMXU1.MX.PF.phsB.cVal.mag.f
293	MMXU1.MX.PF.phsC.cVal.mag.f
294	MMXU2.MX.TotW.mag.f
295	MMXU2.MX.TotVAr.mag.f
296	MMXU2.MX.TotVA.mag.f
297	MMXU2.MX.TotPF.mag.f
298	MMXU2.MX.Hz.mag.f
299	MMXU2.MX.PPV.phsAB.cVal.mag.f
300	MMXU2.MX.PPV.phsAB.cVal.ang.f
301	MMXU2.MX.PPV.phsBC.cVal.mag.f
302	MMXU2.MX.PPV.phsBC.cVal.ang.f
303	MMXU2.MX.PPV.phsCA.cVal.mag.f
304	MMXU2.MX.PPV.phsCA.cVal.ang.f
305	MMXU2.MX.PhV.phsA.cVal.mag.f
306	MMXU2.MX.PhV.phsA.cVal.ang.f
307	MMXU2.MX.PhV.phsB.cVal.mag.f
308	MMXU2.MX.PhV.phsB.cVal.ang.f
309	MMXU2.MX.PhV.phsC.cVal.mag.f
310	MMXU2.MX.PhV.phsC.cVal.ang.f
311	MMXU2.MX.A.phsA.cVal.mag.f
312	MMXU2.MX.A.phsA.cVal.ang.f
313	MMXU2.MX.A.phsB.cVal.mag.f
314	MMXU2.MX.A.phsB.cVal.ang.f
315	MMXU2.MX.A.phsC.cVal.mag.f
316	MMXU2.MX.A.phsC.cVal.ang.f
317	MMXU2.MX.A.neut.cVal.mag.f
318	MMXU2.MX.A.neut.cVal.ang.f
319	MMXU2.MX.W.phsA.cVal.mag.f
320	MMXU2.MX.W.phsB.cVal.mag.f
321	MMXU2.MX.W.phsC.cVal.mag.f
322	MMXU2.MX.VAr.phsA.cVal.mag.f

Value	GOOSE dataset item
323	MMXU2.MX.VAr.phsB.cVal.mag.f
324	MMXU2.MX.VAr.phsC.cVal.mag.f
325	MMXU2.MX.VA.phsA.cVal.mag.f
326	MMXU2.MX.VA.phsB.cVal.mag.f
327	MMXU2.MX.VA.phsC.cVal.mag.f
328	MMXU2.MX.PF.phsA.cVal.mag.f
329	MMXU2.MX.PF.phsB.cVal.mag.f
330	MMXU2.MX.PF.phsC.cVal.mag.f
331	MMXU3.MX.TotW.mag.f
332	MMXU3.MX.TotVAr.mag.f
333	MMXU3.MX.TotVA.mag.f
334	MMXU3.MX.TotPF.mag.f
335	MMXU3.MX.Hz.mag.f
336	MMXU3.MX.PPV.phsAB.cVal.mag.f
337	MMXU3.MX.PPV.phsAB.cVal.ang.f
338	MMXU3.MX.PPV.phsBC.cVal.mag.f
339	MMXU3.MX.PPV.phsBC.cVal.ang.f
340	MMXU3.MX.PPV.phsCA.cVal.mag.f
341	MMXU3.MX.PPV.phsCA.cVal.ang.f
342	MMXU3.MX.PhV.phsA.cVal.mag.f
343	MMXU3.MX.PhV.phsA.cVal.ang.f
344	MMXU3.MX.PhV.phsB.cVal.mag.f
345	MMXU3.MX.PhV.phsB.cVal.ang.f
346	MMXU3.MX.PhV.phsC.cVal.mag.f
347	MMXU3.MX.PhV.phsC.cVal.ang.f
348	MMXU3.MX.A.phsA.cVal.mag.f
349	MMXU3.MX.A.phsA.cVal.ang.f
350	MMXU3.MX.A.phsB.cVal.mag.f
351	MMXU3.MX.A.phsB.cVal.ang.f
352	MMXU3.MX.A.phsC.cVal.mag.f
353	MMXU3.MX.A.phsC.cVal.ang.f
354	MMXU3.MX.A.neut.cVal.mag.f
355	MMXU3.MX.A.neut.cVal.ang.f
356	MMXU3.MX.W.phsA.cVal.mag.f
357	MMXU3.MX.W.phsB.cVal.mag.f
358	MMXU3.MX.W.phsC.cVal.mag.f
359	MMXU3.MX.VAr.phsA.cVal.mag.f
360	MMXU3.MX.VAr.phsB.cVal.mag.f
361	MMXU3.MX.VAr.phsC.cVal.mag.f
362	MMXU3.MX.VA.phsA.cVal.mag.f
363	MMXU3.MX.VA.phsB.cVal.mag.f
364	MMXU3.MX.VA.phsC.cVal.mag.f
365	MMXU3.MX.PF.phsA.cVal.mag.f
366	MMXU3.MX.PF.phsB.cVal.mag.f
367	MMXU3.MX.PF.phsC.cVal.mag.f
368	MMXU4.MX.TotW.mag.f
369	MMXU4.MX.TotVAr.mag.f
370	MMXU4.MX.TotVA.mag.f
371	MMXU4.MX.TotPF.mag.f
372	MMXU4.MX.Hz.mag.f
373	MMXU4.MX.PPV.phsAB.cVal.mag.f
374	MMXU4.MX.PPV.phsAB.cVal.ang.f
375	MMXU4.MX.PPV.phsBC.cVal.mag.f
	· · · · · · · · · · · · · · · · · · ·

Value	GOOSE dataset item
376	MMXU4.MX.PPV.phsBC.cVal.ang.f
377	MMXU4.MX.PPV.phsCA.cVal.mag.f
378	MMXU4.MX.PPV.phsCA.cVal.ang.f
379	MMXU4.MX.PhV.phsA.cVal.mag.f
380	MMXU4.MX.PhV.phsA.cVal.ang.f
381	MMXU4.MX.PhV.phsB.cVal.mag.f
382	MMXU4.MX.PhV.phsB.cVal.ang.f
383	MMXU4.MX.PhV.phsC.cVal.mag.f
384	MMXU4.MX.PhV.phsC.cVal.ang.f
385	MMXU4.MX.A.phsA.cVal.mag.f
386	MMXU4.MX.A.phsA.cVal.ang.f
387	MMXU4.MX.A.phsB.cVal.mag.f
388	MMXU4.MX.A.phsB.cVal.ang.f
389	MMXU4.MX.A.phsC.cVal.mag.f
390	MMXU4.MX.A.phsC.cVal.ang.f
391	MMXU4.MX.A.neut.cVal.mag.f
392	MMXU4.MX.A.neut.cVal.ang.f
393	MMXU4.MX.W.phsA.cVal.mag.f
394	MMXU4.MX.W.phsB.cVal.mag.f
395	MMXU4.MX.W.phsC.cVal.mag.f
396	MMXU4.MX.VAr.phsA.cVal.mag.f
397	MMXU4.MX.VAr.phsB.cVal.mag.f
398	MMXU4.MX.VAr.phsC.cVal.mag.f
399	MMXU4.MX.VA.phsA.cVal.mag.f
400	MMXU4.MX.VA.phsB.cVal.mag.f
401	MMXU4.MX.VA.phsC.cVal.mag.f
402	MMXU4.MX.PF.phsA.cVal.mag.f
403	MMXU4.MX.PF.phsB.cVal.mag.f
404	MMXU4.MX.PF.phsC.cVal.mag.f
405	MMXU5.MX.TotW.mag.f
406	MMXU5.MX.TotVAr.mag.f
407	MMXU5.MX.TotVA.mag.f
408	MMXU5.MX.TotPF.mag.f
409	MMXU5.MX.Hz.mag.f
410	MMXU5.MX.PPV.phsAB.cVal.mag.f
411	MMXU5.MX.PPV.phsAB.cVal.ang.f
412	MMXU5.MX.PPV.phsBC.cVal.mag.f
413	MMXU5.MX.PPV.phsBC.cVal.ang.f
414	MMXU5.MX.PPV.phsCA.cVal.mag.f
415	MMXU5.MX.PPV.phsCA.cVal.ang.f
416	MMXU5.MX.PhV.phsA.cVal.mag.f
417	MMXU5.MX.PhV.phsA.cVal.ang.f
418	MMXU5.MX.PhV.phsB.cVal.mag.f
419	MMXU5.MX.PhV.phsB.cVal.ang.f
420	MMXU5.MX.PhV.phsC.cVal.mag.f
421	MMXU5.MX.PhV.phsC.cVal.ang.f
422	MMXU5.MX.A.phsA.cVal.mag.f
423	MMXU5.MX.A.phsA.cVal.ang.f
424	MMXU5.MX.A.phsB.cVal.mag.f
425	MMXU5.MX.A.phsB.cVal.ang.f
426	MMXU5.MX.A.phsC.cVal.mag.f
427	MMXU5.MX.A.phsC.cVal.ang.f
428	MMXU5.MX.A.neut.cVal.mag.f

Value	GOOSE dataset item
429	MMXU5.MX.A.neut.cVal.ang.f
430	MMXU5.MX.W.phsA.cVal.mag.f
431	MMXU5.MX.W.phsB.cVal.mag.f
432	MMXU5.MX.W.phsC.cVal.mag.f
433	MMXU5.MX.VAr.phsA.cVal.mag.f
434	MMXU5.MX.VAr.phsB.cVal.mag.f
435	MMXU5.MX.VAr.phsC.cVal.mag.f
436	MMXU5.MX.VA.phsA.cVal.mag.f
437	MMXU5.MX.VA.phsB.cVal.mag.f
438	MMXU5.MX.VA.phsC.cVal.mag.f
439	MMXU5.MX.PF.phsA.cVal.mag.f
440	MMXU5.MX.PF.phsB.cVal.mag.f
441	MMXU5.MX.PF.phsC.cVal.mag.f
442	MMXU6.MX.TotW.mag.f
443	MMXU6.MX.TotVAr.mag.f
444	MMXU6.MX.TotVA.mag.f
445	MMXU6.MX.TotPF.mag.f
446	MMXU6.MX.Hz.mag.f
447	MMXU6.MX.PPV.phsAB.cVal.mag.f
448	MMXU6.MX.PPV.phsAB.cVal.ang.f
449	MMXU6.MX.PPV.phsBC.cVal.mag.f
450	MMXU6.MX.PPV.phsBC.cVal.ang.f
451	MMXU6.MX.PPV.phsCA.cVal.mag.f
452	MMXU6.MX.PPV.phsCA.cVal.ang.f
453	MMXU6.MX.PhV.phsA.cVal.mag.f
454	MMXU6.MX.PhV.phsA.cVal.ang.f
455	MMXU6.MX.PhV.phsB.cVal.mag.f
456	MMXU6.MX.PhV.phsB.cVal.ang.f
457	MMXU6.MX.PhV.phsC.cVal.mag.f
458	MMXU6.MX.PhV.phsC.cVal.ang.f
459	MMXU6.MX.A.phsA.cVal.mag.f
460	MMXU6.MX.A.phsA.cVal.ang.f
461	MMXU6.MX.A.phsB.cVal.mag.f
462	MMXU6.MX.A.phsB.cVal.ang.f
463	MMXU6.MX.A.phsC.cVal.mag.f
464	MMXU6.MX.A.phsC.cVal.ang.f
465	MMXU6.MX.A.neut.cVal.mag.f
466	MMXU6.MX.A.neut.cVal.ang.f
467	MMXU6.MX.W.phsA.cVal.mag.f
468	MMXU6.MX.W.phsB.cVal.mag.f
469	MMXU6.MX.W.phsC.cVal.mag.f
470	MMXU6.MX.VAr.phsA.cVal.mag.f
471	MMXU6.MX.VAr.phsB.cVal.mag.f
472	MMXU6.MX.VAr.phsC.cVal.mag.f
473	MMXU6.MX.VA.phsA.cVal.mag.f
474	MMXU6.MX.VA.phsB.cVal.mag.f
475	MMXU6.MX.VA.phsC.cVal.mag.f
476	MMXU6.MX.PF.phsA.cVal.mag.f
477	MMXU6.MX.PF.phsB.cVal.mag.f
478	MMXU6.MX.PF.phsC.cVal.mag.f
479	GGIO4.MX.AnIn1.mag.f
480	GGIO4.MX.Anin2.mag.f
481	GGIO4.MX.AnIn3.mag.f

Value	GOOSE dataset item
482	GGIO4.MX.AnIn4.mag.f
483	GGIO4.MX.AnIn5.mag.f
484	GGIO4.MX.AnIn6.mag.f
485	GGIO4.MX.AnIn7.mag.f
486	GGIO4.MX.AnIn8.mag.f
487	GGIO4.MX.AnIn9.mag.f
488	GGIO4.MX.AnIn10.mag.f
489	GGIO4.MX.AnIn11.mag.f
490	GGIO4.MX.AnIn12.mag.f
491	GGIO4.MX.AnIn13.mag.f
492	GGIO4.MX.AnIn14.mag.f
493	GGIO4.MX.AnIn15.mag.f
494	GGIO4.MX.AnIn16.mag.f
495	GGIO4.MX.AnIn17.mag.f
496	GGIO4.MX.AnIn18.mag.f
497	GGIO4.MX.AnIn19.mag.f
498	GGIO4.MX.AnIn20.mag.f
499	GGIO4.MX.AnIn21.mag.f
500	GGIO4.MX.AnIn22.mag.f
501	GGIO4.MX.AnIn23.mag.f
502	GGIO4.MX.AnIn24.mag.f
503	GGIO4.MX.AnIn25.mag.f
504	GGIO4.MX.AnIn26.mag.f
505	GGIO4.MX.AnIn27.mag.f
506	GGIO4.MX.AnIn28.mag.f
507	GGIO4.MX.AnIn29.mag.f
508	GGIO4.MX.AnIn30.mag.f
509	GGIO4.MX.AnIn31.mag.f
510	GGIO4.MX.AnIn32.mag.f
511	GGIO5.ST.UIntln1.q
512	GGIO5.ST.UIntln1.stVal
513	GGIO5.ST.UIntln2.q
514	GGIO5.ST.UIntln2.stVal
515	GGIO5.ST.UIntln3.q
516	GGIO5.ST.UIntln3.stVal
517	GGIO5.ST.UIntln4.q
518	GGIO5.ST.UIntln4.stVal
519	GGIO5.ST.UIntln5.q
520	GGIO5.ST.UIntln5.stVal
521	GGIO5.ST.UIntln6.q
522	GGIO5.ST.UIntln6.stVal
523	GGIO5.ST.UIntln7.q
524	GGIO5.ST.UIntln7.stVal
525	GGIO5.ST.UIntln8.q
526	GGIO5.ST.UIntln8.stVal
527	GGIO5.ST.UIntln9.q
528	GGIO5.ST.UIntln9.stVal
529	GGIO5.ST.UIntln10.q
530	GGIO5.ST.UIntIn10.stVal
531	GGIO5.ST.UIntln11.q
532	GGIO5.ST.UIntIn11.stVal
533	GGIO5.ST.UIntln12.q
534	GGIO5.ST.UIntln12.stVal

Value	GOOSE dataset item
535	GGIO5.ST.UIntIn13.q
536	GGIO5.ST.UIntIn13.stVal
537	GGIO5.ST.UIntIn14.q
538	GGIO5.ST.UIntIn14.stVal
539	GGIO5.ST.UIntIn15.q
540	GGIO5.ST.UIntIn15.stVal
541	GGIO5.ST.UIntIn16.q
542	GGIO5.ST.UIntIn16.stVal

F233
ENUMERATION: CONFIGURABLE GOOSE DATASET ITEMS
FOR RECEPTION

Value	GOOSE dataset item
0	None
1	GGIO3.ST.Ind1.q
2	GGIO3.ST.Ind1.stVal
3	GGIO3.ST.Ind2.q
4	GGIO3.ST.Ind2.stVal
\	\
127	GGIO1.ST.Ind64q
128	GGIO1.ST.Ind64.stVal
129	GGIO3.MX.AnIn1.mag.f
130	GGIO3.MX.AnIn2.mag.f
131	GGIO3.MX.AnIn3.mag.f
132	GGIO3.MX.AnIn4.mag.f
133	GGIO3.MX.AnIn5.mag.f
134	GGIO3.MX.AnIn6.mag.f
135	GGIO3.MX.AnIn7.mag.f
136	GGIO3.MX.AnIn8.mag.f
137	GGIO3.MX.AnIn9.mag.f
138	GGIO3.MX.AnIn10.mag.f
139	GGIO3.MX.AnIn11.mag.f
140	GGIO3.MX.AnIn12.mag.f
141	GGIO3.MX.AnIn13.mag.f
142	GGIO3.MX.AnIn14.mag.f
143	GGIO3.MX.AnIn15.mag.f
144	GGIO3.MX.AnIn16.mag.f
145	GGIO3.MX.AnIn17.mag.f
146	GGIO3.MX.AnIn18.mag.f
147	GGIO3.MX.AnIn19.mag.f
148	GGIO3.MX.AnIn20.mag.f
149	GGIO3.MX.AnIn21.mag.f
150	GGIO3.MX.AnIn22.mag.f
151	GGIO3.MX.AnIn23.mag.f
152	GGIO3.MX.AnIn24.mag.f
153	GGIO3.MX.AnIn25.mag.f
154	GGIO3.MX.AnIn26.mag.f
155	GGIO3.MX.AnIn27.mag.f
156	GGIO3.MX.AnIn28.mag.f
157	GGIO3.MX.AnIn29.mag.f
158	GGIO3.MX.AnIn30.mag.f
159	GGIO3.MX.AnIn31.mag.f

Value	GOOSE dataset item
160	GGIO3.MX.AnIn32.mag.f
161	GGIO3.ST.IndPos1.stVal
162	GGIO3.ST.IndPos2.stVal
163	GGIO3.ST.IndPos3.stVal
164	GGIO3.ST.IndPos4.stVal
165	GGIO3.ST.IndPos5.stVal
166	GGIO3.ST.UIntln1.q
167	GGIO3.ST.UIntIn1.stVal
168	GGIO3.ST.UIntln2.q
169	GGIO3.ST.UIntIn2.stVal
170	GGIO3.ST.UIntln3.q
171	GGIO3.ST.UIntIn3.stVal
172	GGIO3.ST.UIntIn4.q
173	GGIO3.ST.UIntIn4.stVal
174	GGIO3.ST.UIntIn5.q
175	GGIO3.ST.UIntIn5.stVal
176	GGIO3.ST.UIntIn6.q
177	GGIO3.ST.UIntIn6.stVal
178	GGIO3.ST.UIntIn7.q
179	GGIO3.ST.UIntIn7.stVal
180	GGIO3.ST.UIntln8.q
181	GGIO3.ST.UIntIn8.stVal
182	GGIO3.ST.UIntIn9.q
183	GGIO3.ST.UIntIn9.stVal
184	GGIO3.ST.UIntIn10.q
185	GGIO3.ST.UIntIn10.stVal
186	GGIO3.ST.UIntIn11.q
187	GGIO3.ST.UIntIn11.stVal
188	GGIO3.ST.UIntln12.q
189	GGIO3.ST.UIntIn12.stVal
190	GGIO3.ST.UIntln13.q
191	GGIO3.ST.UIntIn13.stVal
192	GGIO3.ST.UIntIn14.q
193	GGIO3.ST.UIntIn14.stVal
194	GGIO3.ST.UIntIn15.q
195	GGIO3.ST.UIntIn15.stVal
196	GGIO3.ST.UIntIn16.q
197	GGIO3.ST.UIntln16.stVal

F234
ENUMERATION: WATTMETRIC GROUND FAULT VOLTAGE

Value	Voltage
0	Calculated VN
1	Measured VX

F235
ENUMERATION: WATTMETRIC GROUND FAULT CURRENT

Value	Current
0	Calculated IN
1	Measured IG

ENUMERATION: WATTMETRIC GRN FLT CURVE

0 = Definite Time, 1 = Inverse, 2 = FlexCurve A, 3 = FlexCurve B, 4 = FlexCurve C, 5 = FlexCurve D

F237

ENUMERATION: REAL TIME CLOCK MONTH

Value	Month
0	January
1	February
2	March
3	April
4	May
5	June
6	July
7	August
8	September
9	October
10	November
11	December

F238

ENUMERATION: REAL TIME CLOCK DAY

Day
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

F239

ENUMERATION: REAL TIME CLOCK DAYLIGHT SAVINGS TIME START DAY INSTANCE

Value	Instance
0	First
1	Second
2	Third
3	Fourth
4	Last

F243

ENUMERATION: FIELD UNIT TYPE

0 = CC-05, 1 = CV-05, 2 = CC-01, 3 = CV-01

F244

ENUMERATION: PROCESS CARD PORT

0 = H4a, 1 = H4b 2 = H3a, 3 = H3b, 4 = H2a, 5 = H2b, 6 = H1a, 7 = H1b

F245

ENUMERATION: TEST MODE FUNCTION

Value	Instance
0	Disabled
1	Isolated
2	Forcible

F246

ENUMERATION: BRICK TRANSDUCER RANGE

Value	Description
0	-55V
1	-11mA
2	01mA
3	01mA
4	05mA
5	010mA
6	020mA
7	420mA
8	potentiometer
9	tap position

F247

ENUMERATION: BRICK AC BANK ORIGIN

Value	Description
0	None
1	U1/AC13
2	U1/AC57
3	U2/AC13
4	U2/AC57
5	U3/AC13
6	U3/AC57
7	U4/AC13
8	U4/AC57
9	U5/AC13
10	U5/AC57
11	U6/AC13
12	U6/AC57
13	U7/AC13
14	U7/AC57
15	U8/AC13
16	U8/AC57

F248 ENUMERATION: BRICK AUX BANK ORIGIN

Value	Description
0	None
1	U1/AC4
2	U1/AC8
3	U2/AC4
4	U2/AC8
5	U3/AC4
6	U3/AC8
7	U4/AC4
8	U4/AC8
9	U5/AC4
10	U5/AC8
11	U6/AC4
12	U6/AC8
13	U7/AC5
14	U7/AC8
15	U8/AC5
16	U8/AC8

F253 ENUMERATION: BRICK TRANSDUCER ORIGIN

Value	Description
0	None
1	U1/DC1
2	U1/DC2
3	U1/DC3
4	U2/DC1
24	U8/DC3

F254 ENUMERATION: INCIPIENT CABLE FAULT MODE

Value	Function
0	Number of Counts
1	Counts per Window

F256 ENUMERATION: BRICK ORIGIN/DESTINATION

Value	Description
0	None
1	U1
2	U2
3	U3
4	U4
5	U5
6	U6
7	U7

Value	Description
8	U8

F259

ENUMERATION: BRICK RTD TYPE

0 = 100 Ohm Nickel, 1 = 120 Ohm Nickel, 2 = 100 Ohm Platinum

F260

ENUMERATION: DATA LOGGER MODE

0 = Continuous, 1 = Trigger

F261

ENUMERATION: BANK REDUNDANCY TYPE

0 = None, 1 = Dependability Biased, 2 = Security Biased

F262

ENUMERATION: BRICK STATUS

0 = Disabled, 1 = OK, 2 = Communications Trouble, 3 = Equipment Mismatch, 4 = Brick Trouble

F270

ENUMERATION: FAULT REPORT VT SUBSTITUTION

Value	Description
0	None
1	I_0
2	V_0

F300

UR_UINT32: FLEXLOGIC BASE TYPE (15-bit type)

The FlexLogic BASE type is 7 bits and is combined with an 8-bit descriptor and 1 bit for protection element to form a 16-bit value. The combined bits are of the form: PTTTTTTDDDDDDDD, where P bit if set, indicates that the FlexLogic type is associated with a protection element state and T represents bits for the BASE type, and D represents bits for the descriptor.

The values in square brackets indicate the base type with P prefix [PTTTTTT] and the values in round brackets indicate the descriptor range. The right most T bit indicates whether the type is an ON or OFF type. There can be a total of 64 types (plus protection elements). There can be a total of 256 descriptors of each type.

- [0] Off (0) this is boolean FALSE value
- [1] On (1) this is boolean TRUE value
- [2] CONTACT INPUTS (1 to 96)
- [3] CONTACT INPUTS OFF (1 to 96)
- [4] VIRTUAL INPUTS (1 to 32)
- [6] VIRTUAL OUTPUTS (1 to 64
- [8] CONTACT OUTPUTS
- [10] CONTACT OUTPUTS VOLTAGE DETECTED (1 to 64)
- [11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1 to 64)
- [12] CONTACT OUTPUTS CURRENT DETECTED (1 to 64)
- [13] CONTACT OUTPUTS CURRENT OFF DETECTED (1 to 64)
- [14] REMOTE INPUTS (1 to 32)
- [16] DIRECT INPUTS (1 to 96)

- [18] REMOTE OUTPUT DNA BIT PAIRS (1 to 32)
- [20] REMOTE OUTPUT UserSt BIT PAIRS (1 to 32)
- [22] REMOTE DEVICE ONLINE (1 to 16)
- [24] MISCELLANEOUS EQUATION
- [26] TELEPROTECTION INPUTS
- [28] INSERT (via keypad only)
- [30] DELETE (via keypad only)
- [32] END
- [34] NOT (1 INPUT)
- [36] 2 INPUT XOR (0)
- [38] LATCH SET/RESET (2 inputs)
- [40] OR (2 to 16 inputs)
- [42] AND (2 to 16 inputs)
- [44] NOR (2 to 16 inputs)
- [46] NAND (2 to 16 inputs)
- [48] TIMER (1 to 32)
- [50] ASSIGN VIRTUAL OUTPUT (1 to 64)
- [52] ONE SHOT
- [54] SELF-TEST ERROR (see F141 for range)
- [56] PLATFORM DIRECT INPUT (1 to 96)
- [58] PLATFORM DIRECT OUTPUT (1 to 96)
- [60] PLATFORM DIRECT DEVICE (1 to 8)
- [62] MISCELLANEOUS EVENTS (see F146 for range)
- [64] PDC NETWORK CONTROL
- [66] PMU RECORDER OUT OF MEMORY
- [68] PMU RECORDER STOPPED

[128 to 255] ELEMENT STATES (see memory map element states section)

F400 UR_UINT16: CT/VT BANK SELECTION

Bitmask	Bank selection
0	Card 1 Contact 1 to 4
1	Card 1 Contact 5 to 8
2	Card 2 Contact 1 to 4
3	Card 2 Contact 5 to 8
4	Card 3 Contact 1 to 4
5	Card 3 Contact 5 to 8

F491

ENUMERATION: ANALOG INPUT MODE

0 = Default Value, 1 = Last Known

F500

UR_UINT16: PACKED BITFIELD

First register indicates input/output state with bits 0 (MSB) to 15 (LSB) corresponding to input/output state 1 to 16. The second register indicates input/output state with bits 0 to 15 corresponding to input/output state 17 to 32 (if required) The third register indicates input/output state with bits 0 to 15 corresponding to input/output state 33 to 48 (if required). The fourth register indicates input/output state with bits 0 to 15 corresponding to input/output state 49 to 64 (if required).

The number of registers required is determined by the specific data item. A bit value of 0 = Off and 1 = On.

F501

UR UINT16: LED STATUS

Low byte of register indicates LED status with bit 0 representing the top LED and bit 7 the bottom LED. A bit value of 1 indicates the LED is on, 0 indicates the LED is off.

F502

BITFIELD: ELEMENT OPERATE STATES

Each bit contains the operate state for an element. See the F124 format code for a list of element IDs. The operate bit for element ID X is bit [X mod 16] in register [X/16].

F515

ENUMERATION ELEMENT INPUT MODE

0 = Signed, 1 = Absolute

F516

ENUMERATION ELEMENT COMPARE MODE

0 = Level, 1 = Delta

F517

ENUMERATION: ELEMENT DIRECTION OPERATION

0 = Over, 1 = Under

F518

ENUMERATION: FLEXELEMENT UNITS

0 = Milliseconds, 1 = Seconds, 2 = Minutes

F519

ENUMERATION: NON-VOLATILE LATCH

0 = Reset-Dominant, 1 = Set-Dominant

F522

ENUMERATION: TRANSDUCER DCMA OUTPUT RANGE

0 = -1 to 1 mA; 1 = 0 to 1 mA; 2 = 4 to 20 mA

F523

ENUMERATION: DNP OBJECTS 20, 22, AND 23 DEFAULT VARIATION

Bitmask	Default variation
0	1
1	2
2	5
3	6

F524 ENUMERATION: DNP OBJECT 21 DEFAULT VARIATION

Bitmask	Default variation
0	1
1	2
2	9
3	10

F525 ENUMERATION: DNP OBJECT 32 DEFAULT VARIATION

Bitmask	Default variation
0	1
1	2
2	3
3	4
4	5
5	7

F530 ENUMERATION: FRONT PANEL INTERFACE KEYPRESS

Valu e	Keypress	
0	None	
1	Menu	
2	Message Up	
3	7	
4	8	
5	9	
6	Help	
7	Message Left	
8	4	
9	5	
10	6	
11	Escape	
12	Message Right	
13	1	
14	2	

Valu e	Keypress
15	3
16	Enter
17	Message Down
18	0
19	Decimal
20	+/-
21	Value Up
22	Value Down
23	Reset
24	User 1
25	User 2
26	User 3
31	User PB 1
32	User PB 2

Valu e	Keypress
33	User PB 3
34	User PB 4
35	User PB 5
36	User PB 6
37	User PB 7
38	User PB 8
39	User PB 9
40	User PB 10
41	User PB 11
42	User PB 12
44	User 4
45	User 5
46	User 6
47	User 7

F531 ENUMERATION: LANGUAGE

0 = English, 1 = French, 2 = Chinese, 3 = Russian, 4 = Turkish, 5 = German

F542

ENUMERATION: PMU TRIGGERING MODE

0 = Automatic Overwrite, 1 = Protected

F543

ENUMERATION: PMU PHASORS

Value	Phasor
0	Off
1	Va
2	Vb
3	Vc
4	Vx
5	la
6	lb
7	lc

Phasor
lg
V_1
V_2
V_0
I_1
I_2
I_0

544

ENUMERATION: PMU RECORDING/REPORTING RATE

Value	Rate
0	1/second
1	2/second
2	4/second
3	5/second
4	10/second
5	12/second
6	15/second

Value	Rate
7	20second
8	25/second
9	30/second
10	50/second
11	60/second
12	100/second
13	120/second

F546

ENUMERATION: PMU REPORTING STYLE

0 = Polar, 1 = Rectangular

F547

ENUMERATION: PMU REPORTING FORMAT

0 = Integer, 1 = Floating

F550

ENUMERATION: RTD INPUT APPLICATION

Enumeration	RTD input application
0	None
1	Stator
2	Bearing
3	Ambient
4	Group 1
5	Group 2

F551 ENUMERATION: RTD TRIP VOTING

Enumeration	RTD trip voting
0	None
1	Group
2	RTD Input 1
3	RTD Input 2
4	RTD Input 3
5	RTD Input 4
6	RTD Input 5
7	RTD Input 6
8	RTD Input 7
9	RTD Input 8
10	RTD Input 9
11	RTD Input 10
12	RTD Input 11
13	RTD Input 12

F552 ENUMERATION: RTD INPUT OPEN

Enumeration	RTD open
0	None
1	Alarm
2	Block

F600 UR_UINT16: FLEXANALOG PARAMETER

Corresponds to the Modbus address of the value used when this parameter is selected. Only certain values may be used as Flex-Analogs (basically all metering quantities used in protection).

F601 ENUMERATION: COM2 PORT USAGE

Enumeration	COM2 port usage
0	RS485
1	RRTD
2	GPM-F
3	RRTD and GPM-F

F605 ENUMERATION: REMOTE DOUBLE-POINT STATUS INPUT STATUS

Enumeration	Remote DPS input status
0	Intermediate
1	Off
2	On
3	Bad

F606 ENUMERATION: REMOTE DOUBLE-POINT STATUS INPUT

Enumeration	Remote double-point status input
0	None
1	Remote input 1
2	Remote input 2
3	Remote input 3
\	\
64	Remote input 64

F611 ENUMERATION: GOOSE RETRANSMISSION SCHEME

Enumeration	Configurable GOOSE retransmission scheme
0	Heartbeat
1	Aggressive
2	Medium
3	Relaxed

F612 UR_UINT16: FLEXINTEGER PARAMETER

This 16-bit value corresponds to the Modbus address of the selected FlexInteger parameter. Only certain values may be used as FlexIntegers.

F615 ENUMERATION: IEC 61850 REPORT DATASET ITEMS

Enumeration	IEC 61850 report dataset items
0	None
1	PDIF1.ST.Str.general
2	PDIF1.ST.Op.general
3	PDIF2.ST.Str.general
4	PDIF2.ST.Op.general
5	PDIF3.ST.Str.general
6	PDIF3.ST.Op.general
7	PDIF4.ST.Str.general
8	PDIF4.ST.Op.general
9	PDIS1.ST.Str.general
10	PDIS1.ST.Op.general
11	PDIS2.ST.Str.general
12	PDIS2.ST.Op.general
13	PDIS3.ST.Str.general
14	PDIS3.ST.Op.general
15	PDIS4.ST.Str.general
16	PDIS4.ST.Op.general
17	PDIS5.ST.Str.general
18	PDIS5.ST.Op.general
19	PDIS6.ST.Str.general
20	PDIS6.ST.Op.general
21	PDIS7.ST.Str.general
22	PDIS7.ST.Op.general

Enumeration	IEC 61850 report dataset items
23	PDIS8.ST.Str.general
24	PDIS8.ST.Op.general
25	PDIS9.ST.Str.general
26	PDIS9.ST.Op.general
27	PDIS10.ST.Str.general
28	PDIS10.ST.Op.general
29	PIOC1.ST.Str.general
30	
31	PIOC1.ST.Op.general PIOC2.ST.Str.general
32	PIOC2.ST.Op.general
33	PIOC3.ST.Str.general
34	
	PIOC3.ST.Op.general
35	PIOC4 ST.Op. general
36	PIOC4.ST.Op.general
37	PIOC5.ST.Str.general
38	PIOC5.ST.Op.general
39	PIOC6.ST.Str.general
40	PIOC6.ST.Op.general
41	PIOC7.ST.Str.general
42	PIOC7.ST.Op.general
43	PIOC8.ST.Str.general
44	PIOC8.ST.Op.general
45	PIOC9.ST.Str.general
46	PIOC9.ST.Op.general
47	PIOC10.ST.Str.general
48	PIOC10.ST.Op.general
49	PIOC11.ST.Str.general
50	PIOC11.ST.Op.general
51	PIOC12.ST.Str.general
52	PIOC12.ST.Op.general
53	PIOC13.ST.Str.general
54	PIOC14 ST Str general
55	PIOC14 ST. On separal
56	PIOC15 ST Str general
57	PIOC15.ST.Str.general
58	PIOC15.ST.Op.general
59	PIOC16.ST.Op.general
60	PIOC17 ST Str general
61 62	PIOC17.ST.Op.general
63	PIOC17.ST.Op.general PIOC18.ST.Str.general
64	PIOC18.ST.Op.general
65	PIOC19.ST.Str.general
66	PIOC19.ST.Op.general
	, ,
67 68	PIOC20.ST.Str.general
69	PIOC21 ST Str general
70	PIOC21 ST On general
70	PIOC22 ST Str general
	PIOC22.ST.On general
72	PIOC23 ST Str general
73 74	PIOC23 ST On general
	PIOC24 ST Str general
75	PIOC24.ST.Str.general

Enumeration	IEC 61850 report dataset items
76	PIOC24.ST.Op.general
77	PIOC25.ST.Str.general
78	PIOC25.ST.Op.general
79	PIOC26.ST.Str.general
80	PIOC26.ST.Op.general
81	PIOC27.ST.Str.general
82	PIOC27.ST.Op.general
83	PIOC28.ST.Str.general
84	PIOC28.ST.Op.general
85	PIOC29.ST.Str.general
86	PIOC29.ST.Op.general
87	PIOC30.ST.Str.general
88	PIOC30.ST.Op.general
89	PIOC31.ST.Str.general
90	PIOC31.ST.Op.general
91	PIOC32.ST.Str.general
92	PIOC32.ST.Op.general
93	PIOC33.ST.Str.general
94	PIOC33.ST.Op.general
95	PIOC34.ST.Str.general
96	PIOC34.ST.Op.general
97	PIOC35.ST.Str.general
98	PIOC35.ST.Op.general
99	PIOC36.ST.Str.general
100	PIOC36.ST.Op.general
101	PIOC37.ST.Str.general
102	PIOC37.ST.Op.general
103	PIOC38.ST.Str.general
104	PIOC38.ST.Op.general
105	PIOC39.ST.Str.general
106	PIOC39.ST.Op.general
107	PIOC40.ST.Str.general
108	PIOC40.ST.Op.general
109	PIOC41.ST.Str.general
110	PIOC41.ST.Op.general
111	PIOC42.ST.Str.general
112	PIOC42.ST.Op.general
113	PIOC43.ST.Str.general
114	PIOC43.ST.Op.general
115	PIOC44.ST.Str.general
116	PIOC44.ST.Op.general
117	PIOC45.ST.Str.general
118	PIOC45.ST.Op.general
119	
	PIOC46 ST On general
120	PIOC45.ST.Op.general
121	PIOC47.ST.Str.general
122	PIOC47.ST.Op.general
123	PIOC48.ST.Str.general
124	PIOC48.ST.Op.general
125	PIOC49.ST.Str.general
126	PIOC49.ST.Op.general
127	PIOC50.ST.Str.general
128	PIOC50.ST.Op.general

Enumeration	IEC 61850 report dataset items
129	PIOC51.ST.Str.general
130	PIOC51.ST.Op.general
131	PIOC52.ST.Str.general
132	PIOC52.ST.Op.general
133	PIOC53.ST.Str.general
134	PIOC53.ST.Op.general
135	PIOC54.ST.Str.general
136	PIOC54.ST.Op.general
137	PIOC55.ST.Str.general
138	PIOC55.ST.Op.general
139	PIOC56.ST.Str.general
140	PIOC56.ST.Op.general
141	PIOC57.ST.Str.general
142	PIOC57.ST.Op.general
143	PIOC58.ST.Str.general
144	PIOC58.ST.Op.general
145	PIOC59.ST.Str.general
146	PIOC59.ST.Op.general
147	PIOC60.ST.Str.general
148	PIOC60.ST.Op.general
149	PIOC61.ST.Str.general
150	PIOC61.ST.Op.general
151	PIOC62.ST.Str.general
152	PIOC62.ST.Op.general
153	PIOC63.ST.Str.general
154	PIOC63.ST.Op.general
155	PIOC64.ST.Str.general
156	PIOC64.ST.Op.general
157	PIOC65.ST.Str.general
158	PIOC65.ST.Op.general
159	PIOC66.ST.Str.general
160	PIOC66.ST.Op.general
161	PIOC67.ST.Str.general
162	PIOC67.ST.Op.general
163	PIOC68.ST.Str.general
164	PIOC68.ST.Op.general
165	PIOC69.ST.Str.general
166	PIOC69.ST.Op.general
167	PIOC70.ST.Str.general
168	PIOC70.ST.Op.general
169	PIOC71.ST.Str.general
170	PIOC71.ST.Op.general
171	PIOC72.ST.Str.general
172	PIOC72.ST.Op.general
173	PTOC1.ST.Str.general
174	PTOC1.ST.Op.general
175	PTOC2.ST.Str.general
176	PTOC2.ST.Op.general
177	PTOC3.ST.Str.general
178	PTOC3.ST.Op.general
179	PTOC4.ST.Str.general
180	PTOC4.ST.Op.general
181	PTOC5.ST.Str.general

Enumeration	IEC 61850 report dataset items
182	PTOC5.ST.Op.general
183	PTOC6.ST.Str.general
184	PTOC6.ST.Op.general
185	PTOC7.ST.Str.general
186	PTOC7.ST.Op.general
187	PTOC8.ST.Str.general
188	PTOC8.ST.Op.general
189	PTOC9.ST.Str.general
190	PTOC9.ST.Op.general
191	PTOC10.ST.Str.general
192	PTOC10.ST.Op.general
193	PTOC11.ST.Str.general
194	PTOC11.ST.Op.general
195	PTOC12.ST.Str.general
196	PTOC12.ST.Op.general
197	PTOC13.ST.Str.general
198	PTOC13.ST.Op.general
199	PTOC14.ST.Str.general
200	PTOC14.ST.Op.general
201	PTOC15.ST.Str.general
202	PTOC15.ST.Op.general
203	PTOC16.ST.Str.general
204	PTOC16.ST.Op.general
205	PTOC17.ST.Str.general
206	PTOC17.ST.Op.general
207	PTOC18.ST.Str.general
208	PTOC18.ST.Op.general
209	PTOC19.ST.Str.general
210	PTOC19.ST.Op.general
211	PTOC20.ST.Str.general
212	PTOC20.ST.Op.general
213	PTOC21.ST.Str.general
214	PTOC21.ST.Op.general
215	PTOC22.ST.Str.general
216	PTOC22.ST.Op.general
217	PTOC23.ST.Str.general
218	PTOC23.ST.Op.general
219	PTOC24.ST.Str.general
220	PTOC24.ST.Op.general
221	PTOV1.ST.Str.general
222	PTOV1.ST.Op.general
223	PTOV2.ST.Str.general
224	PTOV2.ST.Op.general
225	PTOV3.ST.Str.general
226	PTOV3.ST.Op.general
227	PTOV4.ST.Str.general
228	PTOV4.ST.Op.general
229	PTOV5.ST.Str.general
230	PTOVS.ST.Op.general
231	PTOV6.ST.On general
232	PTOV7.ST.Str.gopped
233	PTOV7.ST.On general
234	PTOV7.ST.Op.general

Enumeration	IEC 61850 report dataset items
235	PTOV8.ST.Str.general
236	PTOV8.ST.Op.general
237	PTOV9.ST.Str.general
238	PTOV9.ST.Op.general
239	PTOV10.ST.Str.general
	-
240	PTOV10.ST.Op.general
241	PTRC1.ST.Tr.general
242	PTRC1.ST.Op.general
243	PTRC2.ST.Tr.general
244	PTRC2.ST.Op.general
245	PTRC3.ST.Tr.general
246	PTRC3.ST.Op.general
247	PTRC4.ST.Tr.general
248	PTRC4.ST.Op.general
249	PTRC5.ST.Tr.general
250	PTRC5.ST.Op.general
251	PTRC6.ST.Tr.general
252	PTRC6.ST.Op.general
253	PTUV1.ST.Str.general
254	PTUV1.ST.Op.general
255	PTUV2.ST.Str.general
256	PTUV2.ST.Op.general
257	PTUV3.ST.Str.general
258	PTUV3.ST.Op.general
259	PTUV4.ST.Str.general
260	PTUV4.ST.Op.general
261	PTUV5.ST.Str.general
262	PTUV5.ST.Op.general
263	PTUV6.ST.Str.general
264	PTUV6.ST.Op.general
265	PTUV7.ST.Str.general
266	PTUV7.ST.Op.general
267	PTUV8.ST.Str.general
268	PTUV8.ST.Op.general
269	PTUV9.ST.Str.general
270	PTUV9.ST.Op.general
271	PTUV10.ST.Str.general
272	PTUV10.ST.Op.general
273	PTUV11.ST.Str.general
274	PTUV11.ST.Op.general
275	PTUV12.ST.Str.general
276	PTUV12.ST.Op.general
277	PTUV13.ST.Str.general
278	PTUV13.ST.Op.general
279	, ,
280	RBRF1.ST.OpEx.general RBRF1.ST.OpIn.general
	, ,
281	RBRF2.ST.OpEx.general
282	RBRF2.ST.OpIn.general
283	RBRF3.ST.OpEx.general
284	RBRF3.ST.OpIn.general
285	RBRF4.ST.OpEx.general
286	RBRF4.ST.Opln.general
287	RBRF5.ST.OpEx.general

Enumeration	IEC 61850 report dataset items
288	RBRF5.ST.Opln.general
289	RBRF6.ST.OpEx.general
290	RBRF6.ST.OpIn.general
291	RBRF7.ST.OpEx.general
292	RBRF7.ST.Opln.general
293	RBRF8.ST.OpEx.general
294	RBRF8.ST.OpIn.general
295	RBRF9.ST.OpEx.general
296	RBRF9.ST.OpIn.general
297	RBRF10.ST.OpEx.general
298	RBRF10.ST.Opln.general
299	RBRF11.ST.OpEx.general
300	RBRF11.ST.OpIn.general
301	RBRF12.ST.OpEx.general
302	RBRF12.ST.Opln.general
303	RBRF13.ST.OpEx.general
304	RBRF13.ST.OpIn.general
305	RBRF14.ST.OpEx.general
306	RBRF14.ST.OpIn.general
307	RBRF15.ST.OpEx.general
308	RBRF15.ST.Opln.general
309	RBRF16.ST.OpEx.general
310	RBRF16.ST.OpIn.general
311	RBRF17.ST.OpEx.general
312	RBRF17.ST.OpIn.general
313	RBRF18.ST.OpEx.general
314	RBRF18.ST.OpIn.general
315	RBRF19.ST.OpEx.general
316	RBRF19.ST.Opln.general
317	RBRF20.ST.OpEx.general
318	RBRF20.ST.OpIn.general
319	RBRF21.ST.OpEx.general
320	RBRF21.ST.OpIn.general
321	RBRF22.ST.OpEx.general
322	RBRF22.ST.OpIn.general
323	RBRF23.ST.OpEx.general
324	RBRF23.ST.OpIn.general
325	RBRF24.ST.OpEx.general
326	RBRF24.ST.OpIn.general
327	RFLO1.MX.FltDiskm.mag.f
328	RFLO2.MX.FltDiskm.mag.f
329	RFLO3.MX.FltDiskm.mag.f
330	RFLO4.MX.FltDiskm.mag.f
331	RFLO5.MX.FltDiskm.mag.f
332	RPSB1.ST.Str.general
333	RPSB1.ST.Op.general
334	RPSB1.ST.BlkZn.stVal
335	RREC1.ST.Op.general
336	RREC1.ST.AutoRecSt.stVal
337	RREC2.ST.Op.general
338	RREC2.ST.AutoRecSt.stVal
339	RREC3.ST.Op.general
340	RREC3.ST.AutoRecSt.stVal
J40	TANEGO.G I.Autorecot.stval

Enumeration	IEC 61850 report dataset items
341	RREC4.ST.Op.general
342	RREC4.ST.AutoRecSt.stVal
343	RREC5.ST.Op.general
344	RREC5.ST.AutoRecSt.stVal
345	RREC6.ST.Op.general
346	RREC6.ST.AutoRecSt.stVal
347	CSWI1.ST.Loc.stVal
348	CSWI1.ST.Pos.stVal
349	CSWI2.ST.Loc.stVal
350	CSWI2.ST.Pos.stVal
351	CSWI3.ST.Loc.stVal
352	CSWI3.ST.Pos.stVal
353	CSWI4.ST.Loc.stVal
354	CSWI4.ST.Pos.stVal
355	CSWI5.ST.Loc.stVal
356	CSWI5.ST.Pos.stVal
357	CSWI6.ST.Loc.stVal
358	CSWI6.ST.Pos.stVal
359	CSWI7.ST.Loc.stVal
360	CSWI7.ST.Pos.stVal
361	CSWI8.ST.Loc.stVal
362	CSWI8.ST.Pos.stVal
363	CSWI9.ST.Loc.stVal
364	CSWI9.ST.Pos.stVal
365	CSWI10.ST.Loc.stVal
366	CSWI10.ST.Pos.stVal
367	CSWI11.ST.Loc.stVal
368	CSWI11.ST.Pos.stVal
369	CSWI12.ST.Loc.stVal
370	CSWI12.ST.Pos.stVal
371	CSWI13.ST.Loc.stVal
372	CSWI13.ST.Pos.stVal
373	CSWI14.ST.Loc.stVal
374	CSWI14.ST.Pos.stVal
375	CSWI15.ST.Loc.stVal
376	CSWI15.ST.Pos.stVal
377	CSWI16.ST.Loc.stVal
378	CSWI16.ST.Pos.stVal
379	CSWI17.ST.Loc.stVal
380	CSWI17.ST.Pos.stVal
381	CSWI18.ST.Loc.stVal
382	CSWI18.ST.Pos.stVal
383	CSWI19.ST.Loc.stVal
384	CSWI19.ST.Pos.stVal
385	CSWI20.ST.Loc.stVal
386	CSWI20.ST.Pos.stVal
387	CSWI21.ST.Loc.stVal
388	CSWI21.ST.Pos.stVal
389	CSWI22.ST.Loc.stVal
390	CSWI22.ST.Pos.stVal
391	CSWI23.ST.Loc.stVal
392	CSWI23.ST.Pos.stVal
393	CSWI24.ST.Loc.stVal

Enumeration	IEC 61850 report dataset items
394	CSWI24.ST.Pos.stVal
395	CSWI25.ST.Loc.stVal
396	CSWI25.ST.Pos.stVal
397	CSWI26.ST.Loc.stVal
398	CSWI26.ST.Pos.stVal
399	CSWI27.ST.Loc.stVal
400	CSWI27.ST.Pos.stVal
401	CSWI28.ST.Loc.stVal
402	CSWI28.ST.Pos.stVal
403	CSWI29.ST.Loc.stVal
404	CSWI29.ST.Pos.stVal
405	CSWI30.ST.Loc.stVal
406	CSWI30.ST.Pos.stVal
407	GGIO1.ST.Ind1.stVal
408	GGIO1.ST.Ind2.stVal
409	GGIO1.ST.Ind3.stVal
410	GGIO1.ST.Ind4.stVal
411	GGIO1.ST.Ind5.stVal
412	GGIO1.ST.Ind6.stVal
413	GGIO1.ST.Ind7.stVal
414	GGIO1.ST.Ind8.stVal
415	GGIO1.ST.Ind9.stVal
416	GGIO1.ST.Ind10.stVal
417	GGIO1.ST.Ind11.stVal
418	GGIO1.ST.Ind12.stVal
419	GGIO1.ST.Ind13.stVal
420	GGIO1.ST.Ind14.stVal
421	GGIO1.ST.Ind14.StVal
422	GGIO1.ST.Ind16.stVal
423	GGIO1.ST.Ind17.stVal
424	GGIO1.ST.Ind18.stVal
425	GGIO1.ST.Ind19.stVal
426	GGIO1.ST.Ind20.stVal
427	GGIO1.ST.Ind21.stVal
428	GGIO1.ST.Ind22.stVal
429	GGIO1.ST.Ind23.stVal
430	GGIO1.ST.Ind24.stVal
431	GGIO1.ST.Ind25.stVal
432	GGIO1.ST.Ind26.stVal
433	GGIO1.ST.Ind27.stVal
434	GGIO1.ST.Ind28.stVal
435	GGIO1.ST.Ind29.stVal
436	GGIO1.ST.Ind30.stVal
437	GGIO1.ST.Ind31.stVal
438	GGIO1.ST.Ind31.stVal
439	GGIO1.ST.InidSz.stVal
440	GGIO1.ST.Ind33.stVal
441	GGIO1.ST.Inid34.stVal
441	GGIO1.ST.Inidso.stVal
442	GGIO1.ST.InidS6.StVal
444	GGIO1.ST.Ind38.stVal
445	GGIO1.ST.Ind39.stVal
446	GGIO1.ST.Ind40.stVal

Enumeration	IEC 61850 report dataset items
447	GGIO1.ST.Ind41.stVal
448	GGIO1.ST.Ind42.stVal
449	GGIO1.ST.Ind43.stVal
450	GGIO1.ST.Ind44.stVal
451	GGIO1.ST.Ind45.stVal
452	GGIO1.ST.Ind46.stVal
453	GGIO1.ST.Ind47.stVal
454	GGIO1.ST.Ind48.stVal
455	GGIO1.ST.Ind49.stVal
456	GGIO1.ST.Ind50.stVal
457	GGIO1.ST.Ind51.stVal
458	GGIO1.ST.Ind52.stVal
459	GGIO1.ST.Ind53.stVal
460	GGIO1.ST.Ind54.stVal
461	GGIO1.ST.Ind55.stVal
462	GGIO1.ST.Ind56.stVal
463	GGIO1.ST.Ind57.stVal
464	GGIO1.ST.Ind58.stVal
465	GGIO1.ST.Ind59.stVal
466	GGIO1.ST.Ind60.stVal
467	GGIO1.ST.Ind61.stVal
468	GGIO1.ST.Ind62.stVal
469	GGIO1.ST.Ind63.stVal
470	GGIO1.ST.Ind64.stVal
471	GGIO1.ST.Ind65.stVal
472	GGIO1.ST.Ind66.stVal
473	GGIO1.ST.Ind67.stVal
474	GGIO1.ST.Ind68.stVal
475	GGIO1.ST.Ind69.stVal
476	GGIO1.ST.Ind70.stVal
477	GGIO1.ST.Ind71.stVal
478	GGIO1.ST.Ind72.stVal
479	GGIO1.ST.Ind73.stVal
480	GGIO1.ST.Ind74.stVal
481	GGIO1.ST.Ind75.stVal
482	GGIO1.ST.Ind76.stVal
483	GGIO1.ST.Ind77.stVal
484	GGIO1.ST.Ind78.stVal
485	GGIO1.ST.Ind79.stVal
486	GGIO1.ST.Ind80.stVal
487	GGIO1.ST.Ind81.stVal
488	GGIO1.ST.Ind82.stVal
489	GGIO1.ST.Ind83.stVal
490	GGIO1.ST.Ind84.stVal
491	GGIO1.ST.Ind85.stVal
492	GGIO1.ST.Ind86.stVal
493	GGIO1.ST.Ind87.stVal
494	GGIO1.ST.Ind88.stVal
495	GGIO1.ST.Ind89.stVal
496	GGIO1.ST.Ind90.stVal
497	GGIO1.ST.Ind91.stVal
498	GGIO1.ST.Ind92.stVal
499	GGIO1.ST.Ind93.stVal

Enumeration	IEC 61850 report dataset items
500	GGIO1.ST.Ind94.stVal
501	GGIO1.ST.Ind95.stVal
502	GGIO1.ST.Ind96.stVal
503	GGIO1.ST.Ind97.stVal
504	GGIO1.ST.Ind98.stVal
505	GGIO1.ST.Ind99.stVal
506	GGIO1.ST.Ind100.stVal
507	GGIO1.ST.Ind101.stVal
508	GGIO1.ST.Ind102.stVal
509	GGIO1.ST.Ind103.stVal
510	GGIO1.ST.Ind104.stVal
511	GGIO1.ST.Ind105.stVal
512	GGIO1.ST.Ind106.stVal
513	GGIO1.ST.Ind107.stVal
514	GGIO1.ST.Ind108.stVal
515	GGIO1.ST.Ind109.stVal
516	GGIO1.ST.Ind110.stVal
517	GGIO1.ST.Ind111.stVal
518	GGIO1.ST.Ind112.stVal
519	GGIO1.ST.Ind113.stVal
520	GGIO1.ST.Ind114.stVal
521	GGIO1.ST.Ind115.stVal
522	GGIO1.ST.Ind116.stVal
523	GGIO1.ST.Ind117.stVal
524	GGIO1.ST.Ind118.stVal
525	GGIO1.ST.Ind119.stVal
526	GGIO1.ST.Ind120.stVal
527	GGIO1.ST.Ind121.stVal
528	GGIO1.ST.Ind122.stVal
529	GGIO1.ST.Ind123.stVal
530	GGIO1.ST.Ind124.stVal
531	GGIO1.ST.Ind125.stVal
532	GGIO1.ST.Ind126.stVal
533	GGIO1.ST.Ind127.stVal
534 535	GGIO1.ST.Ind128.stVal
	MMXU1.MX.TotW.mag.f
536	MMXU1.MX.TotVAr.mag.f
537 538	MMXU1.MX.TotVA.mag.f MMXU1.MX.TotPF.mag.f
539	MMXU1.MX.Hz.mag.f
540	MMXU1.MX.PPV.phsAB.cVal.mag.f
541	MMXU1.MX.PPV.phsAB.cVal.ang.f
542	MMXU1.MX.PPV.phsBC.cVal.mag.f
543	MMXU1.MX.PPV.phsBC.cVal.ang.f
544	MMXU1.MX.PPV.phsCA.cVal.mag.f
545	MMXU1.MX.PPV.phsCA.cVal.ang.f
546	MMXU1.MX.PhV.phsA.cVal.mag.f
547	MMXU1.MX.PhV.phsA.cVal.ang.f
548	MMXU1.MX.PhV.phsB.cVal.mag.f
549	MMXU1.MX.PhV.phsB.cVal.ang.f
550	MMXU1.MX.PhV.phsC.cVal.mag.f
551	MMXU1.MX.PhV.phsC.cVal.ang.f
552	MMXU1.MX.A.phsA.cVal.mag.f

Enumeration	IEC 61850 report dataset items
553	MMXU1.MX.A.phsA.cVal.ang.f
554	MMXU1.MX.A.phsB.cVal.mag.f
555	MMXU1.MX.A.phsB.cVal.ang.f
556	MMXU1.MX.A.phsC.cVal.mag.f
557	MMXU1.MX.A.phsC.cVal.ang.f
558	MMXU1.MX.A.neut.cVal.mag.f
559	MMXU1.MX.A.neut.cVal.ang.f
560	MMXU1.MX.W.phsA.cVal.mag.f
561	MMXU1.MX.W.phsB.cVal.mag.f
562	MMXU1.MX.W.phsC.cVal.mag.f
563	MMXU1.MX.VAr.phsA.cVal.mag.f
564	MMXU1.MX.VAr.phsB.cVal.mag.f
565	MMXU1.MX.VAr.phsC.cVal.mag.f
566	MMXU1.MX.VA.phsA.cVal.mag.f
567	MMXU1.MX.VA.phsB.cVal.mag.f
568	MMXU1.MX.VA.phsC.cVal.mag.f
569	MMXU1.MX.PF.phsA.cVal.mag.f
570	MMXU1.MX.PF.phsB.cVal.mag.f
571	MMXU1.MX.PF.phsC.cVal.mag.f
572	MMXU2.MX.TotW.mag.f
573	MMXU2.MX.TotVAr.mag.f
574	MMXU2.MX.TotVA.mag.f
575	MMXU2.MX.TotPF.mag.f
576	MMXU2.MX.Hz.mag.f
577	MMXU2.MX.PPV.phsAB.cVal.mag.f
578	MMXU2.MX.PPV.phsAB.cVal.ang.f
579	MMXU2.MX.PPV.phsBC.cVal.mag.f
580	MMXU2.MX.PPV.phsBC.cVal.ang.f
581	MMXU2.MX.PPV.phsCA.cVal.mag.f
582	MMXU2.MX.PPV.phsCA.cVal.ang.f
583	MMXU2.MX.PhV.phsA.cVal.mag.f
584	MMXU2.MX.PhV.phsA.cVal.ang.f
585	MMXU2.MX.PhV.phsB.cVal.mag.f
586	MMXU2.MX.PhV.phsB.cVal.ang.f
587	MMXU2.MX.PhV.phsC.cVal.mag.f
588	MMXU2.MX.PhV.phsC.cVal.ang.f
589	MMXU2.MX.A.phsA.cVal.mag.f
590	MMXU2.MX.A.phsA.cVal.ang.f
591	MMXU2.MX.A.phsB.cVal.mag.f
592	MMXU2.MX.A.phsB.cVal.ang.f
593	MMXU2.MX.A.phsC.cVal.mag.f
594	MMXU2.MX.A.phsC.cVal.ang.f
595	MMXU2.MX.A.neut.cVal.mag.f
596	MMXU2.MX.A.neut.cVal.ang.f
597	MMXU2.MX.W.phsA.cVal.mag.f
598	MMXU2.MX.W.phsB.cVal.mag.f
599	MMXU2.MX.W.phsC.cVal.mag.f
600	MMXU2.MX.VAr.phsA.cVal.mag.f
601	MMXU2.MX.VAr.phsB.cVal.mag.f
602	MMXU2.MX.VAr.phsC.cVal.mag.f
603	MMXU2.MX.VA.phsA.cVal.mag.f
604	MMXU2.MX.VA.phsB.cVal.mag.f
605	MMXU2.MX.VA.phsC.cVal.mag.f

Enumeration	IEC 61850 report dataset items
606	MMXU2.MX.PF.phsA.cVal.mag.f
607	MMXU2.MX.PF.phsB.cVal.mag.f
608	MMXU2.MX.PF.phsC.cVal.mag.f
609	MMXU3.MX.TotW.mag.f
610	MMXU3.MX.TotVAr.mag.f
611	MMXU3.MX.TotVA.mag.f
612	MMXU3.MX.TotPF.mag.f
613	MMXU3.MX.Hz.mag.f
614	MMXU3.MX.PPV.phsAB.cVal.mag.f
615	MMXU3.MX.PPV.phsAB.cVal.ang.f
616	MMXU3.MX.PPV.phsBC.cVal.mag.f
617	MMXU3.MX.PPV.phsBC.cVal.ang.f
618	MMXU3.MX.PPV.phsCA.cVal.mag.f
619	MMXU3.MX.PPV.phsCA.cVal.ang.f
620	MMXU3.MX.PhV.phsA.cVal.mag.f
621	MMXU3.MX.PhV.phsA.cVal.ang.f
622	MMXU3.MX.PhV.phsB.cVal.mag.f
623	MMXU3.MX.PhV.phsB.cVal.ang.f
624	MMXU3.MX.PhV.phsC.cVal.mag.f
625	MMXU3.MX.PhV.phsC.cVal.ang.f
626	MMXU3.MX.A.phsA.cVal.mag.f
627	MMXU3.MX.A.phsA.cVal.ang.f
628	MMXU3.MX.A.phsB.cVal.mag.f
629	MMXU3.MX.A.phsB.cVal.ang.f
630	MMXU3.MX.A.phsC.cVal.mag.f
631	MMXU3.MX.A.phsC.cVal.ang.f
632	MMXU3.MX.A.neut.cVal.mag.f
633	MMXU3.MX.A.neut.cVal.ang.f
634	MMXU3.MX.W.phsA.cVal.mag.f
635	MMXU3.MX.W.phsB.cVal.mag.f
636	MMXU3.MX.W.phsC.cVal.mag.f
637	MMXU3.MX.VAr.phsA.cVal.mag.f
638	MMXU3.MX.VAr.phsB.cVal.mag.f
639	MMXU3.MX.VAr.phsC.cVal.mag.f
640	MMXU3.MX.VA.phsA.cVal.mag.f
641	MMXU3.MX.VA.phsB.cVal.mag.f
642	MMXU3.MX.VA.phsC.cVal.mag.f
643	MMXU3.MX.PF.phsA.cVal.mag.f
644	MMXU3.MX.PF.phsB.cVal.mag.f
645	MMXU3.MX.PF.phsC.cVal.mag.f
646	MMXU4.MX.TotW.mag.f
647	MMXU4.MX.TotVAr.mag.f
648	MMXU4.MX.TotVA.mag.f
649	MMXU4.MX.TotPF.mag.f
650	MMXU4.MX.Hz.mag.f
651	MMXU4.MX.PPV.phsAB.cVal.mag.f
652	MMXU4.MX.PPV.phsAB.cVal.ang.f
653	MMXU4.MX.PPV.phsBC.cVal.mag.f
654	MMXU4.MX.PPV.phsBC.cVal.ang.f
655	MMXU4.MX.PPV.phsCA.cVal.mag.f
656	MMXU4.MX.PPV.phsCA.cVal.ang.f
657	MMXU4.MX.PhV.phsA.cVal.mag.f
658	MMXU4.MX.PhV.phsA.cVal.ang.f

Enumeration	IEC 61850 report dataset items
659	MMXU4.MX.PhV.phsB.cVal.mag.f
660	MMXU4.MX.PhV.phsB.cVal.ang.f
661	MMXU4.MX.PhV.phsC.cVal.mag.f
662	MMXU4.MX.PhV.phsC.cVal.ang.f
663	MMXU4.MX.A.phsA.cVal.mag.f
664	MMXU4.MX.A.phsA.cVal.ang.f
665	MMXU4.MX.A.phsB.cVal.mag.f
666	MMXU4.MX.A.phsB.cVal.ang.f
667	MMXU4.MX.A.phsC.cVal.mag.f
668	MMXU4.MX.A.phsC.cVal.ang.f
669	MMXU4.MX.A.neut.cVal.mag.f
670	MMXU4.MX.A.neut.cVal.ang.f
671	MMXU4.MX.W.phsA.cVal.mag.f
672	MMXU4.MX.W.phsB.cVal.mag.f
673	MMXU4.MX.W.phsC.cVal.mag.f
674	MMXU4.MX.VAr.phsA.cVal.mag.f
675	MMXU4.MX.VAr.phsB.cVal.mag.f
676	MMXU4.MX.VAr.phsC.cVal.mag.f
677	MMXU4.MX.VA.phsA.cVal.mag.f
678	MMXU4.MX.VA.phsB.cVal.mag.f
679	MMXU4.MX.VA.phsC.cVal.mag.f
	· · ·
680	MMXU4.MX.PF.phsA.cVal.mag.f
681	MMXU4.MX.PF.phsB.cVal.mag.f
682	MMXU4.MX.PF.phsC.cVal.mag.f
683	MMXU5.MX.TotW.mag.f
684	MMXU5.MX.TotVAr.mag.f
685	MMXU5.MX.TotVA.mag.f
686	MMXU5.MX.TotPF.mag.f
687	MMXU5.MX.Hz.mag.f
688	MMXU5.MX.PPV.phsAB.cVal.mag.f
689	MMXU5.MX.PPV.phsAB.cVal.ang.f
690	MMXU5.MX.PPV.phsBC.cVal.mag.f
691	MMXU5.MX.PPV.phsBC.cVal.ang.f
692	MMXU5.MX.PPV.phsCA.cVal.mag.f
693	MMXU5.MX.PPV.phsCA.cVal.ang.f
694	MMXU5.MX.PhV.phsA.cVal.mag.f
695	MMXU5.MX.PhV.phsA.cVal.ang.f MMXU5.MX.PhV.phsB.cVal.maq.f
696	1 0
697	MMXU5.MX.PhV.phsC.cVal.ang.f
698	MMXU5.MX.PhV.phsC.cVal.mag.f
699	MMXU5.MX.PhV.phsC.cVal.ang.f
700	MMXU5.MX.A.phsA.cVal.ang.f
701	MMXU5.MX.A.phsA.cVal.ang.f
702	MMXU5.MX.A.phsB.cVal.mag.f
703	MMXU5.MX.A.phsB.cVal.ang.f
704	MMXU5.MX.A.phsC.cVal.mag.f
705	MMXU5.MX.A.phsC.cVal.ang.f
706	MMXU5.MX.A.neut.cVal.mag.f
707	MMXU5.MX.A.neut.cVal.ang.f
708	MMXU5.MX.W.phsA.cVal.mag.f
709	MMXU5.MX.W.phsB.cVal.mag.f
710	MMXU5.MX.W.phsC.cVal.mag.f
711	MMXU5.MX.VAr.phsA.cVal.mag.f

Enumeration	IEC 61850 report dataset items
712	MMXU5.MX.VAr.phsB.cVal.mag.f
713	MMXU5.MX.VAr.phsC.cVal.mag.f
714	MMXU5.MX.VA.phsA.cVal.mag.f
715	MMXU5.MX.VA.phsB.cVal.mag.f
716	MMXU5.MX.VA.phsC.cVal.mag.f
717	MMXU5.MX.PF.phsA.cVal.mag.f
718	MMXU5.MX.PF.phsB.cVal.mag.f
719	MMXU5.MX.PF.phsC.cVal.mag.f
720	MMXU6.MX.TotW.mag.f
721	MMXU6.MX.TotVAr.mag.f
722	MMXU6.MX.TotVA.mag.f
723	MMXU6.MX.TotPF.mag.f
724	MMXU6.MX.Hz.mag.f
725	MMXU6.MX.PPV.phsAB.cVal.mag.f
726	MMXU6.MX.PPV.phsAB.cVal.ang.f
727	MMXU6.MX.PPV.phsBC.cVal.mag.f
728	MMXU6.MX.PPV.phsBC.cVal.ang.f
729	MMXU6.MX.PPV.phsCA.cVal.mag.f
730	MMXU6.MX.PPV.phsCA.cVal.ang.f
731	MMXU6.MX.PhV.phsA.cVal.mag.f
732	MMXU6.MX.PhV.phsA.cVal.ang.f
733	MMXU6.MX.PhV.phsB.cVal.mag.f
734	MMXU6.MX.PhV.phsB.cVal.ang.f
735	MMXU6.MX.PhV.phsC.cVal.mag.f
736	MMXU6.MX.PhV.phsC.cVal.ang.f
737	MMXU6.MX.A.phsA.cVal.mag.f
738	MMXU6.MX.A.phsA.cVal.ang.f
739	MMXU6.MX.A.phsB.cVal.mag.f
740	MMXU6.MX.A.phsB.cVal.ang.f
741	MMXU6.MX.A.phsC.cVal.mag.f
742	MMXU6.MX.A.phsC.cVal.ang.f
743	MMXU6.MX.A.neut.cVal.mag.f
744	MMXU6.MX.A.neut.cVal.ang.f
745	MMXU6.MX.W.phsA.cVal.mag.f
746	MMXU6.MX.W.phsB.cVal.mag.f
747	MMXU6.MX.W.phsC.cVal.mag.f
748	MMXU6.MX.VAr.phsA.cVal.mag.f
749	MMXU6.MX.VAr.phsB.cVal.mag.f
750	MMXU6.MX.VAr.phsC.cVal.mag.f
751	MMXU6.MX.VA.phsA.cVal.maq.f
752	MMXU6.MX.VA.phsB.cVal.mag.f
753	MMXU6.MX.VA.phsC.cVal.mag.f
754	MMXU6.MX.PF.phsA.cVal.mag.f
755	MMXU6.MX.PF.phsB.cVal.mag.f
756	MMXU6.MX.PF.phsC.cVal.mag.f
757	GGIO4.MX.AnIn1.mag.f
758	GGIO4.MX.AnIn2.mag.f
759	GGIO4.MX.AnIn3.mag.f
760	GGIO4.MX.AnIn4.mag.f
761	GGIO4.MX.AnIn5.mag.f
762	GGIO4.MX.AnIn6.mag.f
763	GGIO4.MX.Anino.mag.f
764	GGIO4.MX.Anin7.mag.f
704	COTOTANIZA MIMOLINAYA

Enumeration	IEC 61850 report dataset items
765	GGIO4.MX.AnIn9.mag.f
766	GGIO4.MX.AnIn10.mag.f
767	GGIO4.MX.AnIn11.mag.f
768	GGIO4.MX.AnIn12.mag.f
769	GGIO4.MX.AnIn13.mag.f
770	GGIO4.MX.AnIn14.mag.f
771	GGIO4.MX.AnIn15.mag.f
772	GGIO4.MX.AnIn16.maq.f
773	GGIO4.MX.AnIn17.mag.f
774	GGIO4.MX.AnIn18.mag.f
775	GGIO4.MX.AnIn19.mag.f
776	GGIO4.MX.AnIn20.mag.f
777	GGIO4.MX.AnIn21.mag.f
778	GGIO4.MX.AnIn22.mag.f
779	GGIO4.MX.AnIn23.mag.f
780	GGIO4.MX.Anin25.mag.f
781	GGIO4.MX.Anin24.mag.f
782	GGIO4.MX.Anin26.mag.f
783	GGIO4.MX.Anin20.mag.f
784	GGIO4.MX.Anin27.mag.r
785	GGIO4.MX.Anin28.mag.f
	<u> </u>
786	GGIO4.MX.AnIn30.mag.f
787	GGIO4.MX.AnIn31.mag.f
788	GGIO4.MX.AnIn32.mag.f
789	XSWI1.ST.Loc.stVal
790	XSWI1.ST.Pos.stVal
791	XSWI2.ST.Loc.stVal
792	XSWI2.ST.Pos.stVal
793	XSWI3.ST.Loc.stVal
794	XSWI3.ST.Pos.stVal
795	XSWI4.ST.Loc.stVal
796	XSWI4.ST.Pos.stVal
797	XSWI5.ST.Loc.stVal
798	XSWI5.ST.Pos.stVal
799	XSWI6.ST.Loc.stVal
800	XSWI6.ST.Pos.stVal
801	XSWI7.ST.Loc.stVal
802	XSWI7.ST.Pos.stVal
803	XSWI8.ST.Loc.stVal
804	XSWI8.ST.Pos.stVal
805	XSWI9.ST.Loc.stVal
806	XSWI9.ST.Pos.stVal
807	XSWI10.ST.Loc.stVal
808	XSWI10.ST.Pos.stVal
809	XSWI11.ST.Loc.stVal
810	XSWI11.ST.Pos.stVal
811	XSWI12.ST.Loc.stVal
812	XSWI12.ST.Pos.stVal
813	XSWI13.ST.Loc.stVal
814	XSWI13.ST.Pos.stVal
815	XSWI14.ST.Loc.stVal
816	XSWI14.ST.Pos.stVal
817	XSWI15.ST.Loc.stVal
t	•

Enumeration	IEC 61850 report dataset items
818	XSWI15.ST.Pos.stVal
819	XSWI16.ST.Loc.stVal
820	XSWI16.ST.Pos.stVal
821	XSWI17.ST.Loc.stVal
822	XSWI17.ST.Pos.stVal
823	XSWI18.ST.Loc.stVal
824	XSWI18.ST.Pos.stVal
825	XSWI19.ST.Loc.stVal
826	XSWI19.ST.Pos.stVal
827	XSWI20.ST.Loc.stVal
828	XSWI20.ST.Pos.stVal
829	XSWI21.ST.Loc.stVal
830	XSWI21.ST.Pos.stVal
831	XSWI22.ST.Loc.stVal
832	XSWI22.ST.Pos.stVal
833	XSWI23.ST.Loc.stVal
834	XSWI23.ST.Pos.stVal
835	XSWI24.ST.Loc.stVal
836	XSWI24.ST.Pos.stVal
837	XCBR1.ST.Loc.stVal
838	XCBR1.ST.Pos.stVal
839	XCBR2.ST.Loc.stVal
840	XCBR2.ST.Pos.stVal
841	XCBR3.ST.Loc.stVal
842	XCBR3.ST.Pos.stVal
843	XCBR4.ST.Loc.stVal
844	XCBR4.ST.Pos.stVal
845	XCBR5.ST.Loc.stVal
846	XCBR5.ST.Pos.stVal
847	XCBR6.ST.Loc.stVal
848	XCBR6.ST.Pos.stVal

F616 ENUMERATION: IEC 61850 GOOSE DATASET ITEMS

Enumeration	GOOSE dataset items
0	None
1	GGIO1.ST.Ind1.q
2	GGIO1.ST.Ind1.stVal
3	GGIO1.ST.Ind2.q
4	GGIO1.ST.Ind2.stVal
5	GGIO1.ST.Ind3.q
6	GGIO1.ST.Ind3.stVal
7	GGIO1.ST.Ind4.q
8	GGIO1.ST.Ind4.stVal
9	GGIO1.ST.Ind5.q
10	GGIO1.ST.Ind5.stVal
11	GGIO1.ST.Ind6.q
12	GGIO1.ST.Ind6.stVal
13	GGIO1.ST.Ind7.q
14	GGIO1.ST.Ind7.stVal
15	GGIO1.ST.Ind8.q
16	GGIO1.ST.Ind8.stVal

Enumoration	GOOSE dataset items
Enumeration 17	GGIO1.ST.Ind9.q
	'
18	GGIO1.ST.Ind9.stVal
19	GGIO1.ST.Ind10.q
20	GGIO1.ST.Ind10.stVal
21	GGIO1.ST.Ind11.q
22	GGIO1.ST.Ind11.stVal
23	GGIO1.ST.Ind12.q
24	GGIO1.ST.Ind12.stVal
25	GGIO1.ST.Ind13.q
26	GGIO1.ST.Ind13.stVal
27	GGIO1.ST.Ind14.q
28	GGIO1.ST.Ind14.stVal
29	GGIO1.ST.Ind15.q
30	GGIO1.ST.Ind15.stVal
31	GGIO1.ST.Ind16.q
32	GGIO1.ST.Ind16.stVal
33	GGIO1.ST.Ind17.q
34	GGIO1.ST.Ind17.stVal
35	GGIO1.ST.Ind18.q
36	GGIO1.ST.Ind18.stVal
37	GGIO1.ST.Ind19.q
38	GGIO1.ST.Ind19.stVal
39	GGIO1.ST.Ind20.q
40	GGIO1.ST.Ind20.stVal
41	GGIO1.ST.Ind21.q
42	GGIO1.ST.Ind21.stVal
43	GGIO1.ST.Ind22.q
44	GGIO1.ST.Ind22.stVal
45	GGIO1.ST.Ind23.q
46	GGIO1.ST.Ind23.stVal
47	GGIO1.ST.Ind24.q
48	GGIO1.ST.Ind24.stVal
49	GGIO1.ST.Ind25.q
50	GGIO1.ST.Ind25.stVal
51	GGIO1.ST.Ind26.q
52	GGIO1.ST.Ind26.stVal
53	GGIO1.ST.Ind27.q
54	GGIO1.ST.Ind27.stVal
55	GGIO1.ST.Ind28.q
56	GGIO1.ST.Ind28.stVal
57	GGIO1.ST.Ind29.q
58	GGIO1.ST.Ind29.stVal
59	GGIO1.ST.Ind30.q
60	GGIO1.ST.Ind30.stVal
61	GGIO1.ST.Ind31.q
62	GGIO1.ST.Ind31.stVal
63	GGIO1.ST.Ind32.q
64	GGIO1.ST.Ind32.stVal
65	GGIO1.ST.Ind33.q
66	GGIO1.ST.Ind33.stVal
67	GGIO1.ST.Ind34.q
68	GGIO1.ST.Ind34.stVal
69	GGIO1.ST.Ind35.q

70 GGIO1.ST.Ind35.stVal 71 GGIO1.ST.Ind36.q
71 GGIO1.ST.Ind36.q
72 GGIO1.ST.Ind36.stVal
73 GGIO1.ST.Ind37.q
74 GGIO1.ST.Ind37.stVal
75 GGIO1.ST.Ind38.q
76 GGIO1.ST.Ind38.stVal
77 GGIO1.ST.Ind39.q
78 GGIO1.ST.Ind39.stVal
79 GGIO1.ST.Ind40.q
80 GGIO1.ST.Ind40.stVal
81 GGIO1.ST.Ind41.q
82 GGIO1.ST.Ind41.stVal
83 GGIO1.ST.Ind42.q
84 GGIO1.ST.Ind42.stVal
85 GGIO1.ST.Ind43.q
86 GGIO1.ST.Ind43.stVal
87 GGIO1.ST.Ind44.q
88 GGIO1.ST.Ind44.stVal
89 GGIO1.ST.Ind45.q
90 GGIO1.ST.Ind45.stVal
91 GGIO1.ST.Ind46.q
92 GGIO1.ST.Ind46.stVal
93 GGIO1.ST.Ind47.q
94 GGIO1.ST.Ind47.stVal
95 GGIO1.ST.Ind48.q
96 GGIO1.ST.Ind48.stVal
97 GGIO1.ST.Ind49.q
98 GGIO1.ST.Ind49.stVal
99 GGIO1.ST.Ind50.q
100 GGIO1.ST.Ind50.stVal
101 GGIO1.ST.Ind51.q
102 GGIO1.ST.Ind51.stVal
103 GGIO1.ST.Ind52.q
104 GGIO1.ST.Ind52.stVal
105 GGIO1.ST.Ind53.q
106 GGIO1.ST.Ind53.stVal
107 GGIO1.ST.Ind54.q
108 GGIO1.ST.Ind54.stVal
109 GGIO1.ST.Ind55.q
110 GGIO1.ST.Ind55.stVal
111 GGIO1.ST.Ind56.q
112 GGIO1.ST.Ind56.stVal
113 GGIO1.ST.Ind57.q
114 GGIO1.ST.Ind57.stVal
115 GGIO1.ST.Ind58.q
116 GGIO1.ST.Ind58.stVal
117 GGIO1.ST.Ind59.q
118 GGIO1.ST.Ind59.stVal
119 GGIO1.ST.Ind60.q
120 GGIO1.ST.Ind60.stVal
121 GGIO1.ST.Ind61.q
122 GGIO1.ST.Ind61.stVal

Enumeration	GOOSE dataset items
123	GGIO1.ST.Ind62.q
124	GGIO1.ST.Ind62.stVal
125	GGIO1.ST.Ind63.q
126	GGIO1.ST.Ind63.stVal
127	GGIO1.ST.Ind64.q
128	GGIO1.ST.Ind64.stVal
129	GGIO1.ST.Ind65.q
130	GGIO1.ST.Ind65.stVal
131	GGIO1.ST.Ind66.q
132	GGIO1.ST.Ind66.stVal
133	GGIO1.ST.Ind67.q
134	GGIO1.ST.Ind67.stVal
135	GGIO1.ST.Ind68.q
136	GGIO1.ST.Ind68.stVal
137	GGIO1.ST.Ind69.q
138	GGIO1.ST.Ind69.stVal
139	GGIO1.ST.Ind70.q
140	GGIO1.ST.Ind70.stVal
141	GGIO1.ST.Ind71.q
142	GGIO1.ST.Ind71.stVal
143	GGIO1.ST.Ind72.q
144	GGIO1.ST.Ind72.stVal
145	GGIO1.ST.Ind73.q
146	GGIO1.ST.Ind73.stVal
147	GGIO1.ST.Ind74.q
148	GGIO1.ST.Ind74.stVal
149	GGIO1.ST.Ind75.q
150	GGIO1.ST.Ind75.stVal
151	GGIO1.ST.Ind76.q
152	GGIO1.ST.Ind76.stVal
153	GGIO1.ST.Ind77.q
154	GGIO1.ST.Ind77.stVal
155	GGIO1.ST.Ind78.q
156	GGIO1.ST.Ind78.stVal
157	GGIO1.ST.Ind79.q
158	GGIO1.ST.Ind79.stVal
159	GGIO1.ST.Ind80.q
160	GGIO1.ST.Ind80.stVal
161	GGIO1.ST.Ind81.q
162	GGIO1.ST.Ind81.stVal
163	GGIO1.ST.Ind82.q
164	GGIO1.ST.Ind82.stVal
165	GGIO1.ST.Ind83.q
166	GGIO1.ST.Ind83.stVal
167	GGIO1.ST.Ind84.q
168	GGIO1.ST.Ind84.stVal
169	GGIO1.ST.Ind85.q
170	GGIO1.ST.Ind85.stVal
171	GGIO1.ST.Ind86.q
172	GGIO1.ST.Ind86.stVal
173	GGIO1.ST.Ind87.q
174	GGIO1.ST.Ind87.stVal
175	GGIO1.ST.Ind88.q

Enumeration	GOOSE dataset items
176	GGIO1.ST.Ind88.stVal
177	GGIO1.ST.Ind89.q
178	GGIO1.ST.Ind89.stVal
179	GGIO1.ST.Ind90.q
180	GGIO1.ST.Ind90.stVal
181	GGIO1.ST.Ind91.q
182	GGIO1.ST.Ind91.stVal
183	GGIO1.ST.Ind92.q
184	GGIO1.ST.Ind92.stVal
185	GGIO1.ST.Ind93.q
186	GGIO1.ST.Ind93.stVal
187	GGIO1.ST.Ind94.q
188	GGIO1.ST.Ind94.stVal
189	GGIO1.ST.Ind95.q
190	GGIO1.ST.Ind95.stVal
191	GGIO1.ST.Ind96.q
192	GGIO1.ST.Ind96.stVal
193	GGIO1.ST.Ind97.q
194	GGIO1.ST.Ind97.stVal
195	GGIO1.ST.Ind98.q
196	GGIO1.ST.Ind98.stVal
197	GGIO1.ST.Ind99.q
198	GGIO1.ST.Ind99.stVal
199	GGIO1.ST.Ind100.q
200	GGIO1.ST.Ind100.stVal
201	GGIO1.ST.Ind101.q
202	GGIO1.ST.Ind101.stVal
203	GGIO1.ST.Ind102.q
204	GGIO1.ST.Ind102.stVal
205	GGIO1.ST.Ind103.q
206	GGIO1.ST.Ind103.stVal
207	GGIO1.ST.Ind104.q
208	GGIO1.ST.Ind104.stVal
209	GGIO1.ST.Ind105.q
210	GGIO1.ST.Ind105.stVal
211	GGIO1.ST.Ind106.q
212	GGIO1.ST.Ind106.stVal
213	GGIO1.ST.Ind107.q
214	GGIO1.ST.Ind107.stVal
215	GGIO1.ST.Ind108.q
216	GGIO1.ST.Ind108.stVal
217	GGIO1.ST.Ind109.q
218	GGIO1.ST.Ind109.stVal
219	GGIO1.ST.Ind110.q
220	GGIO1.ST.Ind110.stVal
221	GGIO1.ST.Ind111.q
222	GGIO1.ST.Ind111.stVal
223	GGIO1.ST.Ind112.q
224	GGIO1.ST.Ind112.stVal
225	GGIO1.ST.Ind113.q
226	GGIO1.ST.Ind113.stVal
227	GGIO1.ST.Ind114.q
228	GGIO1.ST.Ind114.stVal

Enumeration	GOOSE dataset items
229	GGIO1.ST.Ind115.q
	'
230	GGIO1.ST.Ind115.stVal
231	GGIO1.ST.Ind116.q
232	GGIO1.ST.Ind116.stVal
233	GGIO1.ST.Ind117.q
234	GGIO1.ST.Ind117.stVal
235	GGIO1.ST.Ind118.q
236	GGIO1.ST.Ind118.stVal
237	GGIO1.ST.Ind119.q
238	GGIO1.ST.Ind119.stVal
239	GGIO1.ST.Ind120.q
240	GGIO1.ST.Ind120.stVal
241	GGIO1.ST.Ind121.q
242	GGIO1.ST.Ind121.stVal
243	GGIO1.ST.Ind122.q
244	GGIO1.ST.Ind122.stVal
245	GGIO1.ST.Ind123.q
246	GGIO1.ST.Ind123.stVal
247	GGIO1.ST.Ind124.q
248	GGIO1.ST.Ind124.stVal
249	GGIO1.ST.Ind125.q
250	GGIO1.ST.Ind125.stVal
251	GGIO1.ST.Ind126.q
252	GGIO1.ST.Ind126.stVal
253	GGIO1.ST.Ind127.q
254	GGIO1.ST.Ind127.stVal
255	GGIO1.ST.Ind128.q
256	GGIO1.ST.Ind128.stVal
257	MMXU1.MX.TotW.mag.f
258	MMXU1.MX.TotVAr.mag.f
259	MMXU1.MX.TotVA.mag.f
260	MMXU1.MX.TotPF.mag.f
261	MMXU1.MX.Hz.mag.f
262	MMXU1.MX.PPV.phsAB.cVal.mag.f
263	MMXU1.MX.PPV.phsAB.cVal.ang.f
264	MMXU1.MX.PPV.phsBC.cVal.mag.f
265	MMXU1.MX.PPV.phsBC.cVal.ang.f
266	MMXU1.MX.PPV.phsCA.cVal.mag.f
267	MMXU1.MX.PPV.phsCA.cVal.ang.f
268	MMXU1.MX.PhV.phsA.cVal.mag.f
269	MMXU1.MX.PhV.phsA.cVal.ang.f
270	MMXU1.MX.PhV.phsB.cVal.mag.f
271	MMXU1.MX.PhV.phsB.cVal.ang.f
272	MMXU1.MX.PhV.phsC.cVal.mag.f
273	MMXU1.MX.PhV.phsC.cVal.ang.f
274	MMXU1.MX.A.phsA.cVal.mag.f
275	MMXU1.MX.A.phsA.cVal.ang.f
276	MMXU1.MX.A.phsB.cVal.mag.f
277	MMXU1.MX.A.phsB.cVal.ang.f
278	MMXU1.MX.A.phsC.cVal.mag.f
279	MMXU1.MX.A.phsC.cVal.ang.f
280	MMXU1.MX.A.neut.cVal.mag.f
281	MMXU1.MX.A.neut.cVal.ang.f

Enumeration	GOOSE dataset items
282	MMXU1.MX.W.phsA.cVal.mag.f
283	MMXU1.MX.W.phsB.cVal.mag.f
284	MMXU1.MX.W.phsC.cVal.mag.f
285	MMXU1.MX.VAr.phsA.cVal.mag.f
286	MMXU1.MX.VAr.phsB.cVal.mag.f
287	MMXU1.MX.VAr.phsC.cVal.mag.f
288	MMXU1.MX.VA.phsA.cVal.mag.f
289	MMXU1.MX.VA.phsB.cVal.mag.f
290	MMXU1.MX.VA.phsC.cVal.mag.f
291	MMXU1.MX.PF.phsA.cVal.mag.f
292	MMXU1.MX.PF.phsB.cVal.mag.f
293	MMXU1.MX.PF.phsC.cVal.mag.f
294	MMXU2.MX.TotW.mag.f
295	MMXU2.MX.TotVAr.mag.f
296	MMXU2.MX.TotVA.mag.f
297	MMXU2.MX.TotPF.mag.f
298	MMXU2.MX.Hz.mag.f
299	MMXU2.MX.PPV.phsAB.cVal.mag.f
300	MMXU2.MX.PPV.phsAB.cVal.ang.f
301	MMXU2.MX.PPV.phsBC.cVal.mag.f
302	MMXU2.MX.PPV.phsBC.cVal.ang.f
303	MMXU2.MX.PPV.phsCA.cVal.mag.f
304	MMXU2.MX.PPV.phsCA.cVal.ang.f
305	MMXU2.MX.PhV.phsA.cVal.mag.f
306	MMXU2.MX.PhV.phsA.cVal.ang.f
307	MMXU2.MX.PhV.phsB.cVal.mag.f
308	MMXU2.MX.PhV.phsB.cVal.ang.f
309	MMXU2.MX.PhV.phsC.cVal.mag.f
310	MMXU2.MX.PhV.phsC.cVal.ang.f
311	MMXU2.MX.A.phsA.cVal.mag.f
312	MMXU2.MX.A.phsA.cVal.ang.f
313	MMXU2.MX.A.phsB.cVal.mag.f
314	MMXU2.MX.A.phsB.cVal.ang.f
315	MMXU2.MX.A.phsC.cVal.mag.f
316	MMXU2.MX.A.phsC.cVal.ang.f
317	MMXU2.MX.A.neut.cVal.mag.f
318	MMXU2.MX.A.neut.cVal.ang.f
319	MMXU2.MX.W.phsA.cVal.mag.f
320	MMXU2.MX.W.phsB.cVal.mag.f
321	MMXU2.MX.W.phsC.cVal.mag.f
322	MMXU2.MX.VAr.phsA.cVal.mag.f
323	MMXU2.MX.VAr.phsB.cVal.mag.f
324	MMXU2.MX.VAr.phsC.cVal.mag.f
325	MMXU2.MX.VA.phsA.cVal.mag.f
326	MMXU2.MX.VA.phsB.cVal.mag.f
327	MMXU2.MX.VA.phsC.cVal.mag.f
328	MMXU2.MX.PF.phsA.cVal.mag.f
329	MMXU2.MX.PF.phsB.cVal.mag.f
330	MMXU2.MX.PF.phsC.cVal.mag.f
331	MMXU3.MX.TotW.mag.f
332	MMXU3.MX.TotVAr.mag.f
333	MMXU3.MX.TotVA.mag.f
334	MMXU3.MX.TotPF.mag.f

Enumeration	GOOSE dataset items
335	MMXU3.MX.Hz.mag.f
336	MMXU3.MX.PPV.phsAB.cVal.mag.f
337	MMXU3.MX.PPV.phsAB.cVal.ang.f
338	MMXU3.MX.PPV.phsBC.cVal.mag.f
339	MMXU3.MX.PPV.phsBC.cVal.ang.f
340	MMXU3.MX.PPV.phsCA.cVal.mag.f
341	MMXU3.MX.PPV.phsCA.cVal.ang.f
342	MMXU3.MX.PhV.phsA.cVal.mag.f
343	MMXU3.MX.PhV.phsA.cVal.ang.f
344	MMXU3.MX.PhV.phsB.cVal.mag.f
345	MMXU3.MX.PhV.phsB.cVal.ang.f
346	MMXU3.MX.PhV.phsC.cVal.mag.f
347	MMXU3.MX.PhV.phsC.cVal.ang.f
348	MMXU3.MX.A.phsA.cVal.mag.f
349	MMXU3.MX.A.phsA.cVal.ang.f
350	MMXU3.MX.A.phsB.cVal.mag.f
351	MMXU3.MX.A.phsB.cVal.ang.f
352	MMXU3.MX.A.phsC.cVal.mag.f
353	MMXU3.MX.A.phsC.cVal.ang.f
354	MMXU3.MX.A.neut.cVal.mag.f
355	MMXU3.MX.A.neut.cVal.ang.f
356	MMXU3.MX.W.phsA.cVal.mag.f
357	MMXU3.MX.W.phsB.cVal.mag.f
358	MMXU3.MX.W.phsC.cVal.mag.f
359	MMXU3.MX.VAr.phsA.cVal.mag.f
360	MMXU3.MX.VAr.phsB.cVal.mag.f
361	MMXU3.MX.VAr.phsC.cVal.mag.f
362	MMXU3.MX.VA.phsA.cVal.mag.f
363	MMXU3.MX.VA.phsB.cVal.mag.f
364	MMXU3.MX.VA.phsC.cVal.mag.f
365	MMXU3.MX.PF.phsA.cVal.mag.f
366	MMXU3.MX.PF.phsB.cVal.mag.f
367	MMXU3.MX.PF.phsC.cVal.mag.f
368	MMXU4.MX.TotW.mag.f
369	MMXU4.MX.TotVAr.mag.f
370	MMXU4.MX.TotVA.mag.f
371	MMXU4.MX.TotPF.mag.f
372	MMXU4.MX.Hz.mag.f
373	MMXU4.MX.PPV.phsAB.cVal.mag.f
374	MMXU4.MX.PPV.phsAB.cVal.ang.f
375	MMXU4.MX.PPV.phsBC.cVal.mag.f
376	MMXU4.MX.PPV.phsBC.cVal.ang.f
377	MMXU4.MX.PPV.phsCA.cVal.mag.f
378	MMXU4.MX.PPV.phsCA.cVal.ang.f
379	MMXU4.MX.PhV.phsA.cVal.mag.f
380	MMXU4.MX.PhV.phsA.cVal.ang.f
381	MMXU4.MX.PhV.phsB.cVal.mag.f
382	MMXU4.MX.PhV.phsB.cVal.ang.f
383	MMXU4.MX.PhV.phsC.cVal.mag.f
384	MMXU4.MX.PhV.phsC.cVal.ang.f
385	MMXU4.MX.A.phsA.cVal.mag.f
386	MMXU4.MX.A.phsA.cVal.ang.f
387	MMXU4.MX.A.phsB.cVal.mag.f

Enumeration	GOOSE dataset items
388	MMXU4.MX.A.phsB.cVal.ang.f
389	MMXU4.MX.A.phsC.cVal.mag.f
390	MMXU4.MX.A.phsC.cVal.ang.f
391	MMXU4.MX.A.neut.cVal.mag.f
392	MMXU4.MX.A.neut.cVal.ang.f
393	MMXU4.MX.W.phsA.cVal.mag.f
394	MMXU4.MX.W.phsB.cVal.mag.f
395	MMXU4.MX.W.phsC.cVal.mag.f
396	MMXU4.MX.VAr.phsA.cVal.mag.f
397	MMXU4.MX.VAr.phsB.cVal.mag.f
398	MMXU4.MX.VAr.phsC.cVal.mag.f
399	MMXU4.MX.VA.phsA.cVal.mag.f
400	MMXU4.MX.VA.phsB.cVal.mag.f
401	MMXU4.MX.VA.phsC.cVal.mag.f
402	MMXU4.MX.PF.phsA.cVal.mag.f
403	MMXU4.MX.PF.phsB.cVal.mag.f
404	MMXU4.MX.PF.phsC.cVal.mag.f
405	MMXU5.MX.TotW.mag.f
406	MMXU5.MX.TotVAr.mag.f
407	MMXU5.MX.TotVA.mag.f
408	MMXU5.MX.TotPF.mag.f
409	MMXU5.MX.Hz.mag.f
410	MMXU5.MX.PPV.phsAB.cVal.mag.f
411	MMXU5.MX.PPV.phsAB.cVal.ang.f
412	MMXU5.MX.PPV.phsBC.cVal.mag.f
413	MMXU5.MX.PPV.phsBC.cVal.ang.f
414	MMXU5.MX.PPV.phsCA.cVal.mag.f
415	MMXU5.MX.PPV.phsCA.cVal.ang.f
416	MMXU5.MX.PhV.phsA.cVal.mag.f
417	MMXU5.MX.PhV.phsA.cVal.ang.f
418	MMXU5.MX.PhV.phsB.cVal.mag.f
419	MMXU5.MX.PhV.phsB.cVal.ang.f
420	MMXU5.MX.PhV.phsC.cVal.mag.f
421	MMXU5.MX.PhV.phsC.cVal.ang.f
422	MMXU5.MX.A.phsA.cVal.mag.f
423	MMXU5.MX.A.phsA.cVal.ang.f
424	MMXU5.MX.A.phsB.cVal.mag.f
425	MMXU5.MX.A.phsB.cVal.ang.f
426	MMXU5.MX.A.phsC.cVal.mag.f
427	MMXU5.MX.A.phsC.cVal.ang.f
428	MMXU5.MX.A.neut.cVal.mag.f
429	MMXU5.MX.A.neut.cVal.ang.f
430	MMXU5.MX.W.phsA.cVal.mag.f
431	MMXU5.MX.W.phsB.cVal.mag.f
432	MMXU5.MX.W.phsC.cVal.mag.f
433	MMXU5.MX.VAr.phsA.cVal.mag.f
434	MMXU5.MX.VAr.phsB.cVal.mag.f
435	MMXU5.MX.VAr.phsC.cVal.mag.f
436	MMXU5.MX.VA.phsA.cVal.mag.f
437	MMXU5.MX.VA.phsB.cVal.mag.f
438	MMXU5.MX.VA.phsC.cVal.mag.f
439	MMXU5.MX.PF.phsA.cVal.mag.f
440	MMXU5.MX.PF.phsB.cVal.mag.f

Enumeration	GOOSE dataset items
441	MMXU5.MX.PF.phsC.cVal.mag.f
442	MMXU6.MX.TotW.maq.f
443	MMXU6.MX.TotVAr.mag.f
444	MMXU6.MX.TotVA.mag.f
445	MMXU6.MX.TotPF.mag.f
446	MMXU6.MX.Hz.mag.f
447	MMXU6.MX.PPV.phsAB.cVal.mag.f
448	MMXU6.MX.PPV.phsAB.cVal.ang.f
449	MMXU6.MX.PPV.phsBC.cVal.maq.f
450	MMXU6.MX.PPV.phsBC.cVal.ang.f
451	MMXU6.MX.PPV.phsCA.cVal.maq.f
452	MMXU6.MX.PPV.phsCA.cVal.ang.f
453	MMXU6.MX.PhV.phsA.cVal.ang.f
454	MMXU6.MX.PhV.phsA.cVal.ang.f
455	MMXU6.MX.PhV.phsB.cVal.ang.f
	, <u> </u>
456 457	MMXU6.MX.PhV.phsB.cVal.ang.f
-	MMXU6.MX.PhV.phsC.cVal.mag.f
458 459	MMXU6.MX.PhV.phsC.cVal.ang.f MMXU6.MX.A.phsA.cVal.mag.f
	, ,
460	MMXU6.MX.A.phsA.cVal.ang.f
461	MMXU6.MX.A.phsB.cVal.mag.f
462	MMXU6.MX.A.phsB.cVal.ang.f
463	MMXU6.MX.A.phsC.cVal.mag.f
464	MMXU6.MX.A.phsC.cVal.ang.f
465	MMXU6.MX.A.neut.cVal.mag.f
466	MMXU6.MX.A.neut.cVal.ang.f
467	MMXU6.MX.W.phsA.cVal.mag.f
468	MMXU6.MX.W.phsB.cVal.mag.f
469	MMXU6.MX.W.phsC.cVal.mag.f
470	MMXU6.MX.VAr.phsA.cVal.mag.f
471	MMXU6.MX.VAr.phsB.cVal.mag.f
472	MMXU6.MX.VAr.phsC.cVal.mag.f
473	MMXU6.MX.VA.phsA.cVal.mag.f
474	MMXU6.MX.VA.phsB.cVal.mag.f
475	MMXU6.MX.VA.phsC.cVal.mag.f
476	MMXU6.MX.PF.phsA.cVal.mag.f
477	MMXU6.MX.PF.phsB.cVal.mag.f
478	MMXU6.MX.PF.phsC.cVal.mag.f
479	GGIO4.MX.AnIn1.mag.f
480	GGIO4.MX.AnIn2.mag.f
481	GGIO4.MX.AnIn3.mag.f
482	GGIO4.MX.AnIn4.mag.f
483	GGIO4.MX.AnIn5.mag.f
484	GGIO4.MX.AnIn6.mag.f
485	GGIO4.MX.AnIn7.mag.f
486	GGIO4.MX.AnIn8.mag.f
487	GGIO4.MX.AnIn9.mag.f
488	GGIO4.MX.AnIn10.mag.f
489	GGIO4.MX.AnIn11.mag.f
490	GGIO4.MX.AnIn12.mag.f
491	GGIO4.MX.AnIn13.mag.f
492	GGIO4.MX.AnIn14.mag.f
493	GGIO4.MX.AnIn15.mag.f

Enumeration	GOOSE dataset items
494	GGIO4.MX.AnIn16.mag.f
495	GGIO4.MX.AnIn17.mag.f
496	GGIO4.MX.AnIn18.mag.f
497	GGIO4.MX.AnIn19.mag.f
498	GGIO4.MX.AnIn20.mag.f
499	GGIO4.MX.AnIn21.mag.f
500	GGIO4.MX.AnIn22.mag.f
501	GGIO4.MX.AnIn23.mag.f
502	GGIO4.MX.AnIn24.mag.f
503	GGIO4.MX.AnIn25.mag.f
504	GGIO4.MX.AnIn26.mag.f
505	GGIO4.MX.AnIn27.mag.f
506	GGIO4.MX.AnIn28.mag.f
507	GGIO4.MX.AnIn29.mag.f
508	GGIO4.MX.AnIn30.mag.f
509	GGIO4.MX.AnIn31.mag.f
510	GGIO4.MX.AnIn32.mag.f
511	GGIO5.ST.UIntln1.q
512	GGIO5.ST.UIntln1.stVal
513	GGIO5.ST.UIntln2.q
514	GGIO5.ST.UIntln2.stVal
515	GGIO5.ST.UIntln3.q
516	GGIO5.ST.UIntln3.stVal
517	GGIO5.ST.UIntln4.q
518	GGIO5.ST.UIntIn4.stVal
519	GGIO5.ST.UIntln5.q
520	GGIO5.ST.UIntIn5.stVal
521	GGIO5.ST.UIntin6.q
522	GGIO5.ST.UIntln6.stVal
523	GGIO5.ST.UIntln7.q
524	GGIO5.ST.UIntin7.q
525	GGIO5.ST.UIntln8.q
526	GGIO5.ST.UIntln8.stVal
527	GGIO5.ST.UIntln9.q
528	GGIO5.ST.UIntlin9.stVal
529	GGIO5.ST.UIntlin10.g
	GGIO5.ST.UIntIn10.stVal
530 531	GGIO5.ST.UIntlin10.stval
532	GGIO5.ST.UIntln11.stVal
533	GGIO5.ST.Ulntln11.stvai
534	GGIO5.ST.UIntIn12.stVal
535	GGIO5.ST.Ulntln12.stval
536	GGIO5.ST.UIntIn13.stVal
537	GGIO5.ST.Ulntln14.q
538	GGIO5.ST.UIntIn14.q
539	GGIO5.ST.UIntln14.stval
540	GGIO5.ST.UIntln15.q
541	GGIO5.ST.UIntln16.q
542	GGIO5.ST.UIntlin16.q
543	PDIF1.ST.Str.general
543	-
	PDIF1.ST.Op.general
545	PDIF2.ST.Str.general
546	PDIF2.ST.Op.general

Enumeration	GOOSE dataset items
547	PDIF3.ST.Str.general
548	PDIF3.ST.Op.general
549	PDIF4.ST.Str.general
550	PDIF4.ST.Op.general
551	PDIS1.ST.Str.general
552	PDIS1.ST.Op.general
553	PDIS2.ST.Str.general
554	PDIS2.ST.Op.general
555	PDIS3.ST.Str.general
556	PDIS3.ST.Op.general
557	PDIS4.ST.Str.general
558	PDIS4.ST.Op.general
559	PDIS5.ST.Str.general
560	PDIS5.ST.Op.general
561	PDIS6.ST.Str.general
562	PDIS6.ST.Op.general
563	PDIS7.Str.general
564	PDIS7.ST.Op.general
565	PDIS8.ST.Str.general
566	PDIS8.ST.Op.general
567	PDIS9.ST.Str.general
568	PDIS9.ST.Op.general
569	PDIS10.ST.Str.general
570	PDIS10.ST.Op.general
571	PIOC1.ST.Str.general
572	PIOC1.ST.Op.general
573	PIOC2.ST.Str.general
574	PIOC2.ST.Op.general
575	PIOC3.ST.Str.general
576	PIOC3.ST.Op.general
577	PIOC4.ST.Str.general
578	PIOC4.ST.Op.general
579	PIOC5.ST.Str.general
580	PIOC5.ST.Op.general
581	PIOC6.ST.Str.general
582	PIOC6.ST.Op.general
583	PIOC7.ST.Str.general
584	PIOC7.ST.Op.general
585	PIOC8.ST.Str.general
586	PIOC8.ST.Op.general
587	PIOC9.ST.Str.general
588	PIOC9.ST.Op.general
589	PIOC10.ST.Str.general
590	PIOC10.ST.Op.general
591	PIOC11.ST.Str.general
592	PIOC11.ST.Op.general
593	PIOC12.ST.Str.general
594	PIOC12.ST.Op.general
595	PIOC13.ST.Str.general
596	PIOC13.ST.Op.general
597	PIOC14.ST.Str.general
598	PIOC14.ST.Op.general
599	PIOC15.ST.Str.general
t	

Enumeration	GOOSE dataset items
600	PIOC15.ST.Op.general
601	PIOC16.ST.Str.general
602	PIOC16.ST.Op.general
603	PIOC17.Str.general
604	PIOC17.ST.Op.general
605	PIOC18.ST.Str.general
606	PIOC18.ST.Op.general
607	PIOC19.ST.Str.general
608	PIOC19.ST.Op.general
609	PIOC20.ST.Str.general
610	PIOC20.ST.Op.general
611	PIOC21.ST.Str.general
612	PIOC21.ST.Op.general
613	PIOC22.ST.Str.general
614	PIOC22.ST.Op.general
615	PIOC23.ST.Str.general
616	PIOC23.ST.Op.general
617	PIOC24.ST.Str.general
618	PIOC24.ST.Op.general
619	PIOC25.ST.Str.general
620	PIOC25.ST.Op.general
621	PIOC26.ST.Str.general
622	PIOC26.ST.Op.general
623	PIOC27.ST.Str.general
624	PIOC27.ST.Op.general
625	PIOC28.ST.Str.general
626	PIOC28.ST.Op.general
627	PIOC29.ST.Str.general
628	PIOC29.ST.Op.general
629	PIOC30.ST.Str.general
630	PIOC30.ST.Op.general
631	PIOC31.ST.Str.general
632	PIOC31.ST.Op.general
633	PIOC32.ST.Str.general
634	PIOC32.ST.Op.general
635	PIOC33.ST.Str.general
636	PIOC33.ST.Op.general
637	PIOC34.ST.Str.general
638	PIOC34.ST.Op.general
639	PIOC35.ST.Str.general
640	PIOC35.ST.Op.general
641	PIOC36.ST.Str.general
642	PIOC36.ST.Op.general
643	PIOC37.Str.general
644	PIOC37.ST.Op.general
645	PIOC38.ST.Str.general
646	PIOC38.ST.Op.general
647	PIOC39.ST.Str.general
648	PIOC39.ST.Op.general
649	PIOC40.ST.Str.general
650	PIOC40.ST.Op.general
651	PIOC41.ST.Str.general
652	PIOC41.ST.Op.general
	1

Enumeration	GOOSE dataset items
653	PIOC42.ST.Str.general
654	PIOC42.ST.Op.general
655	PIOC43.ST.Str.general
656	-
	PIOC44 ST Str general
657	PIOC44.ST.Str.general
658	PIOC44.ST.Op.general
659	PIOC45.ST.Str.general
660	PIOC45.ST.Op.general
661	PIOC46.ST.Str.general
662	PIOC46.ST.Op.general
663	PIOC47.ST.Str.general
664	PIOC47.ST.Op.general
665	PIOC48.ST.Str.general
666	PIOC48.ST.Op.general
667	PIOC49.ST.Str.general
668	PIOC49.ST.Op.general
669	PIOC50.ST.Str.general
670	PIOC50.ST.Op.general
671	PIOC51.ST.Str.general
672	PIOC51.ST.Op.general
673	PIOC52.ST.Str.general
674	PIOC52.ST.Op.general
675	PIOC53.ST.Str.general
676	PIOC53.ST.Op.general
677	PIOC54.ST.Str.general
678	PIOC54.ST.Op.general
679	PIOC55.ST.Str.general
680	PIOC55.ST.Op.general
681	PIOC56.ST.Str.general
682	PIOC56.ST.Op.general
683	PIOC57.ST.Str.general
684	PIOC57.ST.Op.general
685	PIOC58.ST.Str.general
686	PIOC58.ST.Op.general
687	PIOC59.ST.Str.general
688	PIOC59.ST.Op.general
689	PIOC60.ST.Str.general
690	PIOC60.ST.Op.general
691	PIOC61.ST.Str.general
692	PIOC61.ST.Op.general
693	PIOC62.ST.Str.general
694	PIOC62.ST.Op.general
695	PIOC63.ST.Str.general
696	PIOC63.ST.Op.general
697	PIOC64.ST.Str.general
698	PIOC64.ST.Op.general
699	PIOC65.ST.Str.general
700	PIOC65.ST.Op.general
701	PIOC66.ST.Str.general
702	PIOC66.ST.Op.general
703	PIOC67.ST.Str.general
704	PIOC67.ST.Op.general
705	PIOC68.ST.Str.general
, , ,	

Enumeration	GOOSE dataset items
706	PIOC68.ST.Op.general
707	PIOC69.ST.Str.general
708	PIOC69.ST.Op.general
709	PIOC70.ST.Str.general
710	PIOC70.ST.Op.general
711	PIOC71.ST.Str.general
712	PIOC71.ST.Op.general
713	PIOC72.ST.Str.general
714	PIOC72.ST.Op.general
715	PTOC1.ST.Str.general
716	PTOC1.ST.Op.general
717	PTOC2.ST.Str.general
718	PTOC2.ST.Op.general
719	PTOC3.ST.Str.general
720	PTOC3.ST.Op.general
721	PTOC4.ST.Str.general
722	PTOC4.ST.Op.general
723	PTOC5.ST.Str.general
724	PTOC5.ST.Op.general
725	PTOC6.ST.Str.general
726	PTOC6.ST.Op.general
727	PTOC7.ST.Str.general
728	PTOC7.ST.Op.general
729	PTOC8.ST.Str.general
730	PTOC8.ST.Op.general
731	PTOC9.ST.Str.general
732	PTOC9.ST.Op.general
733	PTOC10.ST.Str.general
734	PTOC10.ST.Op.general
735	PTOC11.ST.Str.general
736	PTOC11.ST.Op.general
737	PTOC12.ST.Str.general
738	PTOC12.ST.Op.general
739	PTOC13.ST.Str.general
740	PTOC13.ST.Op.general
741	PTOC14.ST.Str.general
742	PTOC14.ST.Op.general
743	PTOC15.ST.Str.general
744	PTOC15.ST.Op.general
745	PTOC16.ST.Str.general
746	PTOC16.ST.Op.general
747	PTOC17.ST.Str.general
748	PTOC17.ST.Op.general
749	PTOC18.ST.Str.general
750	PTOC18.ST.Op.general
751	PTOC19.ST.Str.general
752	PTOC19.ST.Op.general
753	PTOC20.ST.Str.general
754	PTOC20.ST.Op.general
755	PTOC21.ST.Str.general
756	PTOC21.ST.Op.general
757	PTOC22.ST.Str.general
758	PTOC22.ST.Op.general
L	

Enumeration	GOOSE dataset items
759	PTOC23.ST.Str.general
760	PTOC23.ST.Op.general
761	PTOC24.ST.Str.general
762	PTOC24.ST.Op.general
763	PTOV1.ST.Str.general
764	PTOV1.ST.Op.general
765	PTOV2.ST.Str.general
766	PTOV2.ST.Op.general
767	PTOV3.ST.Str.general
768	PTOV3.ST.Op.general
769	PTOV4.ST.Str.general
770	PTOV4.ST.Op.general
771	PTOV5.ST.Str.general
772	PTOV5.ST.Op.general
773	PTOV6.ST.Str.general
774	PTOV6.ST.Op.general
775	PTOV7.ST.Str.general
776	PTOV7.ST.Op.general
777	PTOV8.ST.Str.general
778	PTOV8.ST.Op.general
779	PTOV9.ST.Str.general
780	PTOV9.ST.Op.general
781	PTOV10.ST.Str.general
782	PTOV10.ST.Op.general
783	PTRC1.ST.Tr.general
784	PTRC1.ST.Op.general
785	PTRC2.ST.Tr.general
786	PTRC2.ST.Op.general
787	PTRC3.ST.Tr.general
788	PTRC3.ST.Op.general
789	PTRC4.ST.Tr.general
790	PTRC4.ST.Op.general
791	PTRC5.ST.Tr.general
792	PTRC5.ST.Op.general
793	PTRC6.ST.Tr.general
794	PTRC6.ST.Op.general
795	PTUV1.ST.Str.general
796	PTUV1.ST.Op.general
797	PTUV2.ST.Str.general
798	PTUV2.ST.Op.general
799	PTUV3.ST.Str.general
800	PTUV3.ST.Op.general
801	PTUV4.ST.Str.general
802	PTUV4.ST.Op.general
803	PTUV5.ST.Str.general
804	PTUV5.ST.Op.general
805	PTUV6.ST.Str.general
806	PTUV6.ST.Op.general
807	PTUV7.ST.Str.general
808	PTUV7.ST.Op.general
809	PTUV8.ST.Str.general
810	PTUV8.ST.Op.general
811	PTUV9.ST.Str.general

Enumeration	GOOSE dataset items
812	PTUV9.ST.Op.general
813	PTUV10.ST.Str.general
814	PTUV10.ST.Op.general
815	PTUV11.ST.Str.general
816	PTUV11.ST.Op.general
817	PTUV12.ST.Str.general
818	PTUV12.ST.Op.general
819	PTUV13.ST.Str.general
820	PTUV13.ST.Op.general
821	RBRF1.ST.OpEx.general
822	RBRF1.ST.OpIn.general
823	RBRF2.ST.OpEx.general
824	RBRF2.ST.OpIn.general
825	RBRF3.ST.OpEx.general
826	RBRF3.ST.OpIn.general
827	RBRF4.ST.OpEx.general
828	RBRF4.ST.OpIn.general
829	RBRF5.ST.OpEx.general
830	RBRF5.ST.OpIn.general
831	RBRF6.ST.OpEx.general
832	RBRF6.ST.OpIn.general
833	RBRF7.ST.OpEx.general
834	RBRF7.ST.OpIn.general
835	RBRF8.ST.OpEx.general
836	RBRF8.ST.OpIn.general
837	RBRF9.ST.OpEx.general
838	RBRF9.ST.OpIn.general
839	RBRF10.ST.OpEx.general
840	RBRF10.ST.OpIn.general
841	RBRF11.ST.OpEx.general
842	RBRF11.ST.OpIn.general
843	RBRF12.ST.OpEx.general
844	RBRF12.ST.OpIn.general
845	RBRF13.ST.OpEx.general
846	RBRF13.ST.OpIn.general
847	RBRF14.ST.OpEx.general
848	RBRF14.ST.OpIn.general
849	RBRF15.ST.OpEx.general
850	RBRF15.ST.OpIn.general
851	RBRF16.ST.OpEx.general
852	RBRF16.ST.OpIn.general
853	RBRF17.ST.OpEx.general
854	RBRF17.ST.OpIn.general
855	RBRF18.ST.OpEx.general
856	RBRF18.ST.OpIn.general
857	RBRF19.ST.OpEx.general
858	RBRF19.ST.OpIn.general
859	RBRF20.ST.OpEx.general
860	RBRF20.ST.OpIn.general
861	RBRF21.ST.OpEx.general
862	RBRF21.ST.OpIn.general
863	RBRF22.ST.OpEx.general
864	RBRF22.ST.OpIn.general

865 RBRF23.ST.OpEx.general 866 RBRF23.ST.OpIn.general 867 RBRF24.ST.OpEx.general 868 RBRF24.ST.OpIn.general 869 RFLO1.MX.FitDiskm.mag.f 870 RFLO2.MX.FitDiskm.mag.f 871 RFLO3.MX.FitDiskm.mag.f 872 RFLO4.MX.FitDiskm.mag.f 873 RFLO5.MX.FitDiskm.mag.f	
866 RBRF23.ST.OpIn.general 867 RBRF24.ST.OpEx.general 868 RBRF24.ST.OpIn.general 869 RFLO1.MX.FitDiskm.mag.f 870 RFLO2.MX.FitDiskm.mag.f 871 RFLO3.MX.FitDiskm.mag.f 872 RFLO4.MX.FitDiskm.mag.f	
867 RBRF24.ST.OpEx.general 868 RBRF24.ST.OpIn.general 869 RFLO1.MX.FltDiskm.mag.f 870 RFLO2.MX.FltDiskm.mag.f 871 RFLO3.MX.FltDiskm.mag.f 872 RFLO4.MX.FltDiskm.mag.f	
868 RBRF24.ST.OpIn.general 869 RFLO1.MX.FltDiskm.mag.f 870 RFLO2.MX.FltDiskm.mag.f 871 RFLO3.MX.FltDiskm.mag.f 872 RFLO4.MX.FltDiskm.mag.f	
869 RFLO1.MX.FltDiskm.mag.f 870 RFLO2.MX.FltDiskm.mag.f 871 RFLO3.MX.FltDiskm.mag.f 872 RFLO4.MX.FltDiskm.mag.f	
870 RFLO2.MX.FltDiskm.mag.f 871 RFLO3.MX.FltDiskm.mag.f 872 RFLO4.MX.FltDiskm.mag.f	
871 RFLO3.MX.FltDiskm.mag.f 872 RFLO4.MX.FltDiskm.mag.f	
872 RFLO4.MX.FltDiskm.mag.f	
673 RFLOS.IVIA.FILDISKIII.IIIag.I	
974 DDCD1 CT Ctr gaparal	
874 RPSB1.ST.Str.general	
875 RPSB1.ST.Op.general	
876 RPSB1.ST.BlkZn.stVal	
877 RREC1.ST.Op.general	
878 RREC1.ST.AutoRecSt.stVal	
879 RREC2.ST.Op.general	
880 RREC2.ST.AutoRecSt.stVal	
881 RREC3.ST.Op.general	
882 RREC3.ST.AutoRecSt.stVal	
883 RREC4.ST.Op.general	
884 RREC4.ST.AutoRecSt.stVal	
885 RREC5.ST.Op.general	
886 RREC5.ST.AutoRecSt.stVal	
887 RREC6.ST.Op.general	
888 RREC6.ST.AutoRecSt.stVal	
889 CSWI1.ST.Loc.stVal	
890 CSWI1.ST.Pos.stVal	
891 CSWI2.ST.Loc.stVal	
892 CSWI2.ST.Pos.stVal	
893 CSWI3.ST.Loc.stVal	
894 CSWI3.ST.Pos.stVal	
895 CSWI4.ST.Loc.stVal	
896 CSWI4.ST.Pos.stVal	
897 CSWI5.ST.Loc.stVal	
898 CSWI5.ST.Pos.stVal	
899 CSWI6.ST.Loc.stVal	
900 CSWI6.ST.Pos.stVal	
901 CSWI7.ST.Loc.stVal	
902 CSWI7.ST.Pos.stVal	
903 CSWI8.ST.Loc.stVal	
904 CSWI8.ST.Pos.stVal	
905 CSWI9.ST.Loc.stVal	
906 CSWI9.ST.Pos.stVal	
907 CSWI10.ST.Loc.stVal	
908 CSWI10.ST.Pos.stVal	
909 CSWI11.ST.Loc.stVal	
910 CSWI11.ST.Pos.stVal	
911 CSWI12.ST.Loc.stVal	
912 CSWI12.ST.Pos.stVal	
913 CSWI13.ST.Loc.stVal	
914 CSWI13.ST.Pos.stVal	
915 CSWI14.ST.Loc.stVal	
916 CSWI14.ST.Pos.stVal	
917 CSWI15.ST.Loc.stVal	

Enumeration	GOOSE dataset items
918	CSWI15.ST.Pos.stVal
919	CSWI16.ST.Loc.stVal
920	CSWI16.ST.Pos.stVal
921	CSWI17.ST.Loc.stVal
922	CSWI17.ST.Pos.stVal
923	CSWI18.ST.Loc.stVal
924	CSWI18.ST.Pos.stVal
925	CSWI19.ST.Loc.stVal
926	CSWI19.ST.Pos.stVal
927	CSWI20.ST.Loc.stVal
928	CSWI20.ST.Pos.stVal
929	CSWI21.ST.Loc.stVal
930	CSWI21.ST.Pos.stVal
931	CSWI22.ST.Loc.stVal
932	CSWI22.ST.Pos.stVal
933	CSWI23.ST.Loc.stVal
934	CSWI23.ST.Pos.stVal
935	CSWI24.ST.Loc.stVal
936	CSWI24.ST.Pos.stVal
937	CSWI25.ST.Loc.stVal
938	CSWI25.ST.Pos.stVal
939	CSWI26.ST.Loc.stVal
940	CSWI26.ST.Pos.stVal
941	CSWI27.ST.Loc.stVal
942	CSWI27.ST.Pos.stVal
943	CSWI27.51.F0S.StVal
944	CSWI28.ST.Pos.stVal
944	CSWI29.ST.Loc.stVal
946	CSWI29.ST.Pos.stVal
947	CSWI30.ST.Loc.stVal
948	CSWI30.ST.Pos.stVal
949	XSWI1.ST.Loc.stVal
950	XSWI1.ST.Pos.stVal
951	XSWI2.ST.Loc.stVal
952	XSWI2.ST.Pos.stVal
952	XSWI3.ST.Loc.stVal
954 955	XSWI3.ST.Pos.stVal XSWI4.ST.Loc.stVal
956	XSWI4.ST.Pos.stVal
957	XSWI5.ST.Loc.stVal
958	XSWI5.ST.Pos.stVal
959	XSWI6.ST.Loc.stVal
960	XSWI6.ST.Pos.stVal
961	XSWI7.ST.Loc.stVal
962	XSWI7.ST.Pos.stVal
963	XSWI8.ST.Loc.stVal
963	XSWI8.ST.Pos.stVal
965	XSWI9.ST.Loc.stVal
	XSWI9.ST.Pos.stVal
966	
967	XSWI10.ST.Loc.stVal
968	XSWI10.ST.Pos.stVal
969	XSWI11.ST.Loc.stVal
970	XSWI11.ST.Pos.stVal

Enumeration GOOSE dataset items XSWI12.ST.Loc.stVal 972 XSWI12.ST.Pos.stVal 973 XSWI13.ST.Loc.stVal 974 XSWI13.ST.Pos.stVal 975 XSWI14.ST.Loc.stVal 976 XSWI14.ST.Pos.stVal 977 XSWI15.ST.Loc.stVal 978 XSWI15.ST.Pos.stVal 979 XSWI16.ST.Loc.stVal 980 XSWI16.ST.Pos.stVal 981 XSWI17.ST.Loc.stVal 982 XSWI17.ST.Pos.stVal 983 XSWI18.ST.Loc.stVal 984 XSWI18.ST.Pos.stVal 985 XSWI19.ST.Loc.stVal 986 XSWI19.ST.Pos.stVal 987 XSWI20.ST.Loc.stVal 988 XSWI20.ST.Pos.stVal XSWI21.ST.Loc.stVal 989 XSWI21.ST.Pos.stVal XSWI22.ST.Loc.stVal 991 992 XSWI22.ST.Pos.stVal 993 XSWI23.ST.Loc.stVal 994 XSWI23.ST.Pos.stVal 995 XSWI24.ST.Loc.stVal 996 XSWI24.ST.Pos.stVal 997 XCBR1.ST.Loc.stVal XCBR1.ST.Pos.stVal 998 999 XCBR2.ST.Loc.stVal XCBR2.ST.Pos.stVal 1000 1001 XCBR3.ST.Loc.stVal 1002 XCBR3.ST.Pos.stVal 1003 XCBR4.ST.Loc.stVal 1004 XCBR4.ST.Pos.stVal 1005 XCBR5.ST.Loc.stVal 1006 XCBR5.ST.Pos.stVal 1007 XCBR6.ST.Loc.stVal

F617 ENUMERATION: LOGIN ROLES

1008

Enumeration	Role
0	None
1	Administrator
2	Supervisor
3	Engineer
4	Operator
5	Factory

XCBR6.ST.Pos.stVal

F623 ENUMERATION: RTC SYNCHRONIZING SOURCE CONFIGURATION

Enumeration	Item
0	None
1	PP/IRIG-B/PTP/SNTP
2	IRIG-B/PP/PTP/SNTP
3	PP/PTP/IRIG-B/SNTP

F624 ENUMERATION: RTC SYNCHRONZING SOURCE ACTUALS

Enumeration	Item
0	None
1	Port 1 PTP Clock
2	Port 2 PTP Clock
3	Port 3 PTP Clock
4	IRIG-B
5	SNTP

F625 ENUMERATION: PTP STATE

Enumeration	Item	
0	Disabled	
1	No Signal	
2	Calibrating	
3	Synchronized	
4	Synchronized (No PDelay)	

F626 ENUMERATION: NETWORK PORT FOR REMOTE DEVICE

Enumeration	Item
0	None
1	Network Port 1
2	Network Port 2
3	Network Port 3

F627 ENUMERATION: REDUNDANCY MODE

Enumeration	Item
0	None
1	Failover
2	PRP

C.1.1 INTRODUCTION

The IEC 61850 standard is the result of electric utilities and vendors of electronic equipment to produce standardized communications systems. IEC 61850 is a series of standards describing client/server and peer-to-peer communications, substation design and configuration, testing, environmental and project standards. The complete set includes:

- IEC 61850-1: Introduction and overview
- IEC 61850-2: Glossary
- IEC 61850-3: General requirements
- IEC 61850-4: System and project management
- IEC 61850-5: Communications and requirements for functions and device models
- IEC 61850-6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1: Basic communication structure for substation and feeder equipment Principles and models
- IEC 61850-7-2: Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI)
- IEC 61850-7-3: Basic communication structure for substation and feeder equipment Common data classes
- IEC 61850-7-4: Basic communication structure for substation and feeder equipment Compatible logical node classes and data classes
- IEC 61850-8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3
- IEC 61850-9-1: Specific Communication Service Mapping (SCSM) Sampled values over serial unidirectional multidrop point to point link
- IEC 61850-9-2: Specific Communication Service Mapping (SCSM) Sampled values over ISO/IEC 8802-3
- IEC 61850-10: Conformance testing

These documents can be obtained from the IEC (http://www.iec.ch). It is strongly recommended that all those involved with any IEC 61850 implementation obtain this document set.

C.1.2 COMMUNICATION PROFILES

IEC 61850 specifies the use of the Manufacturing Message Specification (MMS) at the upper (application) layer for transfer of real-time data. This protocol has been in existence for several of years and provides a set of services suitable for the transfer of data within a substation LAN environment. Actual MMS protocol services are mapped to IEC 61850 abstract services in IEC 61850-8-1.

The F60 relay supports IEC 61850 server services over TCP/IP. The TCP/IP profile requires the F60 to have an IP address to establish communications. These addresses are located in the **SETTINGS** ⇒ **PRODUCT SETUP** ⇒ \$\partial \text{ COMMUNICATIONS}\$ ⇒ \$\partial \text{NETWORK}\$ menu. It is possible to have up to five simultaneous connections (in addition to DNP and Modbus/TCP (non-IEC 61850) connections).

- Client/server: This is a connection-oriented type of communication. The connection is initiated by the client, and communication activity is controlled by the client. IEC 61850 clients are often substation computers running HMI programs or SOE logging software. Servers are usually substation equipment such as protection relays, meters, RTUs, transformer tap changers, or bay controllers.
- Peer-to-peer: This is a non-connection-oriented, high speed type of communication usually between substation equipment such as protection relays. GSSE and GOOSE are methods of peer-to-peer communication.
- Substation configuration language (SCL): A substation configuration language is a number of files used to describe the configuration of substation equipment. Each configured device has an IEC Capability Description (ICD) file. The substation single line information is stored in a System Specification Description (SSD) file. The entire substation configuration is stored in a Substation Configuration Description (SCD) file. The SCD file is the combination of the individual ICD files and the SSD file.

IEC 61850 defines an object-oriented approach to data and services. An IEC 61850 physical device can contain one or more logical device(s). Each logical device can contain many logical nodes. Each logical node can contain many data objects. Each data object is composed of data attributes and data attribute components. Services are available at each level for performing various functions, such as reading, writing, control commands, and reporting.

Each F60 IED represents one IEC 61850 physical device. The physical device contains one logical device, and the logical device contains many logical nodes. The logical node LPHD1 contains information about the F60 IED physical device. The logical node LLN0 contains information about the F60 IED logical device.

C.2.2 GGIO1: DIGITAL STATUS VALUES

The GGIO1 logical node is available in the F60 to provide access to as many 128 digital status points and associated time-stamps and quality flags. The data content must be configured before the data can be used. GGIO1 provides digital status points for access by clients.

It is intended that clients use GGIO1 in order to access digital status values from the F60. Configuration settings are provided to allow the selection of the number of digital status indications available in GGIO1 (8 to 128), and to allow the choice of the F60 FlexLogic operands that drive the status of the GGIO1 status indications. Clients can utilize the IEC 61850 buffered and unbuffered reporting features available from GGIO1 in order to build sequence of events (SOE) logs and HMI display screens. Buffered reporting should generally be used for SOE logs since the buffering capability reduces the chances of missing data state changes. Unbuffered reporting should generally be used for local status display.

C.2.3 GGIO2: DIGITAL CONTROL VALUES

The GGIO2 logical node is available to provide access to the F60 virtual inputs. Virtual inputs are single-point control (binary) values that can be written by clients. They are generally used as control inputs. GGIO2 provides access to the virtual inputs through the IEC 61850 standard control model (ctlModel) services:

- Status only.
- Direct control with normal security.
- · SBO control with normal security.

Configuration settings are available to select the control model for each point. Each virtual input used through GGIO2 should have its **VIRTUAL INPUT 1(64) FUNCTION** setting programmed as "Enabled" and its corresponding **GGIO2 CF SPSCO1(64) CTLMODEL** setting programmed to the appropriate control configuration.

C.2.4 GGIO3: DIGITAL STATUS AND ANALOG VALUES FROM GOOSE DATA

The GGIO3 logical node is available to provide access for clients to values received via configurable GOOSE messages. The values of the digital status indications and analog values in GGIO3 originate in GOOSE messages sent from other devices.

C.2.5 GGIO4: GENERIC ANALOG MEASURED VALUES

The GGIO4 logical node provides access to as many as 32 analog value points, as well as associated timestamps and quality flags. The data content must be configured before the data can be used. GGIO4 provides analog values for access by clients.

It is intended that clients use GGIO4 to access generic analog values from the F60. Configuration settings allow the selection of the number of analog values available in GGIO4 (4 to 32) and the choice of the FlexAnalog values that determine the value of the GGIO4 analog inputs. Clients can utilize polling or the IEC 61850 unbuffered reporting feature available from GGIO4 in order to obtain the analog values provided by GGIO4.

C.2.6 MMXU: ANALOG MEASURED VALUES

A limited number of measured analog values are available through the MMXU logical nodes.

Each MMXU logical node provides data from a F60 current and voltage source. There is one MMXU available for each configurable source (programmed in the SETTINGS ⇔∜ SYSTEM SETUP ⇔∜ SIGNAL SOURCES menu). MMXU1 provides data from F60 source 1, and MMXU2 provides data from F60 source 2.

MMXU data is provided in two forms: instantaneous and deadband. The instantaneous values are updated every time a read operation is performed by a client. The deadband values are calculated as described in IEC 61850 parts 7-1 and 7-3. The selection of appropriate deadband settings for the F60 is described in chapter 5 of this manual.

IEC 61850 buffered and unbuffered reporting capability is available in all MMXU logical nodes. MMXUx logical nodes provide the following data for each source:

- MMXU1.MX.TotW: three-phase real power
- MMXU1.MX.TotVAr: three-phase reactive power
- MMXU1.MX.TotVA: three-phase apparent power
- MMXU1.MX.TotPF: three-phase power factor
- MMXU1.MX.Hz: frequency
- MMXU1.MX.PPV.phsAB: phase AB voltage magnitude and angle
- MMXU1.MX.PPV.phsBC: phase BC voltage magnitude and angle
- MMXU1.MX.PPV.phsCA: Phase CA voltage magnitude and angle
- MMXU1.MX.PhV.phsA: phase AG voltage magnitude and angle
- MMXU1.MX.PhV.phsB: phase BG voltage magnitude and angle
- MMXU1.MX.PhV.phsC: phase CG voltage magnitude and angle
- MMXU1.MX.A.phsA: phase A current magnitude and angle
- MMXU1.MX.A.phsB: phase B current magnitude and angle
- MMXU1.MX.A.phsC: phase C current magnitude and angle
- MMXU1.MX.A.neut: ground current magnitude and angle
- MMXU1.MX.W.phsA: phase A real power
- MMXU1.MX.W.phsB: phase B real power
- MMXU1.MX.W.phsC: phase C real power
- MMXU1.MX.VAr.phsA: phase A reactive power
- MMXU1.MX.VAr.phsB: phase B reactive power
- MMXU1.MX.VAr.phsC: phase C reactive power
- MMXU1.MX.VA.phsA: phase A apparent power
- MMXU1.MX.VA.phsB: phase B apparent power
- MMXU1.MX.VA.phsC: phase C apparent power
- MMXU1.MX.PF.phsA: phase A power factor
- MMXU1.MX.PF.phsB: phase B power factor
- MMXU1.MX.PF.phsC: phase C power factor

C.2.7 PROTECTION AND OTHER LOGICAL NODES

The following list describes the protection elements for all UR-series relays. The F60 relay will contain a subset of protection elements from this list.

· PDIF: bus differential, transformer instantaneous differential, transformer percent differential, current differential

- PDIS: phase distance, ground distance
- PIOC: phase instantaneous overcurrent, neutral instantaneous overcurrent, ground instantaneous overcurrent, negative-sequence instantaneous overcurrent.
- PTOC: phase time overcurrent, neutral time overcurrent, ground time overcurrent, negative-sequence time overcurrent, neutral directional overcurrent, negative-sequence directional overcurrent
- PTUV: phase undervoltage, auxiliary undervoltage, third harmonic neutral undervoltage
- PTOV: phase overvoltage, neutral overvoltage, auxiliary overvoltage, negative sequence overvoltage
- RBRF: breaker failure
- · RREC: autoreclosure
- RPSB: power swing detection
- RFLO: fault locator
- XCBR: breaker control
- XSWI: circuit switch
- CSWI: switch controller

The protection elements listed above contain *start* (pickup) and *operate* flags. For example, the start flag for PIOC1 is PIOC1.ST.Str.general. The operate flag for PIOC1 is PIOC1.ST.Op.general. For the F60 protection elements, these flags take their values from the pickup and operate FlexLogic operands for the corresponding element.

Some protection elements listed above contain directional start values. For example, the directional start value for PDIS1 is PDIS1.ST.Str.dirGeneral. This value is built from the directional FlexLogic operands for the element.

The RFLO logical node contains the measurement of the distance to fault calculation in kilometers. This value originates in the fault locator function.

The XCBR logical node is directly associated with the breaker control feature.

- XCBR1.ST.Loc: This is the state of the XCBR1 local/remote switch. A setting is provided to assign a FlexLogic operand
 to determine the state. When local mode is true, IEC 61850 client commands will be rejected.
- XCBR1.ST.Opcnt: This is an operation counter as defined in IEC 61850. Command settings are provided to allow the counter to be cleared.
- XCBR1.ST.Pos: This is the position of the breaker. The breaker control FlexLogic operands are used to determine this state.
 - Intermediate state (00) is indicated when the BREAKER 1 OPEN and BREAKER 1 CLOSED operands are both On.
 - Off state (01) is indicated when the BREAKER 1 OPEN operand is On.
 - On state (10) is indicated when the BREAKER 1 CLOSED operand is On.
 - Bad state (11) is indicated when the BREAKER 1 OPEN and BREAKER 1 CLOSED operands are Off.
- XCBR1.ST.BlkOpn: This is the state of the block open command logic. When true, breaker open commands from IEC 61850 clients will be rejected.
- XCBR1.ST.BlkCls: This is the state of the block close command logic. When true, breaker close commands from IEC 61850 clients will be rejected.
- XCBR1.CO.Pos: This is where IEC 61850 clients can issue open or close commands to the breaker. SBO control with normal security is the only supported IEC 61850 control model.
- XCBR1.CO.BlkOpn: This is where IEC 61850 clients can issue block open commands to the breaker. Direct control
 with normal security is the only supported IEC 61850 control model.
- XCBR1.CO.BlkCls: This is where IEC 61850 clients can issue block close commands to the breaker. Direct control
 with normal security is the only supported IEC 61850 control model.

C.3.1 BUFFERED/UNBUFFERED REPORTING

IEC 61850 buffered and unbuffered reporting is provided in the GGIO1 logical nodes (for binary status values) and MMXU1 to MMXU6 (for analog measured values). Report settings can be configured using the EnerVista UR Setup software, substation configurator software, or via an IEC 61850 client. The following items can be configured:

- **TrgOps**: Trigger options. The following bits are supported by the F60:
 - Bit 1: data-change
 - Bit 4: integrity
 - Bit 5: general interrogation
- OptFlds: Option Fields. The following bits are supported by the F60:
 - Bit 1: sequence-number
 - Bit 2: report-time-stamp
 - Bit 3: reason-for-inclusion
 - Bit 4: data-set-name
 - Bit 5: data-reference
 - Bit 6: buffer-overflow (for buffered reports only)
 - Bit 7: entryID (for buffered reports only)
 - Bit 8: conf-revision
 - Bit 9: segmentation
- IntgPd: Integrity period.
- BufTm: Buffer time.

C.3.2 FILE TRANSFER

MMS file services are supported to allow transfer of oscillography, event record, or other files from a F60 relay.

C.3.3 TIMESTAMPS AND SCANNING

The timestamp values associated with all IEC 61850 data items represent the *time of the last change* of either the value or quality flags of the data item. To accomplish this functionality, all IEC 61850 data items must be regularly scanned for data changes, and the timestamp updated when a change is detected, regardless of the connection status of any IEC 61850 clients. For applications where there is no IEC 61850 client in use, the IEC 61850 **SERVER SCANNING** setting can be programmed as "Disabled". If a client is in use, this setting should be programmed as "Enabled" to ensure the proper generation of IEC 61850 timestamps.

C.3.4 LOGICAL DEVICE NAME

The logical device name is used to identify the IEC 61850 logical device that exists within the F60. This name is composed of two parts: the IED name setting and the logical device instance. The complete logical device name is the combination of the two character strings programmed in the **IEDNAME** and **LD INST** settings. The default values for these strings are "IEDNAME" and "LDInst". These values should be changed to reflect a logical naming convention for all IEC 61850 logical devices in the system.

C.3.5 LOCATION

The LPHD1 logical node contains a data attribute called *location* (LPHD1.DC.PhyNam.location). This is a character string meant to describe the physical location of the F60. This attribute is programmed through the **LOCATION** setting and its default value is "Location". This value should be changed to describe the actual physical location of the F60.

C.3.6 LOGICAL NODE NAME PREFIXES

IEC 61850 specifies that each logical node can have a name with a total length of 11 characters. The name is composed of:

- A five or six-character name prefix.
- A four-character standard name (for example, MMXU, GGIO, PIOC, etc.).
- · A one or two-character instantiation index.

Complete names are of the form xxxxxxPIOC1, where the xxxxxx character string is configurable. Details regarding the logical node naming rules are given in IEC 61850 parts 6 and 7-2. It is recommended that a consistent naming convention be used for an entire substation project.

C.3.7 CONNECTION TIMING

A built-in TCP/IP connection timeout of two minutes is employed by the F60 to detect 'dead' connections. If there is no data traffic on a TCP connection for greater than two minutes, the connection will be aborted by the F60. This frees up the connection to be used by other clients. Therefore, when using IEC 61850 reporting, clients should configure report control block items such that an integrity report will be issued at least every 2 minutes (120000 ms). This ensures that the F60 will not abort the connection. If other MMS data is being polled on the same connection at least once every 2 minutes, this timeout will not apply.

C.3.8 NON-IEC 61850 DATA

The F60 relay makes available a number of non-IEC 61850 data items. These data items can be accessed through the "UR" MMS domain. IEC 61850 data can be accessed through the standard IEC 61850 logical device. To access the non-IEC data items, the INCLUDE NON-IEC DATA setting must be "Enabled".

C.3.9 COMMUNICATION SOFTWARE UTILITIES

The exact structure and values of the supported IEC 61850 logical nodes can be seen by connecting to a F60 relay with an MMS browser, such as the "MMS Object Explorer and AXS4-MMS" DDE/OPC server from Sisco Inc.

C.4.1 OVERVIEW

IEC 61850 specifies two types of peer-to-peer data transfer services: Generic Substation State Events (GSSE) and Generic Object Oriented Substation Events (GOOSE). GSSE services are compatible with UCA 2.0 GOOSE. IEC 61850 GOOSE services provide virtual LAN (VLAN) support, Ethernet priority tagging, and Ethertype Application ID configuration. The support for VLANs and priority tagging allows for the optimization of Ethernet network traffic. GOOSE messages can be given a higher priority than standard Ethernet traffic, and they can be separated onto specific VLANs. Because of the additional features of GOOSE services versus GSSE services, it is recommended that GOOSE be used wherever backwards compatibility with GSSE (or UCA 2.0 GOOSE) is not required.

Devices that transmit GSSE and/or GOOSE messages also function as servers. Each GSSE publisher contains a "GSSE control block" to configure and control the transmission. Each GOOSE publisher contains a "GOOSE control block" to configure and control the transmission. The transmission is also controlled via device settings. These settings can be seen in the ICD and/or SCD files, or in the device configuration software or files.

IEC 61850 recommends a default priority value of 4 for GOOSE. Ethernet traffic that does not contain a priority tag has a default priority of 1. More details are specified in IEC 61850 part 8-1.

IEC 61850 recommends that the Ethertype Application ID number be configured according to the GOOSE source. In the F60, the transmitted GOOSE Application ID number must match the configured receive Application ID number in the receiver. A common number may be used for all GOOSE transmitters in a system. More details are specified in IEC 61850 part 8-1.

C.4.2 GSSE CONFIGURATION

IEC 61850 Generic Substation Status Event (GSSE) communication is compatible with UCA GOOSE communication. GSSE messages contain a number of double point status data items. These items are transmitted in two pre-defined data structures named DNA and UserSt. Each DNA and UserSt item is referred to as a 'bit pair'. GSSE messages are transmitted in response to state changes in any of the data points contained in the message. GSSE messages always contain the same number of DNA and UserSt bit pairs. Depending the on the configuration, only some of these bit pairs may have values that are of interest to receiving devices.

The GSSE FUNCTION, GSSE ID, and GSSE DESTINATION MAC ADDRESS settings are used to configure GSSE transmission. GSSE FUNCTION is set to "Enabled" to enable the transmission. If a valid multicast Ethernet MAC address is entered for the GSSE DESTINATION MAC ADDRESS setting, this address will be used as the destination MAC address for GSSE messages. If a valid multicast Ethernet MAC address is not entered (for example, 00 00 00 00 00), the F60 will use the source Ethernet MAC address as the destination, with the multicast bit set.

C.4.3 FIXED GOOSE

The F60 supports two types of IEC 61850 Generic Object Oriented Substation Event (GOOSE) communication: fixed GOOSE and configurable GOOSE. All GOOSE messages contain IEC 61850 data collected into a *dataset*. It is this dataset that is transferred using GOOSE message services. The dataset transferred using the F60 fixed GOOSE is the same data that is transferred using the GSSE feature; that is, the DNA and UserSt bit pairs. The FlexLogic operands that determine the state of the DNA and UserSt bit pairs are configurable via settings, but the fixed GOOSE dataset always contains the same DNA/UserSt data structure. Upgrading from GSSE to GOOSE services is simply a matter of enabling fixed GOOSE and disabling GSSE. The remote inputs and outputs are configured in the same manner for both GSSE and fixed GOOSE.

It is recommended that the fixed GOOSE be used for implementations that require GOOSE data transfer between UR-series IEDs. Configurable GOOSE may be used for implementations that require GOOSE data transfer between UR-series IEDs and devices from other manufacturers.

C.4.4 CONFIGURABLE GOOSE

The configurable GOOSE feature allows for the configuration of the datasets to be transmitted or received from the F60. The F60 supports the configuration of eight (8) transmission and reception datasets, allowing for the optimization of data transfer between devices.

Items programmed for dataset 1 and 2 will have changes in their status transmitted as soon as the change is detected. Dataset 1 should be used for high-speed transmission of data that is required for applications such as transfer tripping, blocking, and breaker fail initiate. At least one digital status value needs to be configured in dataset 1 to enable transmission of all data configured for dataset 1. Configuring analog data only to dataset 1 will not activate transmission.

Items programmed for datasets 3 through 8 will have changes in their status transmitted at a maximum rate of every 100 ms. Datasets 3 through 8 will regularly analyze each data item configured within them every 100 ms to identify if any changes have been made. If any changes in the data items are detected, these changes will be transmitted through a GOOSE message. If there are no changes detected during this 100 ms period, no GOOSE message will be sent.

For all datasets 1 through 8, the integrity GOOSE message will still continue to be sent at the pre-configured rate even if no changes in the data items are detected.

The GOOSE functionality was enhanced to prevent the relay from flooding a communications network with GOOSE messages due to an oscillation being created that is triggering a message.

The F60 has the ability of detecting if a data item in one of the GOOSE datasets is erroneously oscillating. This can be caused by events such as errors in logic programming, inputs improperly being asserted and de-asserted, or failed station components. If erroneously oscillation is detected, the F60 will stop sending GOOSE messages from the dataset for a minimum period of one second. Should the oscillation persist after the one second time-out period, the F60 will continue to block transmission of the dataset. The F60 will assert the MAINTENANCE ALERT: GGIO Ind XXX oscill self-test error message on the front panel display, where XXX denotes the data item detected as oscillating.

The configurable GOOSE feature is recommended for applications that require GOOSE data transfer between UR-series IEDs and devices from other manufacturers. Fixed GOOSE is recommended for applications that require GOOSE data transfer between UR-series IEDs.

IEC 61850 GOOSE messaging contains a number of configurable parameters, all of which must be correct to achieve the successful transfer of data. It is critical that the configured datasets at the transmission and reception devices are an exact match in terms of data structure, and that the GOOSE addresses and name strings match exactly. Manual configuration is possible, but third-party substation configuration software may be used to automate the process. The EnerVista UR Setupsoftware can produce IEC 61850 ICD files and import IEC 61850 SCD files produced by a substation configurator (see the IEC 61850 IED configuration information later in this appendix).

Use independent ports for IEC 61850 communication and take care when configuring the settings, else loss of protection or misoperation of the relay can result.

The following example illustrates the configuration required to transfer IEC 61850 data items between two devices. The general steps required for transmission configuration are:

- Configure the transmission dataset.
- 2. Configure the GOOSE service settings.
- 3. Configure the data.

The general steps required for reception configuration are:

- Configure the reception dataset.
- Configure the GOOSE service settings.
- 3. Configure the data.

This example shows how to configure the transmission and reception of three IEC 61850 data items: a single point status value, its associated quality flags, and a floating point analog value.

The following procedure illustrates the transmission configuration.

- 1. Configure the transmission dataset by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ TRANSMISSION ⇒ ♣ CONFIGURABLE GOOSE 1 ⇒ ♣ CONFIG GSE 1 DATASET ITEMS Settings menu:
 - Set ITEM 1 to "GGIO1.ST.Ind1.q" to indicate quality flags for GGIO1 status indication 1.
 - Set ITEM 2 to "GGIO1.ST.Ind1.stVal" to indicate the status value for GGIO1 status indication 1.

The transmission dataset now contains a set of quality flags and a single point status Boolean value. The reception dataset on the receiving device must exactly match this structure.

- 2. Configure the GOOSE service settings by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ TRANSMISSION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 settings menu:
 - Set config gse 1 function to "Enabled".
 - Set CONFIG GSE 1 ID to an appropriate descriptive string (the default value is "GOOSEOut 1").
 - Set CONFIG GSE 1 DST MAC to a multicast address (for example, 01 00 00 12 34 56).
 - Set the CONFIG GSE 1 VLAN PRIORITY; the default value of "4" is OK for this example.
 - Set the CONFIG GSE 1 VLAN ID value; the default value is "0", but some switches may require this value to be "1".
 - Set the CONFIG GSE 1 ETYPE APPID value. This setting represents the Ethertype application ID and must match the
 configuration on the receiver (the default value is "0").
 - Set the CONFIG GSE 1 CONFREV value. This value changes automatically as described in IEC 61850 part 7-2. For this example it can be left at its default value.
- 3. Configure the data by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTO-COL ⇒ GGIO1 STATUS CONFIGURATION settings menu:
 - Set GGIO1 INDICATION 1 to a FlexLogic operand used to provide the status of GGIO1.ST.Ind1.stVal (for example, a contact input, virtual input, a protection element status, etc.).

The F60 must be rebooted (control power removed and re-applied) before these settings take effect.

The following procedure illustrates the reception configuration.

- 1. Configure the reception dataset by making the following changes in the PRODUCT SETUP ⇒ ♣ COMMUNICATION ⇒ ♣ IEC 61850 PROTOCOL ⇒ GSSE/GOOSE CONFIGURATION ⇒ ♣ RECEPTION ⇒ ♣ CONFIGURABLE GOOSE ⇒ CONFIGURABLE GOOSE 1 ⇒ ♣ CONFIG GSE 1 DATASET ITEMS settings menu:
 - Set ITEM 1 to "GGIO3.ST.Ind1.q" to indicate quality flags for GGIO3 status indication 1.
 - Set ITEM 2 to "GGIO3.ST.Ind1.stVal" to indicate the status value for GGIO3 status indication 1.

The reception dataset now contains a set of quality flags, a single point status Boolean value, and a floating point analog value. This matches the transmission dataset configuration above.

- 2. Configure the GOOSE service settings by making the following changes in the INPUTS/OUTPUTS ⇒ ♣ REMOTE DEVICES ⇒ ♣ REMOTE DEVICE 1 settings menu:
 - Set **REMOTE DEVICE 1 ID** to match the GOOSE ID string for the transmitting device. Enter "GOOSEOut_1".
 - Set REMOTE DEVICE 1 ETYPE APPID to match the Ethertype application ID from the transmitting device. This is "0" in the example above.
 - Set the REMOTE DEVICE 1 DATASET value. This value represents the dataset number in use. Since we are using configurable GOOSE 1 in this example, program this value as "GOOSEIn 1".
- 3. Configure the data by making the following changes in the INPUTS/OUTPUTS ⇒ ♣ REMOTE INPUTS ⇒ ♣ REMOTE INPUT 1 settings menu:
 - Set REMOTE IN 1 DEVICE to "GOOSEOut 1".
 - Set REMOTE IN 1 ITEM to "Dataset Item 2". This assigns the value of the GGIO3.ST.Ind1.stVal single point status item to remote input 1.

Remote input 1 can now be used in FlexLogic equations or other settings. The F60 must be rebooted (control power removed and re-applied) before these settings take effect.

The value of remote input 1 (Boolean on or off) in the receiving device will be determined by the GGIO1.ST.Ind1.stVal value in the sending device. The above settings will be automatically populated by the EnerVista UR Setup software when a complete SCD file is created by third party substation configurator software.

C.4.5 ETHERNET MAC ADDRESS FOR GSSE/GOOSE

Ethernet capable devices each contain a unique identifying address called a Media Access Control (MAC) address. This address cannot be changed and is unique for each Ethernet device produced worldwide. The address is six bytes in length and is usually represented as six hexadecimal values (for example, 00 A0 F4 01 02 03). It is used in all Ethernet frames as the 'source' address of the frame. Each Ethernet frame also contains a *destination* address. The destination address can be different for each Ethernet frame depending on the intended destination of the frame.

A special type of destination address called a *multicast* address is used when the Ethernet frame can be received by more than one device. An Ethernet MAC address is multicast when the least significant bit of the first byte is set (for example, 01 00 00 00 00 is a multicast address).

GSSE and GOOSE messages must have multicast destination MAC addresses.

By default, the F60 is configured to use an automated multicast MAC scheme. If the F60 destination MAC address setting is not a valid multicast address (that is, the least significant bit of the first byte is not set), the address used as the destination MAC will be the same as the local MAC address, but with the multicast bit set. Thus, if the local MAC address is 00 A0 F4 01 02 03, then the destination MAC address will be 01 A0 F4 01 02 03.

C.4.6 GSSE ID AND GOOSE ID SETTINGS

GSSE messages contain an identifier string used by receiving devices to identify the sender of the message, defined in IEC 61850 part 8-1 as GsID. This is a programmable 65-character string. This string should be chosen to provide a descriptive name of the originator of the GSSE message.

GOOSE messages contain an identifier string used by receiving devices to identify the sender of the message, defined in IEC 61850 part 8-1 as GoID. This programmable 65-character string should be a descriptive name of the originator of the GOOSE message. GOOSE messages also contain two additional character strings used for identification of the message: DatSet - the name of the associated dataset, and GoCBRef - the reference (name) of the associated GOOSE control block. These strings are automatically populated and interpreted by the F60; no settings are required.

C.5.1 OVERVIEW

The F60 can be configured for IEC 61850 via the EnerVista UR Setup software as follows.

- 1. An ICD file is generated for the F60 by the EnerVista UR Setup software that describe the capabilities of the IED.
- 2. The ICD file is then imported into a system configurator along with other ICD files for other IEDs (from GE or other vendors) for system configuration.
- 3. The result is saved to a SCD file, which is then imported back to EnerVista UR Setup to create one or more settings file(s). The settings file(s) can then be used to update the relay(s) with the new configuration information.

The configuration process is illustrated below.

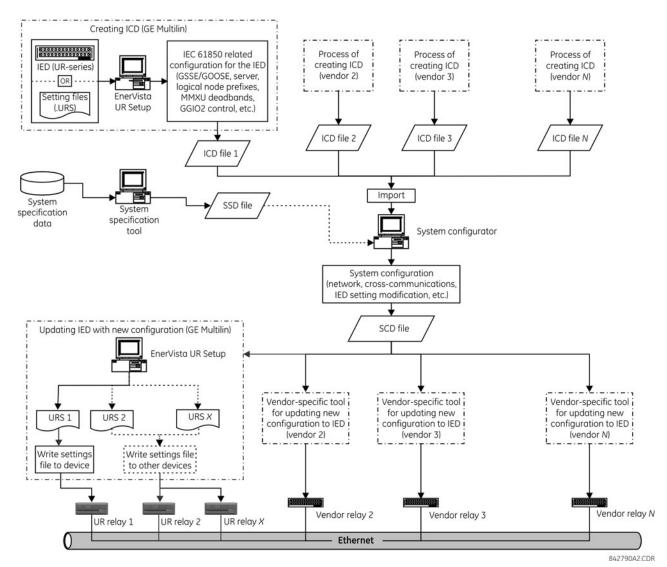


Figure C-1: IED CONFIGURATION PROCESS

The following acronyms and abbreviations are used in the procedures describing the IED configuration process for IEC 61850:

- BDA: Basic Data Attribute, that is not structured
- DAI: Instantiated Data Attribute
- DO: Data Object type or instance, depending on the context

- DOI: Instantiated Data Object
- · IED: Intelligent Electronic Device
- LDInst: Instantiated Logical Device
- LNInst: Instantiated Logical Node
- SCL: Substation Configuration Description Language. The configuration language is an application of the Extensible Markup Language (XML) version 1.0.
- SDI: Instantiated Sub DATA; middle name part of a structured DATA name
- UR: GE Multilin Universal Relay series
- URI: Universal Resource Identifier
- URS: UR-series relay setting file
- XML: Extensible Markup Language

The following SCL variants are also used:

- ICD: IED Capability Description
- CID: Configured IED Description
- SSD: System Specification Description
- SCD: Substation Configuration Description

The following IEC related tools are referenced in the procedures that describe the IED configuration process for IEC 61850:

- System configurator or Substation configurator: This is an IED independent system level tool that can import or export configuration files defined by IEC 61850-6. It can import configuration files (ICD) from several IEDs for system level engineering and is used to add system information shared by different IEDs. The system configuration generates a substation related configuration file (SCD) which is fed back to the IED configurator (for example, EnerVista UR Setup) for system related IED configuration. The system configurator should also be able to read a system specification file (SSD) to use as base for starting system engineering, or to compare it with an engineered system for the same substation.
- **IED configurator**: This is a vendor specific tool that can directly or indirectly generate an ICD file from the IED (for example, from a settings file). It can also import a system SCL file (SCD) to set communication configuration parameters (that is, required addresses, reception GOOSE datasets, IDs of incoming GOOSE datasets, etc.) for the IED. The IED configurator functionality is implemented in the GE Multilin EnerVista UR Setup software.

C.5.2 CONFIGURING IEC 61850 SETTINGS

Before creating an ICD file, the user can customize the IEC 61850 related settings for the IED. For example, the IED name and logical device instance can be specified to uniquely identify the IED within the substation, or transmission GOOSE datasets created so that the system configurator can configure the cross-communication links to send GOOSE messages from the IED. Once the IEC 61850 settings are configured, the ICD creation process will recognize the changes and generate an ICD file that contains the updated settings.

Some of the IED settings will be modified during they system configuration process. For example, a new IP address may be assigned, line items in a Transmission GOOSE dataset may be added or deleted, or prefixes of some logical nodes may be changed. While all new configurations will be mapped to the F60 settings file when importing an SCD file, all unchanged settings will preserve the same values in the new settings file.

These settings can be configured either directly through the relay panel or through the EnerVista UR Setup software (preferred method). The full list of IEC 61850 related settings for are as follows:

- Network configuration: IP address, IP subnet mask, and default gateway IP address (access through the Settings > Product Setup > Communications > Network menu tree in EnerVista UR Setup).
- Server configuration: IED name and logical device instance (access through the Settings > Product Setup > Communications > IEC 61850 > Server Configuration menu tree in EnerVista UR Setup).
- Logical node prefixes, which includes prefixes for all logical nodes except LLN0 (access through the Settings > Product Setup > Communications > IEC 61850 > Logical Node Prefixes menu tree in EnerVista UR Setup).

- MMXU deadbands, which includes deadbands for all available MMXUs. The number of MMXUs is related to the number of CT/VT modules in the relay. There are two MMXUs for each CT/VT module. For example, if a relay contains two CT/VT modules, there will be four MMXUs available (access through the Settings > Product Setup > Communications > IEC 61850 > MMXU Deadbands menu tree in EnerVista UR Setup).
- GGIO1 status configuration, which includes the number of status points in GGIO1 as well as the potential internal mappings for each GGIO1 indication. However only the number of status points will be used in the ICD creation process (access through the Settings > Product Setup > Communications > IEC 61850 > GGIO1 Status Configuration menu tree in EnerVista UR Setup).
- GGIO2 control configuration, which includes ctlModels for all SPCSOs within GGIO2 (access through the Settings > Product Setup > Communications > IEC 61850 > GGIO2 Control Configuration menu tree in EnerVista UR Setup).
- Configurable transmission GOOSE, which includes eight configurable datasets that can be used for GOOSE transmission. The GOOSE ID can be specified for each dataset (it must be unique within the IED as well as across the whole substation), as well as the destination MAC address, VLAN priority, VLAN ID, ETYPE APPID, and the dataset items. The selection of the dataset item is restricted by firmware version; for version 7.2x, only GGIO1.ST.Indx.stVal and GGIO1.ST.Indx.q are valid selection (where x is between 1 to N, and N is determined by number of GGIO1 status points). Although configurable transmission GOOSE can also be created and altered by some third-party system configurators, we recommend configuring transmission GOOSE for GE Multilin IEDs before creating the ICD, and strictly within EnerVista UR Setup software or the front panel display (access through the Settings > Product Setup > Communications > IEC 61850 > GSSE/GOOSE Configuration > Transmission > Tx Configurable GOOSE menu tree in EnerVista UR Setup).
- Configurable reception GOOSE, which includes eight configurable datasets that can be used for GOOSE reception.
 However, unlike datasets for transmission, datasets for reception only contains dataset items, and they are usually created automatically by process of importing the SCD file (access through the Settings > Product Setup > Communications > IEC 61850 > GSSE/GOOSE Configuration > Reception > Rx Configurable GOOSE menu tree in EnerVista UR Setup).
- Remote devices configuration, which includes remote device ID (GOOSE ID or GoID of the incoming transmission GOOSE dataset), ETYPE APPID (of the GSE communication block for the incoming transmission GOOSE), and DATASET (which is the name of the associated reception GOOSE dataset). These settings are usually done automatically by process of importing SCD file (access through the Settings > Inputs/Outputs > Remote Devices menu tree in EnerVista UR Setup).
- Remote inputs configuration, which includes device (remote device ID) and item (which dataset item in the associated reception GOOSE dataset to map) values. Only the items with cross-communication link created in SCD file should be mapped. These configurations are usually done automatically by process of importing SCD file (access through the Settings > Inputs/Outputs > Remote Inputs menu tree in EnerVista UR Setup).

C.5.3 ABOUT ICD FILES

The SCL language is based on XML, and its syntax definition is described as a W3C XML Schema. ICD is one type of SCL file (which also includes SSD, CID and SCD files). The ICD file describes the capabilities of an IED and consists of four major sections:

- Header
- Communication
- IEDs
- DataTypeTemplates

The root file structure of an ICD file is illustrated below.

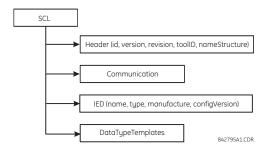


Figure C-2: ICD FILE STRUCTURE, SCL (ROOT) NODE

The Header node identifies the ICD file and its version, and specifies options for the mapping of names to signals

The **Communication** node describes the direct communication connection possibilities between logical nodes by means of logical buses (sub-networks) and IED access ports. The communication section is structured as follows.

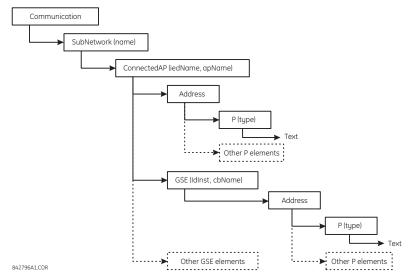


Figure C-3: ICD FILE STRUCTURE, COMMUNICATIONS NODE

The **SubNetwork** node contains all access points which can (logically) communicate with the sub-network protocol and without the intervening router. The **ConnectedAP** node describes the IED access point connected to this sub-network. The **Address** node contains the address parameters of the access point. The **GSE** node provides the address element for stating the control block related address parameters, where **IdInst** is the instance identification of the logical device within the IED on which the control block is located, and **cbName** is the name of the control block.

The **IED** node describes the (pre-)configuration of an IED: its access points, the logical devices, and logical nodes instantiated on it. Furthermore, it defines the capabilities of an IED in terms of communication services offered and, together with its **LNType**, instantiated data (DO) and its default or configuration values. There should be only one IED section in an ICD since it only describes one IED.

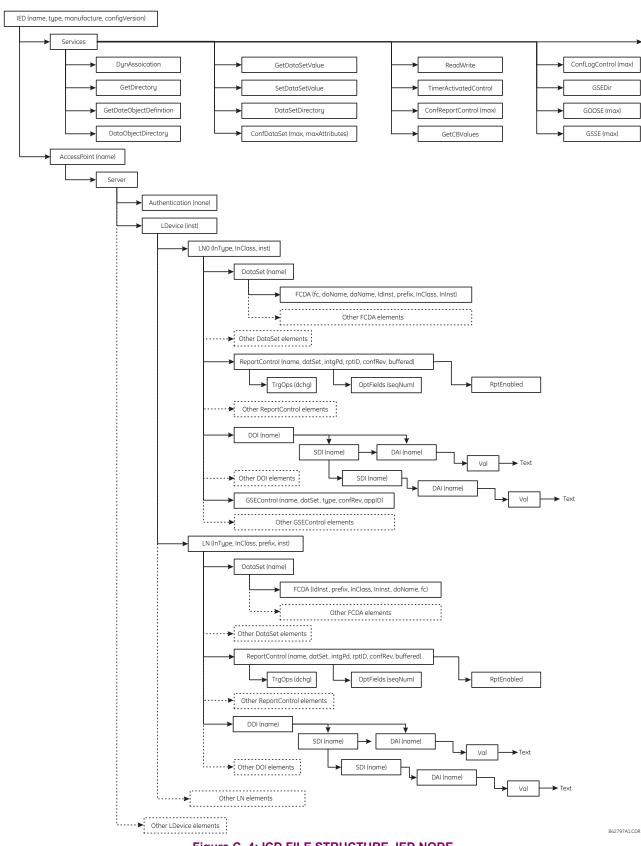


Figure C-4: ICD FILE STRUCTURE, IED NODE

The **DataTypeTemplates** node defines instantiable logical node types. A logical node type is an instantiable template of the data of a logical node. A **LnodeType** is referenced each time that this instantiable type is needed with an IED. A logical node type template is built from DATA (DO) elements, which again have a DO type, which is derived from the DATA classes (CDC). DOs consist of attributes (DA) or of elements of already defined DO types (SDO). The attribute (DA) has a functional constraint, and can either have a basic type, be an enumeration, or a structure of a **DAType**. The DAType is built from BDA elements, defining the structure elements, which again can be **BDA** elements of have a base type such as DA.

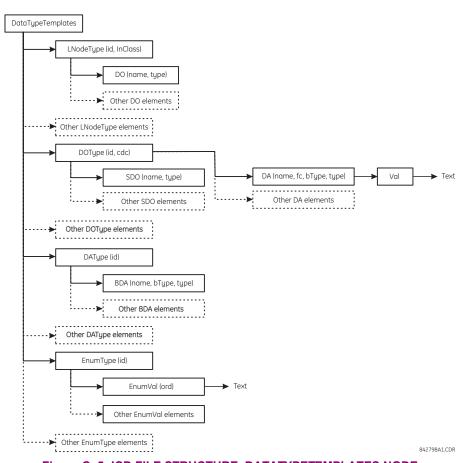
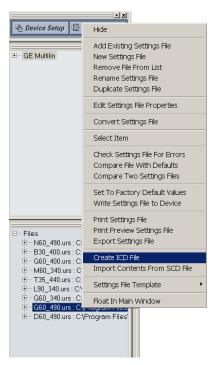



Figure C-5: ICD FILE STRUCTURE, DATATYPETEMPLATES NODE

C.5.4 CREATING AN ICD FILE WITH ENERVISTA UR SETUP

An ICD file can be created directly from a connected F60 IED or from an offline F60 settings file with the EnerVista UR Setup software using the following procedure:

1. Right-click the connected UR-series relay or settings file and select Create ICD File.

2. The EnerVista UR Setup will prompt to save the file. Select the file path and enter the name for the ICD file, then click **OK** to generate the file.

The time to create an ICD file from the offline F60 settings file is typically much quicker than create an ICD file directly from the relay.

C.5.5 ABOUT SCD FILES

System configuration is performed in the system configurator. While many vendors (including GE Multilin) are working their own system configuration tools, there are some system configurators available in the market (for example, Siemens DIGSI version 4.6 or above and ASE Visual SCL Beta 0.12).

Although the configuration tools vary from one vendor to another, the procedure is pretty much the same. First, a substation project must be created, either as an empty template or with some system information by importing a system specification file (SSD). Then, IEDs are added to the substation. Since each IED is represented by its associated ICD, the ICD files are imported into the substation project, and the system configurator validates the ICD files during the importing process. If the ICD files are successfully imported into the substation project, it may be necessary to perform some additional minor steps to attach the IEDs to the substation (see the system configurator manual for details).

Once all IEDs are inserted into the substation, further configuration is possible, such as:

- Assigning network addresses to individual IEDs.
- Customizing the prefixes of logical nodes.
- Creating cross-communication links (configuring GOOSE messages to send from one IED to others).

When system configurations are complete, the results are saved to an SCD file, which contains not only the configuration for each IED in the substation, but also the system configuration for the entire substation. Finally, the SCD file is passed back to the IED configurator (vendor specific tool) to update the new configuration into the IED.

The SCD file consists of at least five major sections:

- Header.
- Substation.
- Communication.
- IED section (one or more).
- DataTypeTemplates.

The root file structure of an SCD file is illustrated below.

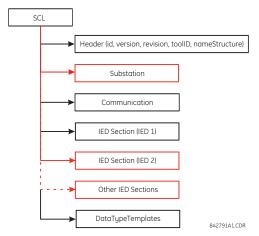


Figure C-6: SCD FILE STRUCTURE, SCL (ROOT) NODE

Like ICD files, the **Header** node identifies the SCD file and its version, and specifies options for the mapping of names to signals.

The **Substation** node describes the substation parameters:

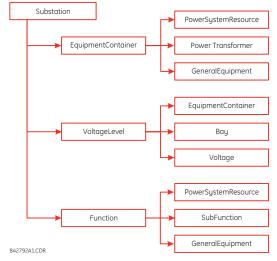


Figure C-7: SCD FILE STRUCTURE, SUBSTATION NODE

The **Communication** node describes the direct communication connection possibilities between logical nodes by means of logical buses (sub-networks) and IED access ports. The communication section is structured as follows.

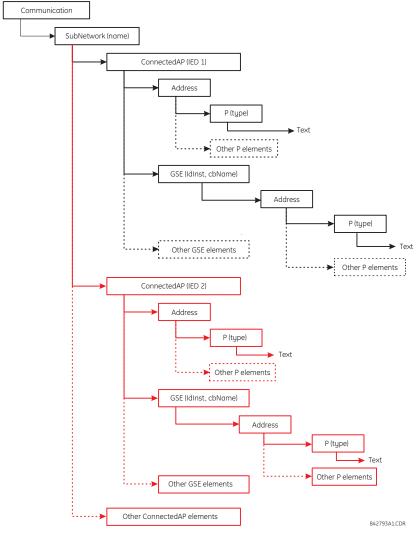


Figure C-8: SCD FILE STRUCTURE, COMMUNICATIONS NODE

The **SubNetwork** node contains all access points which can (logically) communicate with the sub-network protocol and without the intervening router. The **ConnectedAP** node describes the IED access point connected to this sub-network. The **Address** node contains the address parameters of the access point. The **GSE** node provides the address element for stating the control block related address parameters, where **IdInst** is the instance identification of the logical device within the IED on which the control block is located, and **cbName** is the name of the control block.

The **IED Section** node describes the configuration of an IED.

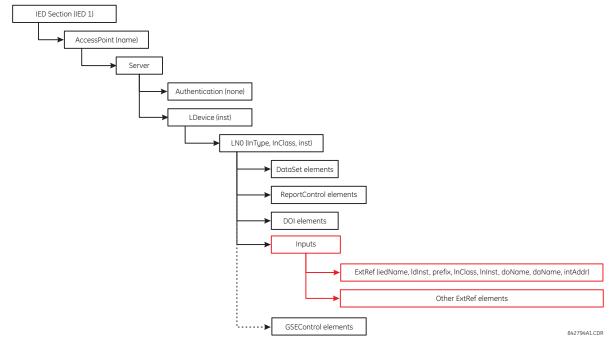
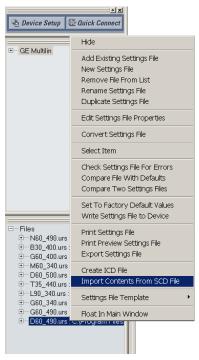
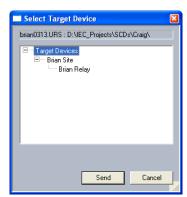



Figure C-9: SCD FILE STRUCTURE, IED NODE

C.5.6 IMPORTING AN SCD FILE WITH ENERVISTA UR SETUP


The following procedure describes how to update the F60 with the new configuration from an SCD file with the EnerVista UR Setup software.

1. Right-click anywhere in the files panel and select the Import Contents From SCD File item.

2. Select the saved SCD file and click Open.

- 3. The software will open the SCD file and then prompt the user to save a UR-series settings file. Select a location and name for the URS (UR-series relay settings) file.
 - If there is more than one GE Multilin IED defined in the SCD file, the software prompt the user to save a UR-series settings file for each IED.
- 4. After the URS file is created, modify any settings (if required).
- To update the relay with the new settings, right-click on the settings file in the settings tree and select the Write Settings File to Device item.
- 6. The software will prompt for the target device. Select the target device from the list provided and click **Send**. The new settings will be updated to the selected device.

C.6.1 ACSI BASIC CONFORMANCE STATEMENT

SERVICES		SERVER/ PUBLISHER	UR-FAMILY
CLIENT-SER	VER ROLES		
B11	Server side (of Two-party Application-Association)	c1	Yes
B12	Client side (of Two-party Application-Association)		
SCSMS SUPI	PORTED		
B21	SCSM: IEC 61850-8-1 used		Yes
B22	SCSM: IEC 61850-9-1 used		
B23	SCSM: IEC 61850-9-2 used		
B24	SCSM: other		
GENERIC SU	BSTATION EVENT MODEL (GSE)		
B31	Publisher side	0	Yes
B32	Subscriber side		Yes
TRANSMISSI	ON OF SAMPLED VALUE MODEL (SVC)	•	
B41	Publisher side	0	
B42	Subscriber side		

NOTE

c1: shall be "M" if support for LOGICAL-DEVICE model has been declared

O: Optional M: Mandatory

C.6.2 ACSI MODELS CONFORMANCE STATEMENT

SERVICES		SERVER/ PUBLISHER	UR-FAMILY
IF SERVE	R SIDE (B11) SUPPORTED		
M1	Logical device	c2	Yes
M2	Logical node	с3	Yes
M3	Data	c4	Yes
M4	Data set	с5	Yes
M5	Substitution	0	
M6	Setting group control	0	
	REPORTING		
M7	Buffered report control	0	Yes
M7-1	sequence-number		
M7-2	report-time-stamp		
M7-3	reason-for-inclusion		
M7-4	data-set-name		
M7-5	data-reference		
M7-6	buffer-overflow		
M7-7	entryID		
M7-8	BufTm		
M7-9	IntgPd		
M7-10	GI		
M8	Unbuffered report control	0	Yes
M8-1	sequence-number		
M8-2	report-time-stamp		
M8-3	reason-for-inclusion		

SERVICES		SERVER/ PUBLISHER	UR-FAMILY
M8-4	data-set-name		
M8-5	data-reference		
M8-6	BufTm		
M8-7	IntgPd		
M8-8	GI		
	Logging	0	
M9	Log control	0	
M9-1	IntgPd		
M10	Log	0	
M11	Control	M	Yes
IF GSE (B	31/32) IS SUPPORTED		
	GOOSE	0	Yes
M12-1	entryID		
M12-2	DataRefinc		
M13	GSSE	0	Yes
IF SVC (B	41/B42) IS SUPPORTED		
M14	Multicast SVC	0	
M15	Unicast SVC	0	
M16	Time	M	Yes
M17	File transfer	0	Yes

- c2: shall be "M" if support for LOGICAL-NODE model has been declared
- c3: shall be "M" if support for DATA model has been declared
- c4: shall be "M" if support for DATA-SET, Substitution, Report, Log Control, or Time models has been declared
- c5: shall be "M" if support for Report, GSE, or SMV models has been declared
- M: Mandatory

C.6.3 ACSI SERVICES CONFORMANCE STATEMENT

In the table below, the acronym AA refers to Application Associations (TP: Two Party / MC: Multicast). The c6 to c10 entries are defined in the notes following the table.

SERVICES		AA: TP/MC	SERVER/ PUBLISHER	UR FAMILY
SERVER	R (CLAUSE 7)			
S1	ServerDirectory	TP	M	Yes
APPLIC	ATION ASSOCIATION (CLAUSE 8)	-	-	
S2	Associate	TP	M	Yes
S3	Abort	TP	M	Yes
S4	Release	TP	M	Yes
LOGICA	L DEVICE (CLAUSE 9)	-	-	
S5	LogicalDeviceDirectory	TP	M	Yes
LOGICA	L NODE (CLAUSE 10)	<u>.</u>		
S6	LogicalNodeDirectory	TP	M	Yes
S7	GetAllDataValues	TP	M	Yes
DATA (C	LAUSE 11)	<u>.</u>		
S8	GetDataValues	TP	M	Yes
S9	SetDataValues	TP	0	Yes
S10	GetDataDirectory	TP	M	Yes
S11	GetDataDefinition	TP	M	Yes

SERVICES		AA: TP/MC	SERVER/ PUBLISHER	UR FAMILY	
DATA SET (C	LAUSE 12)				
S12	GetDataSetValues	TP	M	Yes	
S13	SetDataSetValues	TP	0		
S14	CreateDataSet	TP	0		
S15	DeleteDataSet	TP	0		
S16	GetDataSetDirectory	TP	0	Yes	
SETTING GR	OUP CONTROL (CLAUSE 16)				
S18	SelectActiveSG	TP	0		
S19	SelectEditSG	TP	0		
S20	SetSGValues	TP	0		
S21	ConfirmEditSGValues	TP	0		
S22	GetSGValues	TP	0		
S23	GetSGCBValues	TP	0		
REPORTING	(CLAUSE 17)				
	BUFFERED REPORT CONTROL BLO	CK (BRCB)			
S24	Report	TP	c6	Yes	
S24-1	data-change (dchg)			Yes	
S24-2	qchg-change (qchg)				
S24-3	data-update (dupd)				
S25	GetBRCBValues	TP	c6	Yes	
S26	SetBRCBValues	TP	c6	Yes	
	UNBUFFERED REPORT CONTROL B	LOCK (URCB)			
S27	Report	TP	c6	Yes	
S27-1	data-change (dchg)			Yes	
S27-2	qchg-change (qchg)				
S27-3	data-update (dupd)				
S28	GetURCBValues	TP	c6	Yes	
S29	SetURCBValues	TP	c6	Yes	
LOGGING (C	LAUSE 17)				
<u> </u>	LOG CONTROL BLOCK				
S30	GetLCBValues	TP	M		
S31	SetLCBValues	TP	M		
	LOG				
S32	QueryLogByTime	TP	M		
S33	QueryLogByEntry	TP	M		
S34	GetLogStatusValues	TP	M		
	BSTATION EVENT MODEL (GSE) (CLA				
	GOOSE-CONTROL-BLOCK (CLAUSE				
S35	SendGOOSEMessage	MC	c8	Yes	
S36	GetReference	TP	c9	100	
S37	GetGOOSEElementNumber	TP	c9		
S38	GetGoCBValues	TP	O	Yes	
S39	SetGoCBValues	TP	0	Yes	
	GSSE-CONTROL-BLOCK (ANNEX C)				
S40					
S40 S41	-	TP	c8	Yes	
	GetCSSEElomontNumber		c9		
				Yes	
S42 S43	GetGSSEElementNumber GetGsCBValues	TP TP	c9 C9		

SERVICES		AA: TP/MC	SERVER/ PUBLISHER	UR FAMILY	
S44	SetGsCBValues	TP	0	Yes	
TRANSM	ISSION OF SAMPLED VALUE MODEL (S)	/C) (CLAUSE 19)	-		
	MULTICAST SVC				
S45	SendMSVMessage	MC	c10		
S46	GetMSVCBValues	TP	0		
S47	SetMSVCBValues	TP	0		
	UNICAST SVC	•			
S48	SendUSVMessage	MC	c10		
S49	GetUSVCBValues	TP	0		
S50	SetUSVCBValues	TP	0		
CONTRO	L (CLAUSE 20)	-1	1	•	
S51	Select		0	Yes	
S52	SelectWithValue	TP	0		
S53	Cancel	TP	0	Yes	
S54	Operate	TP	M	Yes	
S55	Command-Termination	TP	0		
S56	TimeActivated-Operate	TP	0		
FILE TRA	ANSFER (CLAUSE 23)	•	-		
S57	GetFile	TP	M	Yes	
S58	SetFile	TP	0		
S59	DeleteFile	TP	0		
S60	GetFileAttributeValues	TP	М	Yes	
TIME (CL	AUSE 5.5)	-1	1	•	
T1	Time resolution of internal clock (nearest negative power of 2 in seconds)			20	
T2	Time accuracy of internal clock			SNTP, IRIG-B	
Т3	Supported TimeStamp resolution (nearest value of 2 ⁻ⁿ in seconds, according to 6.1.2.9.3.2)			20	

- c6: shall declare support for at least one (BRCB or URCB)
 - c7: shall declare support for at least one (QueryLogByTime or QueryLogAfter)
 - **c8**: shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage)
 - c9: shall declare support if TP association is available
 - c10: shall declare support for at least one (SendMSVMessage or SendUSVMessage)

C.7.1 LOGICAL NODES TABLE

The UR-series of relays supports IEC 61850 logical nodes as indicated in the following table. Note that the actual instantiation of each logical node is determined by the product order code. For example, the logical node "PDIS" (distance protection) is available only in the D60 Line Distance Relay.

Table C-1: IEC 61850 LOGICAL NODES (Sheet 1 of 4)

NODES	UR-FAMILY	
L: SYSTEM LOGICAL NODES	<u>.</u>	
LPHD: Physical device information	Yes	
LLN0: Logical node zero	Yes	
LCCH: Physical communication channel supervision		
LGOS: GOOSE subscription		
LSVS: Sampled value subscription		
LTIM: Time management		
LTMS: Time master supervision		
LTRK: Service tracking		
A: LOGICAL NODES FOR AUTOMATIC CONTROL		
ANCR: Neutral current regulator		
ARCO: Reactive power control		
ATCC: Automatic tap changer controller		
AVCO: Voltage control		
C: LOGICAL NODES FOR CONTROL	<u> </u>	
CALH: Alarm handling		
CCGR: Cooling group control		
CILO: Interlocking		
CPOW: Point-on-wave switching		
CSWI: Switch controller	Yes	
CSYN: Synchronizer controller		
F: LOGICAL NODES FOR FUNCTIONAL BLOCKS		
FCNT: Counter		
FCSD: Curve shape description		
FFIL: Generic filler		
FLIM: Control function output limitation		
FPID: PID regulator		
FRMP: Ramp function		
FSPT: Set-point control function		
FXOT: Action at over threshold		
FXUT: Action at under threshold		
G: LOGICAL NODES FOR GENERIC REFERENCES		
GAPC: Generic automatic process control		
GGIO: Generic process I/O	Yes	
GLOG: Generic log		
GSAL: Generic security application		
I: LOGICAL NODES FOR INTERFACING AND ARCHIVING		
IARC: Archiving		
IHMI: Human machine interface		
ISAF: Safety alarm function		
ITCI: Telecontrol interface		
ITMI: Telemonitoring interface		

Table C-1: IEC 61850 LOGICAL NODES (Sheet 2 of 4)

NODES	UR-FAMILY
ITPC: Teleprotection communication interfaces	
K: LOGICAL NODES FOR MECHANICAL AND NON-ELECTRIC F	PRIMARY EQUIPMENT
KFAN: Fan	
KFIL: Filter	
KPMP: Pump	
KTNK: Tank	
KVLV: Valve control	
M: LOGICAL NODES FOR METERING AND MEASUREMENT	
MENV: Environmental information	
MFLK: Flicker measurement name	
MHAI: Harmonics or interharmonics	
MHAN: Non phase related harmonics or interharmonics	
MHYD: Hydrological information	
MMDC: DC measurement	
MMET: Meteorological information	
MMTN: Metering	
MMTR: Metering	
MMXN: Non-phase-related measurement	Yes
MMXU: Measurement	Yes
MSQI: Sequence and imbalance	Yes
MSTA: Metering statistics	
P: LOGICAL NODES FOR PROTECTION FUNCTIONS	
PDIF: Differential	Yes
PDIR: Direction comparison	
PDIS: Distance	Yes
PDOP: Directional overpower	
PDUP: Directional underpower	
PFRC: Rate of change of frequency	
PHAR: Harmonic restraint	
PHIZ: Ground detector	
PIOC: Instantaneous overcurrent	Yes
PMRI Motor restart inhibition	
PMSS: Motor starting time supervision	
POPF: Over power factor	
PPAM: Phase angle measuring	
PRTR: Rotor protection	
PSCH: Protection scheme	
PSDE: Sensitive directional earth fault	
PTEF: Transient earth fault	
PTOC: Time overcurrent	Yes
PTOF: Overfrequency	
PTOV: Overvoltage	Yes
PTRC: Protection trip conditioning	Yes
PTTR: Thermal overload	
PTUC: Undercurrent	
PTUF: Underfrequency	
PTUV: Undervoltage	Yes

Table C-1: IEC 61850 LOGICAL NODES (Sheet 3 of 4)

NODES	UR-FAMILY
PUPF: Underpower factor	
PVOC: Voltage controlled time overcurrent	
PVPH: Volts per Hz	
PZSU: Zero speed or underspeed	
Q: LOGICAL NODES FOR POWER QUALITY EVENTS	
QFVR: Frequency variation	
QITR: Current transient	
QIUB: Current unbalance variation	
QVTR: Voltage transient	
QVUB: Voltage unbalance variation	
QVVR: Voltage variation	
R: LOGICAL NODES FOR PROTECTION-RELATED FUNCTIONS	
RADR: Disturbance recorder channel analogue	
RBDR: Disturbance recorder channel binary	
RBRF: Breaker failure	
RDIR: Directional element	
RDRE: Disturbance recorder function	
RDRS: Disturbance record handling	
RFLO: Fault locator	Yes
RMXU: Differential measurements	
RPSB: Power swing detection/blocking	Yes
RREC: Autoreclosing	Yes
RSYN: Synchronism-check or synchronizing	
S: LOGICAL NODES FOR SENSORS AND MONITORING	
SARC: Monitoring and diagnostics for arcs	
SCBR: Circuit breaker supervision	
SIMG: Insulation medium supervision (gas)	
SIML: Insulation medium supervision (liquid)	
SLTC: Tap changer supervision	
SOPM: Supervision of operating mechanism	
SPDC: Monitoring and diagnostics for partial discharges	
SPTR: Power transformer supervision	
SSWI: Circuit switch supervision	
STMP: Temperature supervision	
SVBR: Vibration supervision	
T: LOGICAL NODES FOR INSTRUMENT TRANSFORMERS	
TANG: Angle	
TAXD: Axial displacement	
TCTR: Current transformer	
TDST: Distance	
TFLW: Liquid flow	
TFRQ: Frequency	
TGSN: Generic sensor	
THUM: Humidity	
TLVL: Media level	
TMGF: Magnetic field	
TMVM: Movement sensor	

Table C-1: IEC 61850 LOGICAL NODES (Sheet 4 of 4)

NODES	UR-FAMILY
TPOS: Position indicator	
TPRS: Pressure sensor	
TRTN: Rotation transmitter	
TSND: Sound pressure sensor	
TTMP: Temperature sensor	
TTNS: Mechanical tension	
TVBR: Vibration sensor	
TVTR: Voltage transformer	
TWPH: Water acidity	
X: LOGICAL NODES FOR SWITCHGEAR	
XCBR: Circuit breaker	Yes
XSWI: Circuit switch	Yes
Y: LOGICAL NODES FOR POWER TRANSFORMERS	
YEFN: Earth fault neutralizer (Petersen coil)	
YLTC: Tap changer	
YPSH: Power shunt	
YPTR: Power transformer	
Z: LOGICAL NODES FOR FURTHER POWER SYSTEM EQUIPMENT	
ZAXN: Auxiliary network	
ZBAT: Battery	
ZBSH: Bushing	
ZCAB: Power cable	
ZCAP: Capacitor bank	
ZCON: Converter	
ZGEN: Generator	
ZGIL: Gas insulated line	
ZLIN: Power overhead line	
ZMOT: Motor	
ZREA: Reactor	
ZRES: Resistor	
ZRRC: Rotating reactive component	
ZSAR: Surge arrestor	
ZSCR: Semi-conductor controlled rectifier	
ZSMC: Synchronous machine	
ZTCF: Thyristor controlled frequency converter	
ZTRC: Thyristor controlled reactive component	

IEC 60870-5-103 is defined as a companion standard for the informative element of the protection equipment. IEC 60870-5-103 defines communication for a serial, unbalanced link only. Communication speeds are defined as either 9600 or 19200 baud.

This manual assumes basic knowledge of the IEC 60870-5-103 protocol and the standard IEC 60870 documents relating to the protocol.

Standard IEC 60870 documents relating to IEC 60870-5-103:

- IEC 60870-5-1 Transmission frame formats
- IEC 60870-5-2 Link transmission procedures
- IEC 60870-5-3 General structure of application data
- IEC 60870-5-4 Definition and coding of application information elements
- IEC 60870-5-5 Basic application functions
- IEC 60870-5-6 Conformance testing guidelines

An IEC 60870-5-103 device is required to provide an interoperability table. Interoperability means that any required application data in the device, which can be coded into an IEC 60870-5-103 data type, can be mapped into the IEC 60870-5-103 address space. This data is recognized by any IEC 60870-5-103 master.

D.1.2 FACTOR AND OFFSET CALCULATION TO TRANSMIT MEASURAND

The general formula for the transmitted value is Xt = a * X + b

where X is the measurand, a is the multiplication factor, b is the offset and Xt is the value transmitted.

The conditions for determining a and b, when the values exceed the range are:

4096 = a*Xmax + b (Xmax is the maximum value for the measurand)

-4095 =a*Xmin + b (Xmin is the minimum value for the measurand)

By solving the above system of equations for a and b, we find that:

```
a = 8191 / (Xmax - Xmin)
```

b = -4096 * (Xmax + Xmin) / (Xmax - Xmin)

So

Xt = 8191/(Xmax - Xmin)) * X - 4096 * (Xmax + Xmin) / (Xmax - Xmin)

We may further simplify the above formula for situations where:

1)

Xmin = -Xmax (positive and negative values):

Xt = (8191/2*Xmax) * X

a = 4096/Xmax

b = 0

2)

If Xmin = 0 (only positive values)

Xt = (8191/Xmax) * X - 4096

a = 2 * 4096/Xmax

b = -4096

To calculate Xmax, one needs to know the rated value for the specific type of measurand.

Xmax = 2.4 * Xrated

_

The boxes indicate the following: \blacksquare – used in standard direction; \square – not used.

1. PHYSICAL LAYER

Electrical interface

- **区** EIA RS-485
- 32 Number of loads for one protection equipment

Optical interface

- ☐ Glass fibre
- ☐ Plastic fibre
- ☐ F-SMA type connector
- □ BFOC/2.5 type connector

Transmission speed

- ☑ 9600 bits/s
- 🗵 19200 bits/s

2. LINK LAYER

There are no choices for the link layer.

3. APPLICATION LAYER

Transmission mode for application data

Mode 1 (least significant octet first), as defined in 4.10 of IEC 60870-5-4, is used exclusively in this companion standard.

Common address of ASDU

- ☑ One COMMON ADDRESS OF ASDU (identical with station address)
- ☐ More than one COMMON ADDRESS OF ASDU

Selection of standard information numbers in monitor direction

System functions in monitor direction

INF Semantics

- ☑ <0> End of general interrogation
- ✓ <2> Reset FCB
- ✓ Seset CU
- ✓ <4> Start/restart
- ✓ S Power on

Status indications in monitor direction

INF Semantics

- ☐ <16> Auto-recloser active
- ☐ <17> Teleprotection active
- ☐ <18> Protection active
- ☐ <19> LED reset
- ☐ <20> Monitor direction blocked
- ☐ <21> Test mode

	<22>	Local parameter setting
		Characteristic 1
	<24>	Characteristic 2
	<25>	Characteristic 3
	<26>	Characteristic 4
	<27>	Auxiliary input 1
	<28>	Auxiliary input 2
	<29>	Auxiliary input 3
	<30>	Auxiliary input 4
Sı	ıpervis	ion indications in monitor direction
	INF	Semantics
	<32>	Measurand supervision I
	<33>	Measurand supervision V
	<35>	Phase sequence supervision
	<36>	Trip circuit supervision
	<37>	l>> back-up operation
	<38>	VT fuse failure
	<39>	Teleprotection disturbed
	<46>	Group warning
	<47>	Group alarm
Ea	rth fau	It indications in monitor direction
	INF	Semantics
	<48>	Earth fault L ₁
	<49>	Earth fault L ₂
	<50>	Earth fault L ₃
	<51>	Earth fault forward, meaning line
	<52>	Earth fault reverse, meaning busbar
Fa	ult ind	ications in monitor direction
	INF	Semantics
	<64>	Start/pick-up L ₁
	<65>	Start/pick-up L ₂
	<66>	Start/pick-up L ₃
	<67>	Start/pick-up N
	<68>	General trip
	<69>	Trip L ₁
	<70>	Trip L ₂
	<71>	Trip L ₃
	<72>	Trip I>> (back-up operation)
	<73>	Fault location X in ohms
	<74>	Fault forward/line

	<75>	Fault reverse/busbar
	<76>	Teleprotection signal transmitted
	<77>	Teleprotection signal received
	<78>	Zone 1
	<79>	Zone 2
	<08>	Zone 3
	<81>	Zone 4
	<82>	Zone 5
	<83>	Zone 6
	<84>	General start / pick-up
	<85>	Breaker failure
	<86>	Trip measuring system L ₁
	<87>	Trip measuring system L ₂
	<88>	Trip measuring system L ₃
	<89>	Trip measuring system E
	<90>	Trip I>
	<91>	Trip I>>
	<92>	Trip IN>
	<93>	Trip IN>>
Αι	ıto-recl	osure indications in monitor direction
	INF S	Semantics
	<128>	CB 'on' by AR
	<129>	CB 'on' by long-time AR
	<130>	AR blocked
Me	easurar	nds in monitor direction
	INF S	Semantics
	<144>	Measurand I
	<145>	Measurands I, V
	<146>	Measurands I, V, P, Q
	<147>	Measurands I_N , V_{EN}
	<148>	Measurands I _{L123} , V _{L123} , P, Q, f
Ge	eneric f	unctions in monitor direction
	INF S	Semantics
	<240>	Read headings of all defined groups
	<241>	Read values or attributes of all entries of one group
	<243>	Read directory of a single entry
	<244>	Read value or attribute of a single entry
	<245>	End of general interrogation of generic data
	<249>	Write entry with confirmation

☐ <250> Write entry with execution

☐ <251> Write entry aborted

Selection of standard information numbers in control direction

System functions in control direction

INF Semantics

- <0> Initiation of general interrogation
- ▼ <0> Time synchronization

General commands in control direction

INF Semantics

- □ <16> Auto-recloser on/off
- □ <17> Teleprotection on/off
- □ <18> Protection on/off
- ☐ <19> LED reset
- □ <23> Activate characteristic 1
- □ <24> Activate characteristic 2
- □ <25> Activate characteristic 3
- □ <26> Activate characteristic 4

Generic functions in control direction

INF Semantics

- ☐ <240> Read headings of all defined groups
- ☐ <241> Read values or attributes of all entries of one group
- ☐ <243> Read directory of a single entry
- ☐ <244> Read value or attribute of a single entry
- □ <245> General interrogation of generic data
- ☐ <248> Write entry
- □ <249> Write entry with confirmation
- □ <250> Write entry with execution
- ☐ <251> Write entry abort

Basic application functions

- ☐ Test mode
- ☐ Blocking of monitor direction
- ☐ Disturbance data
- ☐ Generic services
- ☐ Private data

Miscellaneous

MEASURAND MAX MVAL = TIMES RATED VALUE 1,2 OR 2,4 Current L₁ X Current L₂ X Current L₃ X Voltage L_{1-F} X Voltage L_{2-E} X

D.1 IEC 60870-5-103 APPENDIX D

MEASURAND	MAX MVAL = TIMES RATED VALUE		
	1,2	OR	2,4
Voltage L _{3-E}			×
Active power P			×
Reactive power Q			×
Frequency f			×
Voltage L ₁ -L ₂			×

E.1.1 INTEROPERABILITY DOCUMENT

This document is adapted from the IEC 60870-5-104 standard. For this section the boxes indicate the following: \square – used in standard direction; \square – not used; \square – cannot be selected in IEC 60870-5-104 standard.

1. SYSTEM OR DEVICE:

- ☐ System Definition
- ☐ Controlling Station Definition (Master)
- ☑ Controlled Station Definition (Slave)

2. NETWORK CONFIGURATION:

■ Point to Point
 ■ Multipoint
 ■ Multipoint Star

3. PHYSICAL LAYER

Transmission Speed (control direction):

Unbalanced Interchange Circuit V.24/V.28 Standard:	Unbalanced Interchange Circuit V.24/V.28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
■ 100 bits/sec.	■ 2400 bits/sec.	■ 2400 bits/sec.
200 bits/sec.	■ 4 800 bits/sec .	■ 4 800 bits/sec .
■ 300 bits/sec.	■ 9600 bits/sec.	■ 9600 bits/sec.
600 bits/sec.		■ 19200 bits/sec .
■ 1200 bits/sec .		■ 38400 bits/sec .
		■ 56000 bits/sec .
		■ 64000 bits/sec.

Transmission Speed (monitor direction):

Unbalanced Interchange Circuit V.24/V.28 Standard:	Unbalanced Interchange Circuit V.24/V.28 Recommended if >1200 bits/s:	Balanced Interchange Circuit X.24/X.27:
■ 100 bits/sec.	■ 2400 bits/sec.	■ 2400 bits/sec.
■ 200 bits/sec .	■ 4 800 bits/sec .	■ 4 800 bits/sec .
■ 300 bits/sec .	■ 9600 bits/sec.	■ 9600 bits/sec.
■ 600 bits/sec.		■ 19200 bits/sec .
■ 1200 bits/sec .		■ 38400 bits/sec.
		■ 56000 bits/sec .
		■ 64000 bits/sec.

4. LINK LAYER

Link Transmission Procedure:	Address Field of the Link:	
■ Balanced Transmission	■ Not Present (Balanced Transmission Only)	
Unbalanced Transmission	■ One Octet	
	■ Two Octets	
	■ Structured	
	■ Unstructured	
Frame Length (maximum length, number of octets): Not selectable in companion IEC 60870-5-104 standard		

E.1 IEC 60870-5-104 APPENDIX E

When using an unbalanced link layer, the following ADSU types are returned in class 2 messages (low priority) with the indicated causes of transmission:

- The standard assignment of ADSUs to class 2 messages is used as follows:
- A special assignment of ADSUs to class 2 messages is used as follows:

5. APPLICATION LAYER

Transmission Mode for Application Data:

Mode 1 (least significant octet first), as defined in Clause 4.10 of IEC 60870-5-4, is used exclusively in this companion standard.

Common Address of ADSU:

- One Octet
- ▼ Two Octets

Information Object Address:

■ One Octet

Structured

■ Two Octets

☐ Unstructured

☑ Three Octets

Cause of Transmission:

- One Octet
- ☑ Two Octets (with originator address). Originator address is set to zero if not used.

Maximum Length of APDU: 253 (the maximum length may be reduced by the system.

Selection of standard ASDUs:

For the following lists, the boxes indicate the following: \blacksquare – used in standard direction; \square – not used; \blacksquare – cannot be selected in IEC 60870-5-104 standard.

Process information in monitor direction

M_SP_NA_1
M_SP_TA_1
M_DP_NA_1
M_DP_TA_1
M_ST_NA_1
M_ST_TA_1
M_BO_NA_1
M_BO_TA_1
M_ME_NA_1
M_NE_TA_1
M_ME_NB_1
M_NE_TB_1
M_ME_NC_1
M_NE_TC_1
M_IT_NA_1
M_IT_TA_1
M_EP_TA_1
M_EP_TB_1
M_EP_TC_1
M_SP_NA_1

E.1 IEC 60870-5-104

□ <21> := Measured value, normalized value without quantity descriptor	M_ME_ND_1
☑ <30> := Single-point information with time tag CP56Time2a	M_SP_TB_1
☐ <31> := Double-point information with time tag CP56Time2a	M_DP_TB_1
□ <32> := Step position information with time tag CP56Time2a	M_ST_TB_1
☐ <33> := Bitstring of 32 bits with time tag CP56Time2a	M_BO_TB_1
☐ <34> := Measured value, normalized value with time tag CP56Time2a	M_ME_TD_1
□ <35> := Measured value, scaled value with time tag CP56Time2a	M_ME_TE_1
□ <36> := Measured value, short floating point value with time tag CP56Time2a	M_ME_TF_1
☑ <37> := Integrated totals with time tag CP56Time2a	M_IT_TB_1
☐ <38> := Event of protection equipment with time tag CP56Time2a	M_EP_TD_1
☐ <39> := Packed start events of protection equipment with time tag CP56Time2a	M_EP_TE_1
□ <40> := Packed output circuit information of protection equipment with time tag CP56Time2a	M_EP_TF_1

Either the ASDUs of the set <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, and <19> or of the set <30> to <40> are used.

Process information in control direction

APPENDIX E

区 <45> := Single command	C_SC_NA_1
☐ <46> := Double command	C_DC_NA_1
☐ <47> := Regulating step command	C_RC_NA_1
☐ <48> := Set point command, normalized value	C_SE_NA_1
☐ <49> := Set point command, scaled value	C_SE_NB_1
□ <50> := Set point command, short floating point value	C_SE_NC_1
□ <51> := Bitstring of 32 bits	C_BO_NA_1
☑ <58> := Single command with time tag CP56Time2a	C_SC_TA_1
□ <59> := Double command with time tag CP56Time2a	C_DC_TA_1
☐ <60> := Regulating step command with time tag CP56Time2a	C_RC_TA_1
☐ <61> := Set point command, normalized value with time tag CP56Time2a	C_SE_TA_1
☐ <62> := Set point command, scaled value with time tag CP56Time2a	C_SE_TB_1
☐ <63> := Set point command, short floating point value with time tag CP56Time2a	C_SE_TC_1
☐ <64> := Bitstring of 32 bits with time tag CP56Time2a	C_BO_TA_1

Either the ASDUs of the set <45> to <51> or of the set <58> to <64> are used.

System information in monitor direction

<70> := End of initialization

System information in control direction	
	C IC NA 1

E 1002 :- Interrogation command	0_10_11A_1
☑ <101> := Counter interrogation command	C_CI_NA_1
☑ <102> := Read command	C_RD_NA_1
☑ <103> := Clock synchronization command (see Clause 7.6 in standard)	C_CS_NA_1
■<104> := Test command	C_TS_NA_1
☑ <105> := Reset process command	C_RP_NA_1
■ <106> := Delay acquisition command	C_CD_NA_1
	C_TS_TA_1

M_EI_NA_1

Parameter in control direction

☐ <110> := Parameter of measured value, normalized value	PE_ME_NA_1
☐ <111> := Parameter of measured value, scaled value	PE_ME_NB_1
区 <112> := Parameter of measured value, short floating point value	PE_ME_NC_1
☐ <113> := Parameter activation	PE_AC_NA_1

File transfer

□ <120> := File Ready	F_FR_NA_1
☐ <121> := Section Ready	F_SR_NA_1
☐ <122> := Call directory, select file, call file, call section	F_SC_NA_1
☐ <123> := Last section, last segment	F_LS_NA_1
☐ <124> := Ack file, ack section	F_AF_NA_1
☐ <125> := Segment	F_SG_NA_1
☐ <126> := Directory (blank or X, available only in monitor [standard] direction)	C_CD_NA_1

Type identifier and cause of transmission assignments

(station-specific parameters)

In the following table:

- •Shaded boxes are not required.
- •Black boxes are not permitted in this companion standard.
- •Blank boxes indicate functions or ASDU not used.
- •'X' if only used in the standard direction

TYPE IDENTIFICATION CAUSE OF TRANSMISSION																				
		PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<1>	M_SP_NA_1			Х		Х						Х	Х		Х					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1																			
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1																			
<8>	M_BO_TA_1																			
<9>	M_ME_NA_1																			

APPENDIX E E.1 IEC 60870-5-104

NO. MINEMONIC 1 2 3 4 5 6 7 8 9 10 11 12 13 26 16 16 16 16 16 16 16	TYPE	IDENTIFICATION							С	AUS	E OF	TRA	NSM	ISSIC	N						
NO. MNEMONIC 1 2 3 4 5 6 7 8 9 10 11 12 13 16 41 44 45 46 47			PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR
Color	NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13		to	44	45	46	47
<12> M_ME_TB_1 X <t< td=""><td><10></td><td>M_ME_TA_1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	<10>	M_ME_TA_1																			
STATE STAT	<11>	M_ME_NB_1																			
<143> M_ME_TC_1 X <	<12>	M_ME_TB_1																			
STATE STAT	<13>	M_ME_NC_1	Х		Х		Х									Х					
Color	<14>	M_ME_TC_1																			
117> M_EP_TA_1 0 <t< td=""><td><15></td><td>M_IT_NA_1</td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td></t<>	<15>	M_IT_NA_1			Х												Х				
<18> M_EP_TB_1	<16>																				
<18> M_EP_TB_1	<17>																				
C19> M_EP_TC_1	<18>																				
<20> M_PS_NA_1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																					
<21> M_ME_ND_1 X	<20>																				
SON M_SP_TB_1																					
<31> M_DP_TB_1 </td <td><30></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<30>				Х								Х	Х							
<32> M_ST_TB_1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<33> M_BO_TB_1 <t< td=""><td><32></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	<32>																				
<34> M_ME_TD_1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<35> M_ME_TE_1																					
<36> M_ME_TF_1 X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<37> M_IT_TB_1 X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<38> M_EP_TD_1					Х												Х				
<39> M_EP_TE_1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																					
<40> M_EP_TF_1 X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<45> C_SC_NA_1 X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<46> C_DC_NA_1								Х	Х	Х	Х	Х									
<47> C_RC_NA_1								Ė		H											
<48> C_SE_NA_1																					
<49> C_SE_NB_1																					
<50> C_SE_NC_1																					
<51> C_BO_NA_1																					
<58> C_SC_TA_1 X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
<59> C_DC_TA_1								Х	Х	Х	Х	Х									
								Ë													
	<60>	C_RC_TA_1																			

TYPE	IDENTIFICATION							С	AUS	E OF	TRA	NSM	SSIC	N						
	PERIODIC, CYCLIC	BACKGROUND SCAN	SPONTANEOUS	INITIALIZED	REQUEST OR REQUESTED	ACTIVATION	ACTIVATION CONFIRMATION	DEACTIVATION	DEACTIVATION CONFIRMATION	ACTIVATION TERMINATION	RETURN INFO CAUSED BY LOCAL CMD	FILE TRANSFER	INTERROGATED BY GROUP <number></number>	REQUEST BY GROUP <n> COUNTER REQ</n>	UNKNOWN TYPE IDENTIFICATION	UNKNOWN CAUSE OF TRANSMISSION	UNKNOWN COMMON ADDRESS OF ADSU	UNKNOWN INFORMATION OBJECT ADDR	UNKNOWN INFORMATION OBJECT ADDR	
NO.	MNEMONIC	1	2	3	4	5	6	7	8	9	10	11	12	13	20 to 36	37 to 41	44	45	46	47
<61>	C_SE_TA_1																			
<62>	C_SE_TB_1																			
<63>	C_SE_TC_1																			
<64>	C_BO_TA_1																			
<70>	M_EI_NA_1*)				Х															
<100>	C_IC_NA_1						Х	Х	Х	Х	Х									
<101>	C_CI_NA_1						Х	Х			Х									
<102>	C_RD_NA_1					Х														
<103>	C_CS_NA_1			Х			Х	Х												
<104>	C_TS_NA_1																			
<105>	C_RP_NA_1						Х	Х												
<106>	C_CD_NA_1																			
<107>	C_TS_TA_1																			
<110>	P_ME_NA_1																			
<111>	P_ME_NB_1																			
<112>	P_ME_NC_1						Х	X							X					
<113>	P_AC_NA_1																			
<120>	F_FR_NA_1																			
<121>	F_SR_NA_1																			
<122>	F_SC_NA_1																			
<123>	F_LS_NA_1																			
<124>	F_AF_NA_1																			
<125>	F_SG_NA_1																			
<126>	F_DR_TA_1*)																			

6. BASIC APPLICATION FUNCTIONS

Station Initialization:

■ Remote initialization

Cyclic Data Transmission:

☑ Cyclic data transmission

Read Procedure:

■ Read procedure

APPENDIX E E.1 IEC 60870-5-104

Spontaneous Transmission:

☑ Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous:

The following type identifications may be transmitted in succession caused by a single status change of an information object. The particular information object addresses for which double transmission is enabled are defined in a project-specific list.

	Single point information: M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, and M_PS_NA_1
	Double point information: M_DP_NA_1, M_DP_TA_1, and M_DP_TB_1
	Step position information: M_ST_NA_1, M_ST_TA_1, and M_ST_TB_1
	Bitstring of 32 bits: M_BO_NA_1, M_BO_TA_1, and M_BO_TB_1 (if defined for a specific project)
	$\label{eq:measured_model} \mbox{Measured value, normalized value: $M_ME_NA_1$, $M_ME_TA_1$, $M_ME_ND_1$, and $M_ME_TD_1$}$
	Measured value, scaled value: M_ME_NB_1, M_ME_TB_1, and M_ME_TE_1
	Measured value, short floating point number: M_ME_NC_1, M_ME_TC_1, and M_ME_TF_1
4-4:	on interrogation:

Station interrogation:

- ☑ Global
- ☑ Group 1 ☑ Group 5 ☑ Group 9 ☑ Group 13 ☑ Group 2 ☑ Group 6 ☑ Group 10 ☑ Group 14 ☑ Group 3 ☑ Group 7 ☑ Group 11 ☑ Group 15 ☑ Group 4 ☑ Group 8 ☑ Group 12 ☑ Group 16

Clock synchronization:

☑ Clock synchronization (optional, see Clause 7.6)

Command transmission:

- ☑ Direct command transmission
- ☐ Direct setpoint command transmission
- ☑ Select and execute command
- ☐ Select and execute setpoint command
- ☑ C SE ACTTERM used
- No additional definition
- ☑ Short pulse duration (duration determined by a system parameter in the outstation)
- Long pulse duration (duration determined by a system parameter in the outstation)
- ☑ Persistent output
- ☑ Supervision of maximum delay in command direction of commands and setpoint commands

Maximum allowable delay of commands and setpoint commands: 10 $\rm s$

Transmission of integrated totals:

- Mode A: Local freeze with spontaneous transmission
- ☑ Mode B: Local freeze with counter interrogation
- Mode C: Freeze and transmit by counter-interrogation commands
- ☑ Mode D: Freeze by counter-interrogation command, frozen values reported simultaneously
- ☑ Counter read
- ☑ Counter freeze without reset

- ☑ Counter freeze with reset
- ☑ Counter reset
- ☑ General request counter
- Request counter group 1
- Request counter group 2
- Request counter group 3
- Request counter group 4

Parameter loading:

- ☑ Threshold value
- ☐ Smoothing factor
- ☐ Low limit for transmission of measured values
- ☐ High limit for transmission of measured values

Parameter activation:

☐ Activation/deactivation of persistent cyclic or periodic transmission of the addressed object

Test procedure:

☐ Test procedure

File transfer:

File transfer in monitor direction:

- □ Transparent file
- ☐ Transmission of disturbance data of protection equipment
- ☐ Transmission of sequences of events
- ☐ Transmission of sequences of recorded analog values

File transfer in control direction:

□ Transparent file

Background scan:

□ Background scan

Acquisition of transmission delay:

■ Acquisition of transmission delay

Definition of time outs:

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
t_0	30 s	Timeout of connection establishment	120 s
<i>t</i> ₁	15 s	Timeout of send or test APDUs	15 s
t ₂	10 s	Timeout for acknowledgements in case of no data messages $t_2 < t_1$	10 s
t ₃	20 s	Timeout for sending test frames in case of a long idle state	20 s

Maximum range of values for all time outs: 1 to 255 s, accuracy 1 s

Maximum number of outstanding I-format APDUs k and latest acknowledge APDUs (w):

PARAMETER	DEFAULT VALUE	REMARKS	SELECTED VALUE
k	12 APDUs	Maximum difference receive sequence number to send state variable	12 APDUs
W	8 APDUs	Latest acknowledge after receiving w I-format APDUs	8 APDUs

APPENDIX E E.1 IEC 60870-5-104

Maximum range of values k: 1 to 32767 ($2^{15} - 1$) APDUs, accuracy 1 APDU

Maximum range of values w: 1 to 32767 APDUs, accuracy 1 APDU

Recommendation: w should not exceed two-thirds of k.

Portnumber:

PARAMETER	VALUE	REMARKS
Portnumber	2404	In all cases

RFC 2200 suite:

RFC 2200 is an official Internet Standard which describes the state of standardization of protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers a broad spectrum of actual standards used in the Internet. The suitable selection of documents from RFC 2200 defined in this standard for given projects has to be chosen by the user of this standard.

- Ethernet 802.3
- ☐ Serial X.21 interface
- ☐ Other selection(s) from RFC 2200 (list below if selected)

E.1.2 IEC 60870-5-104 POINT LIST

The IEC 60870-5-104 data points are configured through the **SETTINGS** \Rightarrow **PRODUCT SETUP** \Rightarrow \oplus **COMMUNICATIONS** \Rightarrow \oplus **DNP** / **IEC104 POINT LISTS** menu. See the *Communications* section of chapter 5 for details.

F.1.1 DNP V3.00 DEVICE PROFILE

The following table provides a 'Device Profile Document' in the standard format defined in the DNP 3.0 Subset Definitions Document.

Table F-1: DNP V3.00 DEVICE PROFILE (Sheet 1 of 3)

(Also see the IMPLEMENTATION TABLE in the following	(Also see the IMPLEMENTATION TABLE in the following section)				
Vendor Name: General Electric Multilin					
Device Name: UR Series Relay					
Highest DNP Level Supported:	Device Function:				
For Requests: Level 2	☐ Master				
For Responses: Level 2	☑ Slave				
Notable objects, functions, and/or qualifiers supported list is described in the attached table):	in addition to the Highest DNP Levels Supported (the complete				
Binary Inputs (Object 1)					
Binary Input Changes (Object 2)					
Binary Outputs (Object 10)					
Control Relay Output Block (Object 12)					
Binary Counters (Object 20)					
Frozen Counters (Object 21)					
Counter Change Event (Object 22)					
Frozen Counter Event (Object 23)					
Analog Inputs (Object 30)					
Analog Input Changes (Object 32)					
Analog Deadbands (Object 34)					
Time and Date (Object 50)					
File Transfer (Object 70)					
Internal Indications (Object 80)					
Maximum Data Link Frame Size (octets):	Maximum Application Fragment Size (octets):				
Transmitted: 292	Transmitted: configurable up to 2048				
Received: 292	Received: 2048				
Maximum Data Link Re-tries:	Maximum Application Layer Re-tries:				
☑ None	☑ None				
☐ Fixed at 3	☐ Configurable				
☐ Configurable					
Requires Data Link Layer Confirmation:					
⊠ Never					
☐ Always ☐ Sometimes					
☐ Configurable					

Table F-1: DNP V3.00 DEVICE PROFILE (Sheet 2 of 3)

Requires Application Layer Confirmation:								
 □ Never □ Always ☑ When reporting Event Data ☑ When sending multi-fragment responses □ Sometimes 								
☐ Configura	☐ Configurable							
Timeouts while	e waiting for:							
Data Link Confi Complete Appl Application Cor Complete Appl	Fragment:	☑ None☑ None☑ None☑ None	 ☐ Fixed at ☐ Fixed at ☑ Fixed at 10 s ☐ Fixed at 	□ Variable□ Variable□ Variable□ Variable	☐ Configurable☐ Configurable☐ Configurable☐ Configurable			
Others:								
Transmission E Need Time Inte Select/Operate Binary input ch Analog input ch Counter change Frozen counter	Transmission Delay: Need Time Interval: Configurable (default = 24 hrs.) Select/Operate Arm Timeout: Binary input change scanning period: Analog input change scanning period: Counter change scanning period: Frozen counter event scanning period: Unsolicited response notification delay: No intentional delay to show intentional delay 8 times per power system cycle 500 ms 500 ms 100 ms							
Sends/Execute	es Control Ope	rations:						
WRITE Binary SELECT/OPER DIRECT OPER DIRECT OPER	RATE	■ Never□ Never□ Never□ Never	□ Always ☑ Always ☑ Always ☑ Always	☐ Sometimes☐ Sometimes☐ Sometimes☐ Sometimes	☐ Configurable☐ Configurable☐ Configurable☐ Configurable			
Count > 1		□ Sometimes☑ Sometimes☑ Sometimes☑ Sometimes☑ Sometimes	☐ Configurable☐ Configurable☐ Configurable☐ Configurable☐ Configurable					
Queue Clear Queue	Never Never	☐ Always ☐ Always	☐ Sometimes☐ Sometimes	☐ Configura				
Explanation of 'Sometimes': Object 12 points are mapped to UR Virtual Inputs. The persistence of Virtual Inputs is determined by the VIRTUAL INPUT X TYPE settings. Both "Pulse On" and "Latch On" operations perform the same function in the UR; that is, the appropriate Virtual Input is put into the "On" state. If the Virtual Input is set to "Self-Reset", it will reset after one pass of FlexLogic. The On/Off times and Count value are ignored. "Pulse Off" and "Latch Off" operations put the appropriate Virtual Input into the "Off" state. "Trip" and "Close" operations both put the appropriate Virtual Input into the "On" state.								

F

Table F-1: DNP V3.00 DEVICE PROFILE (Sheet 3 of 3)

Reports Binary Input Change Events when no specific variation requested:	Reports time-tagged Binary Input Change Events when no specific variation requested:
□ Never☑ Only time-tagged	□ Never☑ Binary Input Change With Time
☐ Only non-time-tagged	☐ Binary Input Change With Relative Time
☐ Configurable	☐ Configurable (attach explanation)
Sends Unsolicited Responses:	Sends Static Data in Unsolicited Responses:
□ Never	☑ Never
☑ Configurable	☐ When Device Restarts
☐ Only certain objects	☐ When Status Flags Change
☐ Sometimes (attach explanation)	
ENABLE/DISABLE unsolicited Function codes supported	No other options are permitted.
Default Counter Object/Variation:	Counters Roll Over at:
☐ No Counters Reported	☐ No Counters Reported
☐ Configurable (attach explanation)	☐ Configurable (attach explanation)
☑ Default Object: 20	☑ 16 Bits (Counter 8)
Default Variation: 1	☑ 32 Bits (Counters 0 to 7, 9)
☑ Point-by-point list attached	☐ Other Value:
	☑ Point-by-point list attached
Sends Multi-Fragment Responses:	
⊠ Yes	
□ No	

F.1.2 IMPLEMENTATION TABLE

The following table identifies the variations, function codes, and qualifiers supported by the F60 in both request messages and in response messages. For static (non-change-event) objects, requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01. Static object requests sent with qualifiers 17 or 28 will be responded with qualifiers 17 or 28. For change-event objects, qualifiers 17 or 28 are always responded.

Table F-2: IMPLEMENTATION TABLE (Sheet 1 of 4)

OBJECT		REQUEST		RESPONSE		
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
1	0	Binary Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	Binary Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2	Binary Input with Status	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see <i>Note 2</i>)
2	0	Binary Input Change (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	Binary Input Change without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	Binary Input Change with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response 130 (unsol. resp.)	17, 28 (index)
	3	Binary Input Change with Relative Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
10	0	Binary Output Status (Variation 0 is used to request default variation)	1 (read)	00, 01(start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	2	Binary Output Status	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
12	1	Control Relay Output Block	3 (select) 4 (operate) 5 (direct op) 6 (dir. op, noack)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	echo of request
20	0	Binary Counter (Variation 0 is used to request default variation)	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01(start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)		
	1	32-Bit Binary Counter	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. See the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the F60 is not restarted, but the DNP process is restarted.

Table F-2: IMPLEMENTATION TABLE (Sheet 2 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
20 cont'd	2	16-Bit Binary Counter	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	5	32-Bit Binary Counter without Flag	22 (assign class) 1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	6	16-Bit Binary Counter without Flag	1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear) 10 (frz. cl. noack) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
21	0	Frozen Counter (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)		
	1	32-Bit Frozen Counter	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	2	16-Bit Frozen Counter	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	9	32-Bit Frozen Counter without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
	10	16-Bit Frozen Counter without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
22	0	Counter Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	400	47.00 %
	2	32-Bit Counter Change Event 16-Bit Counter Change Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity) 06 (no range, or all)	129 (response) 130 (unsol. resp.) 129 (response)	17, 28 (index)
		-		07, 08 (limited quantity)	130 (unsol. resp.)	
	5	32-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	6	16-Bit Counter Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
23	0	Frozen Counter Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
	1	32-Bit Frozen Counter Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)
	2	16-Bit Frozen Counter Event	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		17, 28 (index)

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. See the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the F60 is not restarted, but the DNP process is restarted.

Table F-2: IMPLEMENTATION TABLE (Sheet 3 of 4)

OBJECT			REQUEST		RESPONSE		
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	
23 cont'd	5	32-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
	6	16-Bit Frozen Counter Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
30	0	Analog Input (Variation 0 is used to request default variation)	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)			
	1	32-Bit Analog Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)	
	2	16-Bit Analog Input	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)	
	3	32-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)	
	4	16-Bit Analog Input without Flag	1 (read) 22 (assign class)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)	
	5	short floating point	1 (read) 22 (assign class)	00, 01 (start-stop) 06(no range, or all) 07, 08(limited quantity) 17, 28(index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see <i>Note 2</i>)	
32	0	Analog Change Event (Variation 0 is used to request default variation)	1 (read)	06 (no range, or all) 07, 08 (limited quantity)			
	1	32-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
	2	16-Bit Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
	3	32-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
	4	16-Bit Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
	5	short floating point Analog Change Event without Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
	7	short floating point Analog Change Event with Time	1 (read)	06 (no range, or all) 07, 08 (limited quantity)	129 (response) 130 (unsol. resp.)	17, 28 (index)	
34	0	Analog Input Reporting Deadband (Variation 0 is used to request default variation)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)			
	1	16-bit Analog Input Reporting Deadband (default – see Note 1)	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)	
			2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)			

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. See the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the F60 is not restarted, but the DNP process is restarted.

Table F-2: IMPLEMENTATION TABLE (Sheet 4 of 4)

OBJECT			REQUEST		RESPONSE	
OBJECT NO.	VARIATION NO.	DESCRIPTION	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)	FUNCTION CODES (DEC)	QUALIFIER CODES (HEX)
34 cont'd	2	32-bit Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
			2 (write)	00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)		
	3	Short floating point Analog Input Reporting Deadband	1 (read)	00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
50	1	Time and Date (default – see Note 1)	1 (read) 2 (write)	00, 01 (start-stop) 06 (no range, or all) 07 (limited qty=1) 08 (limited quantity) 17, 28 (index)	129 (response)	00, 01 (start-stop) 17, 28 (index) (see Note 2)
52	2	Time Delay Fine			129 (response)	07 (limited quantity) (quantity = 1)
60	0	Class 0, 1, 2, and 3 Data	1 (read) 20 (enable unsol) 21 (disable unsol) 22 (assign class)	06 (no range, or all)		
	1	Class 0 Data	1 (read) 22 (assign class)	06 (no range, or all)		
	2	Class 1 Data	1 (read)	06 (no range, or all)		
	3	Class 2 Data	20 (enable unsol)	07, 08 (limited quantity)		
	4	Class 3 Data	21 (disable unsol) 22 (assign class)			
70	0	File event - any variation	1 (read)	06 (no range, or all) 07, 08 (limited quantity)		
			22 (assign class)	06 (no range, or all)	100	51
	2	File authentication	29 (authenticate)	5b (free format)	129 (response)	5b (free format)
	3	File command	25 (open) 27 (delete)	5b (free format)		
	4	File command status	26 (close) 30 (abort)	5b (free format)	129 (response) 130 (unsol. resp.)	5b (free format)
	5	File transfer	1 (read) 2 (write)	5b (free format)	129 (response) 130 (unsol. resp.)	5b (free format)
	6	File transfer status			129 (response) 130 (unsol. resp.)	5b (free format)
	7	File descriptor	28 (get file info.)	5b (free format)	129 (response) 130 (unsol. resp.)	5b (free format)
80	1	Internal Indications	1 (read)	00, 01 (start-stop) (index =7)	129 (response)	00, 01 (start-stop)
			2 (write) (see Note 3)	00 (start-stop) (index =7)		
		No Object (function code only) see Note 3	13 (cold restart)			
		No Object (function code only)	14 (warm restart)			
		No Object (function code only)	23 (delay meas.)			

Note 1: A default variation refers to the variation responded when variation 0 is requested and/or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. See the *Communications* section in Chapter 5 for details. This optimizes the class 0 poll data size.

Note 2: For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for change-event objects, qualifiers 17 or 28 are always responded.)

Note 3: Cold restarts are implemented the same as warm restarts – the F60 is not restarted, but the DNP process is restarted.

F.2.1 BINARY INPUT POINTS

The DNP binary input data points are configured through the **PRODUCT SETUP** ⇒ ⊕ **COMMUNICATIONS** ⇒ ⊕ **DNP** / **IEC104 POINT** LISTS ⇒ **BINARY INPUT** / **MSP POINTS** menu. See the *Communications* section of Chapter 5 for details. When a freeze function is performed on a binary counter point, the frozen value is available in the corresponding frozen counter point.

BINARY INPUT POINTS

Static (Steady-State) Object Number: 1

Change Event Object Number: 2

Request Function Codes supported: 1 (read), 22 (assign class)

Static Variation reported when variation 0 requested: 2 (Binary Input with status), Configurable

Change Event Variation reported when variation 0 requested: 2 (Binary Input Change with Time), Configurable

Change Event Scan Rate: 8 times per power system cycle

Change Event Buffer Size: **500**Default Class for All Points: **1**

F.2.2 BINARY AND CONTROL RELAY OUTPUT

Supported Control Relay Output Block fields: Pulse On, Pulse Off, Latch On, Latch Off, Paired Trip, Paired Close.

BINARY OUTPUT STATUS POINTS

Object Number: 10

Request Function Codes supported: 1 (read)

Default Variation reported when Variation 0 requested: 2 (Binary Output Status)

CONTROL RELAY OUTPUT BLOCKS

Object Number: 12

Request Function Codes supported: 3 (select), 4 (operate), 5 (direct operate), 6 (direct operate, noack)

Table F-3: BINARY/CONTROL OUTPUTS

Table F-3: BINARY/CONTROL OUTPUTS			
POINT	NAME/DESCRIPTION		
0	Virtual Input 1		
1	Virtual Input 2		
2	Virtual Input 3		
3	Virtual Input 4		
4	Virtual Input 5		
5	Virtual Input 6		
6	Virtual Input 7		
7	Virtual Input 8		
8	Virtual Input 9		
9	Virtual Input 10		
10	Virtual Input 11		
11	Virtual Input 12		
12	Virtual Input 13		
13	Virtual Input 14		
14	Virtual Input 15		
15	Virtual Input 16		
16	Virtual Input 17		
17	Virtual Input 18		
18	Virtual Input 19		
19	Virtual Input 20		
20	Virtual Input 21		
21	Virtual Input 22		
22	Virtual Input 23		
23	Virtual Input 24		
24	Virtual Input 25		
25	Virtual Input 26		
26	Virtual Input 27		
27	Virtual Input 28		
28	Virtual Input 29		
29	Virtual Input 30		
30	Virtual Input 31		
31	Virtual Input 32		

Table F-3: BINARY/CONTROL OUTPUTS

POINT	NAME/DESCRIPTION
32	Virtual Input 33
33	Virtual Input 34
34	Virtual Input 35
35	Virtual Input 36
36	Virtual Input 37
37	Virtual Input 38
38	Virtual Input 39
39	Virtual Input 40
40	Virtual Input 41
41	Virtual Input 42
42	Virtual Input 43
43	Virtual Input 44
44	Virtual Input 45
45	Virtual Input 46
46	Virtual Input 47
47	Virtual Input 48
48	Virtual Input 49
49	Virtual Input 50
50	Virtual Input 51
51	Virtual Input 52
52	Virtual Input 53
53	Virtual Input 54
54	Virtual Input 55
55	Virtual Input 56
56	Virtual Input 57
57	Virtual Input 58
58	Virtual Input 59
59	Virtual Input 60
60	Virtual Input 61
61	Virtual Input 62
62	Virtual Input 63
63	Virtual Input 64

F.2.3 COUNTERS

The following table lists both Binary Counters (Object 20) and Frozen Counters (Object 21). When a freeze function is performed on a Binary Counter point, the frozen value is available in the corresponding Frozen Counter point.

BINARY COUNTERS

Static (Steady-State) Object Number: 20

Change Event Object Number: 22

Request Function Codes supported: 1 (read), 7 (freeze), 8 (freeze noack), 9 (freeze and clear),

10 (freeze and clear, noack), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Binary Counter with Flag)

Change Event Variation reported when variation 0 requested: 1 (32-Bit Counter Change Event without time)

Change Event Buffer Size: **10**Default Class for all points: **3**

FROZEN COUNTERS

Static (Steady-State) Object Number: 21

Change Event Object Number: 23

Request Function Codes supported: 1 (read)

Static Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter with Flag)

Change Event Variation reported when variation 0 requested: 1 (32-Bit Frozen Counter Event without time)

Change Event Buffer Size: **10**Default Class for all points: **3**

Table F-4: BINARY AND FROZEN COUNTERS

POINT INDEX	NAME/DESCRIPTION
0	Digital Counter 1
1	Digital Counter 2
2	Digital Counter 3
3	Digital Counter 4
4	Digital Counter 5
5	Digital Counter 6
6	Digital Counter 7
7	Digital Counter 8
8	Oscillography Trigger Count
9	Events Since Last Clear

A counter freeze command has no meaning for counters 8 and 9. F60 Digital Counter values are represented as 32-bit integers. The DNP 3.0 protocol defines counters to be unsigned integers. Care should be taken when interpreting negative counter values.

F.2.4 ANALOG INPUTS

The DNP analog input data points are configured through the PRODUCT SETUP ⇒ ♣ COMMUNICATIONS ⇒ ♣ DNP / IEC104 POINT LISTS ⇒ ANALOG INPUT / MME POINTS menu. See the Communications section of Chapter 5 for details.

It is important to note that 16-bit and 32-bit variations of analog inputs are transmitted through DNP as signed numbers. Even for analog input points that are not valid as negative values, the maximum positive representation is 32767 for 16-bit values and 2147483647 for 32-bit values. This is a DNP requirement.

The deadbands for all Analog Input points are in the same units as the Analog Input quantity. For example, an Analog Input quantity measured in volts has a corresponding deadband in units of volts. This is in conformance with DNP Technical Bulletin 9809-001: Analog Input Reporting Deadband. Relay settings are available to set default deadband values according to data type. Deadbands for individual Analog Input Points can be set using DNP Object 34.

Static (Steady-State) Object Number: 30

Change Event Object Number: 32

Request Function Codes supported: 1 (read), 2 (write, deadbands only), 22 (assign class)

Static Variation reported when variation 0 requested: 1 (32-Bit Analog Input)

Change Event Variation reported when variation 0 requested: 1 (Analog Change Event without Time)

Change Event Scan Rate: defaults to 500 ms

Change Event Buffer Size: **256**Default Class for all Points: **2**

G.1.1 RADIUS SERVER CONFIGURATION

The following procedure is an example of how to set up a simple RADIUS server, where the third-party tool used is also an example.

- 1. Download and install FreeRADIUS as the RADIUS server.
- In the RADIUSD.CONF file, locate the "bind_address" field and enter your RADIUS server IP address.
- 3. In the USERS.CONF file in the <Path to Radius>\etc\raddb folder, add the following text to configure a user "Tester" with an Administrator role.

```
Tester:
->User-Password == "Testing1!1"
->GE-UR-Role = Administrator
```

4. In the CLIENTS.CONF file in the <Path to Radius>\etc\raddb folder, add the following text to define a RADIUS client, where the client IP address is 10.0.0.2, the subnet mask is 255.255.255.0, the shared secret specified here is also configured on the UR device for successful authentication, and the shortname is a short, optional alias that can be used in place of the IP address.

```
client 10.0.0.2/24 {
secret = testing 123
shortname = private-network-1
```

5. In the <Path to Radius>\etc\raddb folder, create a file called dictionary.ge and add the following content.

GE VSAs

VENDOR	GE	2910	
# Management authorization BEGIN-VENDOR	GE		
# Role ID ATTRIBUTE	GE-UR-Role	1	integer
# GE-UR-ROLE values VALUE GE-UR-ROle VALUE GE-UR-ROle VALUE GE-UR-ROle VALUE GE-UR-ROle VALUE GE-UR-ROle	Administrator Supervisor Engineer Operator Observer	1 2 3 4 5	
END-VENDOR ####################################	GE ####################################	##############	

6. In the dictionary file in the <Path_to_Radius>\etc\raddb folder, add the following line.

```
$INCLUDE dictionary.ge
```

7. For the first start, run the RADIUS server in debug mode by entering

```
<Path_to_Radius>/start_radiusd_debug.bat
```

8. Set up the RADIUS client on the UR as follows. Access Device > Settings > Product Setup > Security. Configure the IP address and ports for the RADIUS server. Leave the GE vendor ID field at the default of 2910. Update the RADIUS shared secret as specified in the CLIENTS.CONF file.

L	-	

F60 REVISION	RELEASE DATE	ECO
1.5x	23 March 1999	N/A
1.6x	10 August 1999	URF-012
1.8x	29 October 1999	URF-014
1.8x	15 November 1999	URF-015
2.0x	17 December 1999	URF-016
2.2x	12 May 2000	URF-017
2.2x	14 June 2000	URF-020
2.2x	28 June 2000	URF-020a
2.4x	08 September 2000	URF-022
2.4x	03 November 2000	URF-024
2.6x	09 March 2001	URF-025
2.8x	28 September 2001	URF-027
2.9x	03 December 2001	URF-030
2.6x	27 February 2004	URX-120
3.0x	02 July 2002	URF-032
3.1x	30 August 2002	URF-034
3.0x	18 November 2002	URF-036
3.1x	18 November 2002	URF-038
3.0x	11 February 2003	URF-040
3.1x	11 February 2003	URF-042
3.2x	11 February 2003	URF-044
3.2x	02 June 2003	URX-084
3.3x	01 May 2003	URX-080
3.3x	29 May 2003	URX-083
3.4x	10 December 2003	URX-111
3.4x	09 February 2004	URX-115
4.0x	23 March 2004	URX-123
4.0x	17 May 2004	URX-136
4.2x	30 June 2004	URX-145
4.2x	23 July 2004	URX-151
4.4x	15 September 2004	URX-156
4.6x	15 February 2005	URX-176
4.8x	05 August 2005	URX-202
4.9x	15 December 2005	URX-208
4.9x	27 February 2006	URX-214
5.0x	31 March 2006	URX-217
5.0x	26 May 2006	URX-220
5.2x	23 October 2006	URX-230
5.2x	24 January 2007	URX-232
5.4x	26 June 2007	URX-242
5.4x	31 August 2007	URX-246
5.4x	17 October 2007	URX-251
5.5x	7 December 2007	URX-253
5.5x	22 February 2008	URX-258
5.5x	12 March 2008	URX-260
5.6x	27 June 2008	08-0390
	1.5x 1.6x 1.8x 1.8x 2.0x 2.2x 2.2x 2.2x 2.2x 2.4x 2.4x 2.6x 2.8x 2.9x 2.6x 3.0x 3.1x 3.0x 3.1x 3.0x 3.1x 3.0x 3.1x 3.0x 3.1x 3.0x 3.1x 4.0x 4.0x 4.0x 4.0x 4.0x 4.0x 4.2x 4.4x 4.6x 4.8x 4.9x 4.9x 5.0x 5.0x 5.2x 5.2x 5.4x 5.5x 5.5x 5.5x 5.5x	1.5x 23 March 1999 1.6x 10 August 1999 1.8x 29 October 1999 1.8x 29 October 1999 2.0x 17 December 1999 2.2x 12 May 2000 2.2x 28 June 2000 2.4x 08 September 2000 2.4x 03 November 2000 2.6x 09 March 2001 2.9x 03 December 2001 2.9x 03 December 2001 2.6x 27 February 2004 3.0x 02 July 2002 3.1x 30 August 2002 3.1x 18 November 2002 3.1x 18 November 2002 3.1x 17 February 2003 3.1x 18 February 2003 3.1x 17 February 2003 3.1x 18 November 2002 3.0x 11 February 2003 3.1x 11 February 2003 3.2x 02 June 2003 3.3x 01 May 2003 3.3x 01 May 2003 3.3x 09 February 2004 4.0x 23 March 2004 4.0x 23 March 2004 4.0x 17 May 2004 4.2x 23 July 2004 4.2x 23 July 2004 4.2x 23 July 2004 4.4x 15 September 2004 4.6x 15 February 2005 5.0x 31 March 2006 5.0x 26 May 2006 5.2x 23 October 2006 5.2x 24 January 2007 5.4x 31 August 2007 5.5x 7 December 2007 5.5x 12 March 2008

MANUAL P/N	F60 REVISION	RELEASE DATE	ECO
1601-0109-U1	5.7x	29 May 2009	09-0938
1601-0109-U2	5.7x	30 September 2009	09-1165
1601-0109-V1	5.8x	29 May 2010	09-1457
1601-0109-V2	5.8x	04 January 2011	11-2237
1601-0109-W1	5.9x	12 January 2011	11-2227
1601-0109-X1	6.0x	21 December 2011	11-2840
1601-0109-X2	6.0x	5 April 2012	12-3254
1601-0109-Y1	7.0x	30 September 2012	12-3529
1601-0109-Y2	7.0x	11 November 2012	12-3601
1601-0109-Z1	7.1x	30 March 2013	13-0126
1601-0109-AA1	7.2x	1 August 2013	13-0401

H.1.2 CHANGES TO THE F60 MANUAL

Table H-1: MAJOR UPDATES FOR F60 MANUAL REVISION AA1

PAGE (Z1)	PAGE (AA1)	CHANGE	DESCRIPTION
		Add	Added content for IEC 60870-5-103 throughout document
2-	2-	Update	Updated order codes
2-	2-	Update	Updated specifications
5-117	5-117	Update	Updated hysteresis numbers and logic diagrams in section 5.4.7 Phasor Measurement Unit
5-175	5-175	Update	Updated Neutral Directional Overcurrent settings to include Dual-V and Dual-I settings to reflect enhanced polarity criteria
8-		Delete	Deleted chapter 8 on security, moving content to other chapters
	10-	Add	Added Maintenance chapter, moving content from other chapters and adding new instructions to replace the battery
	D-	Add	Added new appendix on IEC 60870-5-103 interoperability

Table H-2: MAJOR UPDATES FOR F60 MANUAL REVISION Z1

PAGE (Y3)	PAGE (Z1)	CHANGE	DESCRIPTION
		Add	Added CPU options U and V to order code tables in chapter 2, a note above Rear Terminal View figure in chapter 3, and CPU Module Communications Wiring figure in chapter 3
		Add	Added Parallel Redundancy Protocol (PRP) to order code tables and specifications in chapter 2, section 5.2.5d Settings > Product Setup > Communications > Network, section 6.3.1 Actual Values > Status > PRP, and Appendix B Modbus table and F627 and F628 enumeration tables
1-1	1-1	Add	Added General Cautions and Warnings to section 1.1.1
1-1	1-1	Auu	Added General Cautions and Warnings to Section 1.1.1
1-5	1-5	Update	Revised section 1.3.1 on system requirements, including addition of support for Windows 7 and Windows Server 2008
2-10	2-10	Update	Updated several specifications
5-24	5-24	Add	Added parties 5.2 Fe Douting
5-24	5-24	Add	Added section 5.2.5e Routing
5-91	5-91	Update	Updated Figures 5-25 and 5-26 Dual Breaker Control Scheme Logic, sheets 1 and 2
5-95	5-95	Update	Updated Figure 5-27 Disconnect Switch Scheme Logic
5-263	5-263	Add	Reinserted section 5.8.5c Remote Devices: ID of Device for Receiving GSSE/GOOSE Messages, meaning the Settings > Input/Outputs > Remote Devices settings

Table H-3: MAJOR UPDATES FOR F60 MANUAL REVISION Y3

PAGE (Y2)	PAGE (Y3)	CHANGE	DESCRIPTION
	xi	Add	Added battery disposal information as chapter 0

Table H-4: MAJOR UPDATES FOR F60 MANUAL REVISION Y2

PAGE (Y1)	PAGE (Y2)	CHANGE	DESCRIPTION
All	All	Update	Minor changes throughout document
All	All	Delete	Deleted CPU options U and V
1-1	1-1	Update	Updated Figure 1-1 Rear Nameplate
2-4	2-4	Update	Updated Table 2-4 Order Codes for reduced size vertical units to indicate that modules 8L and 8N cannot be ordered with module 8Z
2-9	2-9	Update	Updated Table 2-8 Order Codes for vertical unit replacement modules to indicate that modules 8L and 8N cannot be ordered with module 8Z
3-8	3-8	Update	Updated Figure 3-10 Rear Terminal View

Table H-5: MAJOR UPDATES FOR F60 MANUAL REVISION Y1 (Sheet 1 of 2)

PAGE (X2)	PAGE (Y1)	CHANGE	DESCRIPTION
All	All	Delete	Deleted content pertaining to Ethernet switch
Title	Title	Update	Changed part numbers. Updated address and contact information.
1-1	1-1	Update	Updated address and contact information
2-	2-	Add	Added CPU options T,U, and V to order code table
2-	2-	Delete	Removed E, G, H, J, S from CPU options from order code tables
2-8	2-8	Delete	Deleted 9S, 2S, 2T from replacement module order code Tables 2-7 and 2-8
3-10	3-10	Update	Updated Figures 3-12 and 3-13 Typical Wiring Diagrams
2-19	2-19	Update	Updated Ethernet fiber table in section 2.2.8 Communications
3-24	3-24	Update	Deleted references to COM 1 RS485 port in section 3.2.9 CPU Communication Ports. Revised text and Figure 3-26 CPU Module Communications Wiring to include only modules T, U, V in section 3.2.9a.
5-1	5-1	Update	Updated the front panel main menu to include the CyberSentry security menu
5-16	5-16	Update	Update Communications main menu to remove the SNTP Protocol submenu
5-16	5-16	Delete	Deleted references to COM 1 RS485 port in section 5.2.4b Serial Ports
5-17	5-17	Add	Added section 5.2.4c Ethernet Network Topology
5-17	5-17	Update	Updated Networks section 5.2.4d to include all three Ethernet ports
5-17	5-17	Update	Added 0 as valid number to section 5.2.4e Modbus Protocol section
5-40	5-	Delete	Deleted Local Time Offset, Daylight Savings Time, DST (start/stop for month/day/hour) from Real Time Clock menu
5-	5-40	Add	Added submenus Precision Time Protocol, SNTP Protocol, and Local Time and Synchronizing Source settings to Real Time Clock menu
5-	5-41	Add	Added new Precision Time Protocol (1588) menu and setting descriptions
5-	5-	Update	Changed Communication to Real Time Clock in SNTP protocol settings path. Moved SNTP Protocol menu and settings descriptions to Real Time Clock subsection
5-37	5-	Delete	Deleted section k) SNTP Protocol and the settings descriptions
5-	5-44	Add	Added new section for Local Time menu settings and settings description
5-	5-55	Add	Added new PTP Fail menu item to the User-Programmable Self Tests menu
5-	5-	Add	Added PTP Failure and CLOCK UNSYNCHRONIZED to Flexlogic Operands table
5-96	5-96	Update	Updated PMU main menu to add aggregator and control block menu items

PAGE (X2)	PAGE (Y1)	CHANGE	DESCRIPTION
5-	5-96	Add	Added UR Synchrophasor Implementation of IEC61850-90-5 to the PMU software option description
5-96	5-96	Update	Updated Figure: Complete Synchrophasor Implementation
5-	5-97	Add	Added Figure: N60 Support For Four Logical Device PMU
5-97	5-97	Update	Updated Table: Implementation By Model Number
5-	5-98	Add	Added Figure: Logical Nodes Supported In Each Logical Device
5-	5-99	Add	Added Figure: Data Set Created From User Selected Internal Items
5-	5-100	Add	Added Figure: Example Of Aggregator Data Sets
5-	5-100	Add	Added Figure: CFG-2 Based Configuration Solution
5-	5-100	Add	Added examples for a syncrophasor dataset and the creation of different datasets
5-	5-100	Add	Added example for a CFG-2 based configuration
5-102	5-102	Update	Updated PMU 1 basic configuration menu to add 37.118 and 90-5 configuration settings submenus
5- 101	5-101	Add	Added PMU 1 configuration menus for 37.118 and 90-5 with settings descriptions
5-	5-103	Update	Changed PMU 1 Function setting description
5-	5-116	Add	Added PMU AGGR 1 configuration menu and setting descriptions
5-	5-96	Add	Added new aggregators section with PMU 1 aggregators menu and setting descriptions
5-116	5-116	Update	Updated PMU 1 aggregators menu to include 37.118 and 90-5 aggregator configuration submenus
5-	5-118	Add	Added 90-5 AGGR 1 configuration menu and setting descriptions
5-	5-118	Add	Added Table 5-11 # Of ASDUs
5-	5-118	Add	Added new control block section with IEC 90-5 MSVCB configuration menu and setting descriptions
5-	5-141	Update	Added row for DeltaTime to Table 5-: FlexElement Base Units
5-174	5-174	Delete	Deleted section 5.8.5c Remote Devices: ID of Device for Receiving GSSE/GOOSE Messages, meaning the Settings > Input/Outputs > Remote Devices settings
5-257	5-257	Delete	Deleted section 5.8.5c Remote Devices: ID of Device for Receiving GSSE/GOOSE Messages, meaning the Settings > Input/Outputs > Remote Devices settings
5-	5-277	Add	Added new CyberSentry security section and main menu, local passwords, session settings, restore defaults, and supervisory subsections to Chapter 5
6-1	6-1	Update	Update Actual Values main menu to include Real Time Clock Synchronization submenu
6-	6-7	Add	Added new section for Real Time Clock synchronizing consisting of the menu of settings and the setting descriptions
6-12	6-12	Delete	Deleted section 6.2.22 Ethernet Switch
6-	6-12	Add	Added new section 6.2.23 Remaining Connection Status
7-	7-1	Add	Added Security command to the Commands main menu
7-	7-3	Add	Added Reboot Relay command and description to the Relay Maintenance menu items
7-	7-	Add	Added Security menu and submenu commands and descriptions to the Command menu
7-	7-	Add	Added to Minor self-test error message **Bad PTP Signal**
8-	8-4	Add	Added new section for CyberSentry software option with overview and security menu subsections
A-	A-	Add	Added Flexanalog item PTP–IRIG-B Delta to Table A-1: Flexanalog Data Items
B-8	B-8	Update	Updated Modbus memory map table to include port 0 for Modbus slave address, TCP, DNP, HTTP, TFTP, MMS, and removed references to COM 1 RS485 port
C-23	C-23	Update	Updated tables in sections C.6.3 ACSI Services Conformance Statement and C.7.1 Logical Nodes Table

H-4

H.2.1 STANDARD ABBREVIATIONS

	A	Γ0	Fiber Ontic
A	Ampere	FO	
AC	Alternating Current	FREQ	Frequency
A/D	Analog to Digital	FSK	Frequency-Shift Keying
AE	Accidental Energization, Application Entity	FTP	Frequency-Shift Keying File Transfer Protocol
AMP	Ampere	FxE	FlexElement™
ANG		FWD	
ANGI	American National Standards Institute	–	
ANOI	Automotic Declarate	G	Congrator
	Automatic Reclosure		
ASDU	Application-layer Service Data Unit		General Electric
ASYM	Asymmetry	GND	
AUTO	Asymmetry Automatic	GNTR	Generator
AUX	Auxiliary	GOOSE	General Object Oriented Substation EventGlobal Positioning System
AVG		GPS	Global Positioning System
, •			0 ,
DCS.	Best Clock Selector	HARM	Harmonic / Harmonics
			High Current Time
BEK	Bit Error Rate	пот	High loop adams a Consumal Facility (CT)
	Breaker Fail	HGF	High-Impedance Ground Fault (CT) High-Impedance and Arcing Ground
BFI	Breaker Failure Initiate	HIZ	High-Impedance and Arcing Ground
BKR	Breaker	HMI	Human-Machine Interface
BLK	Block	HTTP	Hyper Text Transfer Protocol
BLKG	Blocking	HYB	Hvbrid
RDNT	Breakpoint of a characteristic		·····) •··•
DI INT	Drocker	1	Instantaneous
BRKR	DIEGREI	1	
0.45	0 "	!_√	Zero Sequence current
CAP	Capacitor	<u> _1</u>	Positive Sequence current
CC	Coupling Capacitor	<u> </u>	Negative Sequence current
CCVT	Coupling Capacitor Voltage Transformer	IA	Phase A current
CFG	Coupling Capacitor Voltage Transformer Configure / Configurable	IAB	Phase A minus B current
CFG	Filename extension for oscillography files		Phase B current
.01 0	I hondrie extension for oscillography files		Phase B minus C current
CHK		IDO	Phase B minus C current
CHNL			
CLS	Close		Phase C minus A current
CLSD	Closed		Identification
CMND	Command	IED	Intelligent Electronic Device
	Comparison	IFC	International Electrotechnical Commission
CO	Contact Output	IEEE	Institute of Electrical and Electronic Engineers
		IG	Ground (not residual) current
	Communication	1G	Differential Crown decorated
	Communications	iga	Differential Ground current
COMP	Compensated, Comparison	IN	CT Residual Current (3lo) or Input
CONN	Connection	INC SEQ	Incomplete Sequence
	Continuous, Contact	INIT	Initiate
	Coordination	INST	Instantaneous
		INV	
CDC	Central Processing Unit	1/0	Input/Output
CRC	Cyclic Redundancy Code	1/0	IIIpul/Output
CRT, CRNT.		100	Instantaneous Overcurrent
	Canadian Standards Association		Instantaneous Overvoltage
CT	Current Transformer	IRIG	Inter-Range Instrumentation Group
CVT	Capacitive Voltage Transformer	ISO	International Standards Organization
	g	IUV	Instantaneous Undervoltage
D/A	Digital to Analog		
		ΚO	Zero Sequence Current Compensation
	Direct Current		
	Disturbance Detector	kA	
DFLT		kV	KIIOVOIT
DGNST	Diagnostics		
DI	Digital Input	LED	Light Emitting Diode
DIFF	Differential	LEO	Line End Open
DIR	Directional	LFT BLD	Left Blinder
DISCREP	Discrepancy	LOOP	
DIST		LPU	
DMD			Locked-Rotor Current
	Distributed Network Protocol	LTC	Load Tap-Changer
DPO	Dropout		
DSP	Digital Signal Processor	M	Machine
dt	Rate of Change	mA	MilliAmpere
DTT	Direct Transfer Trip	MAG	
	Direct Under-reaching Transfer Trip		Manual / Manually
٠٠٠١ ١٠٠٠٠٠٠٠	Direct Officer-reacting Harister Hip	MAX	
	Engraphment		Model Implementation Conformance
	Encroachment	IVIIC	Minimum Minutos
느니니니	Electric Power Research Institute	IVIIIN	Minimum, Minutes
	Filename extension for event recorder files		Man Machine Interface
	I liename extension for event recorder files	MMS	Manufacturing Message Specification
.EVT			
.EVT	Extension, External	MRT	Minimum Response Time
.EVT EXT	Extension, External	MRT	Minimum Response Time Message
.EVT EXT	Extension, External Field	MRT MSG	Message
.EVT EXT F FAIL	Extension, External Field Failure	MRT MSG MTA	Message Maximum Torque Angle
.EVT EXT F FAIL FD	Extension, External Field Failure Fault Detector	MRT MSG MTA MTR	Message Maximum Torque Angle Motor
EVT EXT F FAIL FD	Extension, External Field Failure Fault Detector Fault Detector high-set	MRT MSG MTA MTR MVA	Message Maximum Torque Angle Motor MegaVolt-Ampere (total 3-phase)
FFD	Extension, External Field Failure Fault Detector Fault Detector high-set Fault Detector low-set	MRT MSG MTA MTR MVA MVA_A	Message Maximum Torque Angle Motor MegaVolt-Ampere (total 3-phase) MegaVolt-Ampere (phase A)
FFD	Extension, External Field Failure Fault Detector Fault Detector high-set	MRT MSG MTA MTR MVA MVA_A	Message Maximum Torque Angle Motor MegaVolt-Ampere (total 3-phase)

MVA C	MegaVolt-Ampere (phase C)	S	Sensitive
MVAR	MegaVar (total 3-phase)		CT Saturation
MVAR A	MegaVar (phase A)		Select Before Operate
MVAR B	MegaVar (phase B)	SCADA	Supervisory Control and Data Acquisition
MVAR C	MegaVar (phase C)	SEC	Secondary
MVARH	MegaVar-Hour	SEL	Select / Selector / Selection
MW	MegaWatt (total 3-phase)	SENS	Sensitive
MW_A	MegaWatt (phase A)	SEQ	Sequence
MW_B	MegaWatt (phase B)	SIR	Source Impedance Ratio
MW_C	MegaWatt (phase C)		Simple Network Time Protocol
MWH	MegaWatt-Hour	SRC	Source
	N. C.	SSB	Single Side Band Session Selector
N			
N/A, n/a	Not Applicable	STATS	Statistics
NEĠ NMPLT	Negative	SUPIN	Supervision Supervise / Supervision
NOM		SUF V	Supervision, Service
NTR			Synchrocheck
1411	Nodudi	SYNCHCHK	Synchrocheck
0	Over	0	
OC. O/C	Overcurrent	T	Time, transformer
O/P, Op			Thermal Capacity
OP	Operate	TCP	Transmission Control Protocol
OPER	Operate	TCU	Thermal Capacity Used
OPERATG	Operating	TD MULT	Time Dial Multiplier
O/S	Operating System		Temperature
OSI	Open Systems Interconnect		Trivial File Transfer Protocol
	Out-of-Step Blocking		Total Harmonic Distortion
QUT	Output	TMR	
OV	Overvoltage		Time Overcurrent
OVERFREQ	Overfrequency		Time Overvoltage
OVLD	Overload	TRANS TRANSF	
P	Phase		Transport Selector
	Phase Comparison, Personal Computer		Time Undercurrent
PCNT	Percent		Time Undervoltage
PF	Power Factor (total 3-phase)	TX (Tx)	Transmit, Transmitter
PF A	Power Factor (phase A)	174 (174)	Transmit, Transmitter
PF B	Power Factor (phase B)	U	Under
PF C	Power Factor (phase C)		Undercurrent
PFLL	Phase and Frequency Lock Loop	UCA	Utility Communications Architecture
PHS	Phase	UDP	User Datagram Protocol
PICS	Protocol Implementation & Conformance	UL	Underwriters Laboratories
PKP	Statement	UNBAL	Unbalance
PKP	Pickup	UR	Universal Relay
	Power Line Carrier		Universal Recloser Control
POS	POSITIVE		Filename extension for settings files
POII	Permissive Over-reaching Transfer Trip	UV	Undervoltage
PRESS PRI	Pressure	\//⊔→	Valta per Hertz
PROT	Fillidly Protection	V/⊓Z V/ ∩	Volts per Hertz Zero Sequence voltage
PSFI	Presentation Selector	V_0 V_1	Positive Sequence voltage
pu		V 2	Negative Sequence voltage
	Pickup Current Block		Phase A voltage
	Pickup Current Trip		Phase A to B voltage
	Pushbutton		Phase A to Ground voltage
	Permissive Under-reaching Transfer Trip	VARH	Var-hour voltage
	Pulse Width Modulated		Phase B voltage
PWR	Power		Phase B to A voltage
			Phase B to Ground voltage
QUAD	Quadrilateral		Phase C voltage
_	D 4 D	VCA	Phase C to A voltage
	Rate, Reverse	VCG	Phase C to Ground voltage
	Reach Characteristic Angle		Variable Frequency
REF		VIBR	
REM REV		V I	Voltage Transformer Voltage Transformer Fuse Failure
RI	Reverse Reclose Initiate		Voltage Transformer Fuse Fallure Voltage Transformer Loss Of Signal
	Reclose initiate Reclose In Progress	V 1 LOG	voltage Transionnei Luss Of Signal
	Right Blinder	WDG	Winding
	Root Mean Square	WH	
	Remote Open Detector		With Option
RST	Reset	WRT	With Respect To
	Restrained		
	Resistance Temperature Detector	X	Reactance
	Remote Terminal Unit		Transducer
	Receive, Receiver		Transformer
, ,		_	_
s	second	Z	Impedance, Zone

GE MULTILIN RELAY WARRANTY

GE Multilin warrants each relay it manufactures to be free from defects in material and workmanship under normal use and service for a period of 24 months from date of shipment from factory.

In the event of a failure covered by warranty, GE Multilin will undertake to repair or replace the relay providing the warrantor determined that it is defective and it is returned with all transportation charges prepaid to an authorized service centre or the factory. Repairs or replacement under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse, negligence, accident, incorrect installation or use not in accordance with instructions nor any unit that has been altered outside a GE Multilin authorized factory outlet.

GE Multilin is not liable for special, indirect or consequential damages or for loss of profit or for expenses sustained as a result of a relay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), refer to GE Multilin Standard Conditions of Sale.

		BATTERY FAILURE	7-8
Numerics		BINARY INPUT POINTS	F-8
Traineries		BINARY OUTPUT POINTS	F-9
10BASE-F		BLOCK DIAGRAM	1-3
interface	3-35	BLOCK SETTING	5-5
settings	5-29	BREAKER ARCING CURRENT	
•		actual values	6-29
		clearing	5-25, 7-2
Λ.		FlexLogic operands	
A		logic	
ABBREVIATIONS	нь	measurement	
AC CURRENT INPUTS		Modbus registers	
AC VOLTAGE INPUTS		settings	
ACTIVATING THE RELAY		specifications	
	,	BREAKER CONTROL	
ACTIVE SETTING GROUP	5-102	control of 2 breakers	4-23
ACTUAL VALUES	0.00	description	
maintenance		dual breaker logic	
metering		FlexLogic operands	
product information		Modbus registers	
records		settings	
status		BREAKER FAILURE	5-104
ALARM LEDs		description	E 106
ANSI DEVICE NUMBERS	,	·	
APPARENT POWER	2-22, 6-19	determination	
APPLICATION EXAMPLES		FlexLogic operands	
breaker trip circuit integrity		logic	
contact inputs	5-270	main path sequence	
sensitive directional power	5-213	Modbus registers	
APPROVALS	2-29	settings	
AR		specifications	2-19
see entry for AUTORECLOSE		BREAKER FLASHOVER	
ARC BURST PATTERN ANALYSIS ALGORIT	HM 8-3	FlexLogic operands	
ARC DETECTION ALGORITHM	8-2	logic	
ARCHITECTURE	5-139	Modbus registers	
ARCING CURRENT	5-250	settings	
ARCING SUSPECTED ALGORITHM		specifications	2-19
AUTORECLOSE		BREAKER RESTRIKE	
actual values	6-6	FlexLogic operands	5-142
FlexLogic operands		logic	
logic		Modbus registers	B-54
Modbus registers		settings	5-256
settings		BREAKER-AND-A-HALF SCHEME	5-6
single shot sequence		BRIGHTNESS	5-23
specifications		BROKEN CONDUCTOR	
AUXILIARY OVERVOLTAGE		FlexLogic operands	5-142
FlexLogic operands	5-141	settings	5-262
logic		BROKEN CONDUCTOR DETECTION	
Modbus registers		Modbus registers	B-47
settings		•	
specifications			
AUXILIARY UNDERVOLTAGE	2-19	С	
FlexLogic operands	5 1/1	C	
		C37.94 COMMUNICATIONS	3 36 3 37 3 40
logic		C37.94SM COMMUNICATIONS	
Modbus registers		CAPACITOR CONTROL	5-39
settingsspecifications		Modbus registers	D 27
•		CAUTIONS	
AUXILIARY VOLTAGE CHANNEL			
AUXILIARY VOLTAGE METERING	6-19	CE APPROVALS	
		CHANNEL TESTS	
		CHANNEL TESTS	b-11
В		CHANNELS	F 00 F 155
		banks	
BANKS	5-6, 5-99, 5-100	CIRCUIT MONITORING APPLICATIONS	
BATTERY		CLEANING	
disposal	10-5	CLEAR RECORDS	5-25, 7-2
failure	7-8	CLEAR RELAY RECORDS	
replace	10-3	Modbus registers	
		cottings	5.25

CLOCK		CT INPUTS	3-12, 5-6, 5-99
setting date and time			5-99
settings	5-63	CURRENT DEMAND	5-74
COLD LOAD PICKUP		CURRENT DIFFERENTIAL	
characteristic	5-267	Modbus registers	B-21
Flexlogic operands		CURRENT HARMONICS	2-22, 6-22
logic	5-268	CURRENT METERING	
Modbus registers	B-55		6-17
settings	5-267	Modbus registers	B-16
COMMANDS MENU	7-1	specifications	2-22
COMMUNICATIONS		CURVES	
10BASE-F	5-29	definite time	5-169, 5-204
connecting to the UR	1-8, 1-14		5-111, 5-169
CRC-16 error checking		I2T	
DNP			5-168
EGD	,		5-167
G.703			5-165
half duplex			5-204
HTTP		· · · · · · · · · · · · · · · · · · ·	5-165
IEC 60870-5-10		types	5-103
IEC 60870-5-104 protocol			
IEC 61850		D	
inter-relay communications			
Modbus		DATA FORMATS, MODBUS	B-81
Modbus registers		DATA LOGGER	
network		clearing	5-25, 7-2
overview	1-17	Modbus	B-7
RS232	3-22	Modbus registers	B-15, B-33
RS485	3-24, 5-26		5-72
settings5-29, 5-35,	, 5-40, 5-55, 5-56, 5-58, 5-63		2-21
specifications	2-26		B-6
UCA/MMS	5-277		
web server	5-54		6-26
COMPATIBILITY	1-3		B-24, B-77
COMTRADE	B-6. B-7		5-286
CONDUCTED RFI			2-23
CONTACT INPUTS		DCMA OUTPUTS	2-20
actual values	6-4		3-21
dry connections			
FlexLogic operands			B-53
Modbus registers			5-289
settings		specifications	2-25 5-169. 5-204
specifications			5-169, 5-204
thresholds		DEMAND	
			B-18
wet connections	5-19	DEMAND METERING	
CONTACT OUTPUTS			6-20
actual values			5-74
FlexLogic operands		specifications	2-23
Modbus registers		DEMAND RECORDS	
settings		clearing	5-25, 7-2
CONTROL ELEMENTS	5-215	DESIGN	1-3
CONTROL POWER		DEVICE ID	5-275
description	3-11	DEVICE PROFILE DOCUMENT	Γ F-1
specifications	2-25	DIELECTRIC STRENGTH	3-10
CONTROL PUSHBUTTONS		DIGITAL COUNTERS	
FlexLogic operands	5-141		6-7
Modbus registers	B-69		5-142
settings	5-79	- ·	5-243
specifications			B-10, B-12, B-13, B-14, B-56
COUNTERS		· ·	5-10, B-12, B-13, B-14, B-30
actual values	6-7	DIGITAL ELEMENTS	5-242
settings			5.040
CRC ALARM			5-240
CRC-16 ALGORITHM		- ·	5-142
		•	5-239
CRITICAL FAILURE RELAY	•	S .	B-50
CSA APPROVAL	2-29	<u> </u>	5-239
CT BANKS		DIGITAL OUTPUTS	
settings	5-99	see entry for CONTACT OUT	PUTS

DIMENSIONS 3-1, 3-2	ENERGY METERING	
DIRECT DEVICES	actual values	6-20
actual values 6-10	Modbus registers	B-17, B-18
Modbus registers B-26	specifications	
settings 5-279	ENERGY METERING, CLEARING	5-25, 7-2
DIRECT I/O	ENERVISTA UR SETUP	
see also DIRECT INPUTS and DIRECT OUTPUTS	creating a site list	
application example 5-280, 5-281	event recorder	
configuration examples 5-89, 5-91, 5-95, 5-96	firmware upgrades	
settings 5-89, 5-95, 5-96, 5-279	installation	
DIRECT INPUTS	introduction	
actual values 6-9	oscillography	
application example 5-280, 5-281	overview	4-′
clearing counters	requirements	1-5
FlexLogic operands 5-147	EQUATIONS	
Modbus registers B-14, B-15, B-26, B-69, B-70	definite time curve	
settings 5-279	FlexCurve	
specifications	I ² t curves	5-169
DIRECT INPUTS/OUTPUTS	IAC curves	5-168
error messages7-8	IEC curves	5-167
DIRECT OUTPUTS	IEEE curves	
application example 5-280, 5-281	EQUIPMENT MISMATCH ERROR	7-7
clearing counters7-2	ETHERNET	
Modbus registers B-14, B-15, B-69, B-70	actual values	6-8
settings 5-279	configuration	
DIRECTIONAL OVERCURRENT	error messages	
see PHASE, GROUND, and NEUTRAL DIRECTIONAL entries	Modbus registers	
DIRECTIONAL POLARIZATION 5-174	quick connect	
DIRECTIONAL POWER	settings	
see entry for SENSITIVE DIRECTIONAL POWER	EVENT CAUSE INDICATORS	4-15, 4-16
DISCONNECT SWITCH	EVENT RECORDER	
FlexLogic operands 5-146	actual values	6-27
logic 5-110	clearing	,
Modbus registers B-45, B-46	Modbus	
settings 5-108	Modbus registers	
DISPLAY 1-17, 4-23, 5-23	specifications	
DISTURBANCE DETECTOR	via EnerVista software	
FlexLogic operands 5-146	EVENTS SETTING	
internal 5-102	EXCEPTION RESPONSES	
DNA-1 BIT PAIR 5-277	EXPERT ARC DETECTOR ALGORITHM	8-2
DNP COMMUNICATIONS		
binary counters F-10		
binary input pointsF-8	F	
binary output pointsF-9		
control relay output blocksF-9	F485	1-17
device profile documentF-1	FACEPLATE	3-1, 3-2
frozen counters F-10	FACEPLATE PANELS	4-13, 4-23
implementation tableF-4	FACTORY DEFAULT RESET	5-8
Modbus registers B-31	FAST FORM-C RELAY	
settings 5-35	FAST TRANSIENT TESTING	2-28
DOWNED CONDUCTOR	FAULT LOCATOR	
DOWNED CONDUCTOR See	logic	
HI-Z	Modbus registers	
DUPLEX, HALFB-1	operation	8-5
	specifications	2-22
	FAULT REPORT	
E	actual values	6-27
	clearing	5-25, 7-2
EGD PROTOCOL	Modbus	
actual values 6-10, 6-11, 6-29	Modbus registers	B-23, B-33
Modbus registers B-49, B-50	settings	5-68
settings5-56, 5-58	FAULT REPORTS	
ELECTROSTATIC DISCHARGE 2-28	Modbus registers	B-52
ELEMENTS 5-4	FAULT TYPE	8-5
EMAIL ADDRESS FOR SUPPORT1-2	FAX NUMBER	
ENERGY ALOGRITHM FOR HI-Z8-1	FEATURES	
	FIRMWARE REVISION	
	FIRMWARE UPGRADES	4-2

FLASH MESSAGESFLEX STATE PARAMETERS actual values	
Modbus registers	B-22, B-50
settings	5-86
specifications	2-20
FLEXCURVES	
equation	5-169
Modbus registers	
settings	
specifications	
table	
FLEXELEMENTS	
actual values	6-24
direction	
FlexLogic operands	
hysteresis	
Modbus registers	
pickup	
scheme logic	
settings	
specifications	
FLEXLOGIC	
editing with EnerVista UR Setup	12
equation editor	
error messages	
evaluation	
example	
example equation	
gate characteristics	5-149
locking equation entries	
locking to a serial number	
Modbus registers	
operands	
operators	
rules	
security	
specifications	
timers	
worksheet	
FLEXLOGIC EQUATION EDITOR	5-155
FLEXLOGIC TIMERS	
Modbus registers	B-39
settings	5-156
FORCE CONTACT INPUTS	
FORCE CONTACT OUTPUTS	
FORCE TRIGGER	6-28
FORM-A RELAY	
high impedance circuits	
outputs	3-14, 3-15, 3-19
specifications	2-24
FORM-C RELAY	
outputs	
specifications	2-25
FREQUENCY METERING	
actual values	6-21
Modbus registers	
settings	
specifications	2-23
FREQUENCY RATE OF CHANGE	
FlexLogic operands	5-142
Modbus registers	B-15, B-57
settings	
specifications	2-19
FREQUENCY TRACKING	5-101, 6-23
FREQUENCY, NOMINAL	5-101
FUNCTION SETTING	
FUSE	2-24

FUSE FAILURE see VT FUSE FAILURE

G

G.703	3-30, 3-31, 3-32, 3-35
GATEWAY ADDRESS	
GE TYPE IAC CURVES	5-168
GROUND CURRENT METERING	6-18
GROUND IOC	
FlexLogic operands	
logic	5-187
Modbus registers	
settings	5-187
GROUND TIME OVERCURRENT	
see entry for GROUND TOC	
GROUND TOC	
FlexLogic operands	5-143
logic	5-186
Modbus registers	B-41
settings	5-186
specifications	2-17
GROUPED ELEMENTS	5-162
GSSE	5-276, 5-277, 5-278, 6-7

Н

HALF-DUPLEX B-1 HARMONIC CONTENT 6-22 HARMONICS
actual values
specifications2-22
HELP 1-2
HI-Z
actual values6-9, 6-30
arc burst pattern analysis 8-3
arcing suspected algorithm 8-3
CT/VT module3-13
data collection5-245
energy algorithm 8-1
even harmonic restraint 8-3
expert arc detection algorithm8-2
load analysis algorithm 8-3
load event detector algorithm 8-2
logic5-249
Modbus registersB-19, B-20
overcurrent disturbance monitoring 8-3
randomness algorithm 8-2
settings5-244, 5-247, 5-248
specifications2-22
spectral analysis algorithm 8-2
theory of operation 8-1
voltage supervision algorithm 8-4
HTTP PROTOCOL5-54

ı

12T CURVES	5-169
IAC CURVES	5-168
IEC 60870-5-103	
settings	5-58
IEC 60870-5-103 PROTOCOL	
interoperability document	D-1

IEC 60870-5-104 PROTOCOL	
interoperability document	E-1
settings	5-55
IEC 61850 GOOSE ANALOGS	
settings	5-284
IEC 61850 GOOSE UINTEGERS	
settings	5-285
IEC 61850 PROTOCOL	5 070
device ID	
DNA2 assignments	
error messagesB-57, B-58, B-59, B-60, B-61, B	7-10
remote inputs	
settings	
UserSt-1 bit pair	
IEC 870-5-103	5-276
explained	2-7
IEC CURVES	
IED SETUP	
IEEE C37.94 COMMUNICATIONS3-36, 3	
IEEE CURVES	,
IN SERVICE INDICATOR	1-18, 7-6
INCIPIENT CABLE FAULT DETECTOR	
actual values	6-12
FlexLogic operands	5-143
logic	5-260
Modbus registers B	-36, B-42
settings	5-258
INCOMPATIBLE HARDWARE ERROR	7-7
INPUTS	
AC current2	
AC voltage2-	
contact inputs	
dcmA inputs2	
direct inputs	
IRIG-B	
remote inputs2-23, 5-275, 5-2	
RTD inputs	
virtual	
INSPECTION CHECKLIST	1-2
INSTALLATION communications	2 22
CT inputs	
RS485	
settings	
INSTANTANEOUS OVERCURRENT	5-51
see PHASE, GROUND, and NEUTRAL IOC entries	
INTER-RELAY COMMUNICATIONS	2-26
INTRODUCTION	
INVERSE TIME UNDERVOLTAGE	
IOC	
see PHASE, GROUND, and NEUTRAL IOC entries	
IP ADDRESS	5-29
enter on front panel	1-18, 4-24
gateway	
IRIG-B	
connection	3-25
error messages	
	7-8, 7-9
specifications	

K K L L LANGUAGE 5-23 LASER MODULE 3-28 LASER MODULE 3-28 LATCHING OUTPUTS application example 5-273, 5-274 aerror messages 7-5 settings 5-272 specifications 2-24 LED INDICATORS 4-14, 4-15, 4-16, 4-22, 5-77 LED TEST FlexLogic operand 5-148 settings 5-77 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers 8-4 settings 5-163,5-164 specifications 2-22 LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers 8-4 settings 5-163,5-164 specifications 2-22 LOGIC GATES 5-163,5-164 LOGIC GATES 5-150 LOGIC GATES 5-150 LOST PASSWORD 7-5 MEMORY MAP DATA FORMATS 8-8	ISO-9000 REGISTRATION	2-29
L LAMPTEST	K	
LAMPTEST	KEYPAD	1-18, 4-24
LANGUAGE	L	
LANGUAGE	LAMPTEST	7-3
LASER MODULE		
application example		
error messages		
settings 5-272 specifications 2-24 LED INDICATORS 4-14, 4-15, 4-16, 4-22, 5-77 LED TEST FlexLogic operand 5-148 settings 5-75 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers 8-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOAD EVENT DETECTOR ALGORITHM 8-2 LOST PASSWORD 5-8 MMINTENANCE 3-150 alert to replace battery 7-8 battery 10-3 module replacement 10-3 module replacement 10-3 MEMORY MAP DATA FORMATS 8-81 MENU HIERARCHY 1-18, 4-24 MENU NAVIGATION 1-18, 4-24 METERING conventions 6-14, 6-15 current 2-22 demand <t< td=""><td>application example5</td><td>5-273, 5-274</td></t<>	application example5	5-273, 5-274
specifications 2-24 LED INDICATORS 4-14, 4-15, 4-16, 4-22, 5-77 LED TEST FlexLogic operand 5-148 settings 5-75 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers 8-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-16 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS 8-81 MENU HIERARCHY 1-18, 4-24 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 freque	error messages	7-9
LED INDICATORS 4-14, 4-15, 4-16, 4-22, 5-77 LED TEST FlexLogic operand 5-148 settings 5-75 5-75 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers 8-4 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOST PASSWORD 5-8 M MAINTENANCE 3-150 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MENU HIERARCHY 1-18, 4-24 MENU NAVIGATION 1-18, 4-24 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	settings	5-272
LED TEST FlexLogic operand 5-148 settings 5-75 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT FlexLogic operands FlexLogic operands 5-143 Modbus registers 8-4 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-10-3 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MANUFACTURING DATE 6-31 MENU HERARCHY 1-18, 4-24 MENU HIERARCHY 1-18, 4-24 METERING 20 conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage </td <td>specifications</td> <td>2-24</td>	specifications	2-24
FlexLogic operand 5-148 settings 5-75 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers 8-4 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-24 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 1-2-24 harmonics 2-22 power 2-22 THD 2-22 voltage </td <td>LED INDICATORS 4-14, 4-15, 4-16</td> <td>6, 4-22, 5-77</td>	LED INDICATORS 4-14, 4-15, 4-16	6, 4-22, 5-77
settings 5-75 specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT FlexLogic operands FlexLogic operands 5-143 Modbus registers 8-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-24 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 1-22 harmonics 2-22 power 2-22 THD 2-22 vol	LED TEST	
specifications 2-21 LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT 5-143 Modbus registers 8-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS 8-81 MENU HIERARCHY 1-18, 4-24 METERING conventions 6-14, 6-15 current 2-22 demand 2-22 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
LINK POWER BUDGET 2-26 LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT 5-143 FlexLogic operands 5-143 Modbus registers 8-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-164 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS 8-81 MENU HIERARCHY 1-18, 4-24 MENU NAVIGATION 1-18, 4-24 METERING 6-14, 6-15 corrent 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
LOAD ANALYSIS ALGORITHM 8-3 LOAD ENCROACHMENT 5-143 FlexLogic operands 5-143 Modbus registers 8-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-10 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS 8-81 MENU HIERARCHY 1-18, 4-24 METERING 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
LOAD ENCROACHMENT FlexLogic operands 5-143 Modbus registers B-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-164 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-24 METERING 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
FlexLogic operands 5-143 Modbus registers B-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-150 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 METERING 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		8-3
Modbus registers B-44 settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3-150 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 METERING 1-18, 4-24, 4-26 Conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
settings 5-163, 5-164 specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 MAINTENANCE 3-150 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
specifications 2-20 LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
LOAD EVENT DETECTOR ALGORITHM 8-2 LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE 3 alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 METERING 1-18, 4-24, 4-26 Conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
LOGIC GATES 5-150 LOST PASSWORD 5-8 M MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 METERING 1-18, 4-24, 4-26 Conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	specifications	2-20
M MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING conventions corrent 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
MAINTENANCE alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	LOST PASSWORD	5-8
alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	M	
alert to replace battery 7-8 battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	MAINTENANCE	
battery 10-3 module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		7-8
module replacement 10-1 MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	battery	10-3
MAINTENANCE COMMANDS 7-3 MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
MANUFACTURING DATE 6-31 MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
MEMORY MAP DATA FORMATS B-81 MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
MENU HIERARCHY 1-18, 4-25 MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
MENU NAVIGATION 1-18, 4-24, 4-26 METERING 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
METERING conventions 6-14, 6-15 current 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
current. 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
current. 2-22 demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	conventions	6-14, 6-15
demand 2-23 frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22	current	2-22
frequency 2-23 harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
harmonics 2-22 power 2-22 THD 2-22 voltage 2-22		
power 2-22 THD 2-22 voltage 2-22		
THD		
voltage2-22		

MODBUS		NEUTRAL DIRECTIONAL OC	
data logger	B-6, B-7	Modbus registers	B-45
event recorder	B-7	NEUTRAL DIRECTIONAL OVERCURRENT	
exception responses	B-5	FlexLogic operands	
execute operation	B-4	logic	5-182
fault report	B-7	polarization	5-180
flex state parameters	5-87	settings	5-178
function code 03/04h	B-3	specifications	2-18
function code 05h	B-4	NEUTRAL INSTANTANEOUS OVERCURRENT	
function code 06h	B-4	see entry for NEUTRAL IOC	
function code 10h	B-5	NEUTRAL IOC	
introduction	B-1	FlexLogic operands	5-144
memory map data formats	B-81	logic	5-177
obtaining files		Modbus registers	
oscillography	B-6	settings	5-177
passwords		specifications	2-17
read/write settings/actual values		NEUTRAL OVERVOLTAGE	
settings	5-33, 5-63	FlexLogic operands	5-144
store multiple settings	B-5	logic	
store single setting	B-4	Modbus registers	
supported function codes		settings	5-208
user map	5-63, B-14, B-37	specifications	2-19
MODEL INFORMATION		NEUTRAL TIME OVERCURRENT	
MODIFICATION FILE NUMBER	6-31	see entry for NEUTRAL TOC	
MODULE FAILURE ERROR	7-7	NEUTRAL TOC	
MODULES		FlexLogic operands	5-144
communications	3-23	logic	5-176
CT/VT	3-11, 5-6	Modbus registers	B-40
direct inputs/outputs	3-28	settings	
Hi-Z	3-13	specifications	2-17
insertion	10-1	NON-VOLATILE LATCHES	
order codes	2-14	FlexLogic operands	5-143
power supply	3-10	Modbus registers	
transducer I/O	3-21	settings	5-161
withdrawal		specifications	2-21
MONITORING ELEMENTS	5-244		
MOUNTING	3-1, 3-2		
		0	
N		ONE SHOTS	
		OPERATING TEMPERATURE	
NAMEPLATE	1-2	OPERATING TIMES	
NEGATIVE SEQUENCE DIRECTIONAL OC		ORDER CODES2-8, 2-10, 2-11, 2	
Modbus registers		ORDER CODES, UPDATING	
NEGATIVE SEQUENCE DIRECTIONAL OVE		ORDERING 2-8, 2-	, ,
characteristics	5-193	OSCILLATORY TRANSIENT TESTING	2-28
FlexLogic operands			2-20
logio	5-143	OSCILLOGRAPHY	
logic	5-143 5-194	OSCILLOGRAPHY actual values	
settings	5-143 5-194 5-191, 5-194		6-28
	5-143 5-194 5-191, 5-194	actual values	6-28 5-25, 7-2
settings	5-143 5-194 5-191, 5-194	actual valuesclearing	6-28 5-25, 7-2 B-6
settingsspecifications	5-143 5-194 5-191, 5-194 2-18	actual valuesclearing	6-28 5-25, 7-2 B-6 B-23, B-33
settings		actual values clearing Modbus Modbus registers settings specifications	6-28 5-25, 7-2 B-6 B-23, B-33 5-70
settings		actual values clearing Modbus Modbus registers settings specifications via COMTRADE	6-28 5-25, 7-2 B-6 B-23, B-33 5-70 2-21
settings		actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software	6-28 5-25, 7-2 B-6 B-23, B-33 5-70 2-21
settings	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 B-43 5-190	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS	6-28 5-25, 7-2 B-6 B-23, B-33 5-70 2-21 B-6
settings	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 B-43 5-190	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software	6-28 5-25, 7-2 B-6 B-23, B-33 5-70 2-21 B-6
settings specifications NEGATIVE SEQUENCE IOC FlexLogic operands logic Modbus registers settings specifications. NEGATIVE SEQUENCE OVERVOLTAGE FlexLogic operands	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power	6-285-25, 7-2B-6B-23, B-335-702-21B-64-2
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-25
settings specifications NEGATIVE SEQUENCE IOC FlexLogic operands logic Modbus registers settings specifications NEGATIVE SEQUENCE OVERVOLTAGE FlexLogic operands logic Modbus registers	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-143 5-190 2-17 5-143 5-209 8-43	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay	6-285-25, 7-28-68-23, B-335-702-218-64-25-2722-252-25
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay 2-24, 3-	6-285-25, 7-28-68-23, B-335-702-218-64-25-2722-252-252-252-252-14, 3-15, 3-19
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay Form-C relay Form-C relay 2-24, 3-	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-252-252-252-252-25, 3-14, 3-19
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay Form-C relay Latching outputs	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-252-252-25 .14, 3-15, 3-19 .25, 3-14, 3-192-24, 5-272
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209 2-19	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay Form-C relay Form-C relay 12-24, 3-13-13-13-13-13-13-13-13-13-13-13-13-13	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-252-272-272-272-27
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-190 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209 8-43 5-209 5-144 5-189	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay Form-C relay 12-24, 3-13-13-13-13-13-13-13-13-13-13-13-13-13	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-252-272-275-274
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209 2-19 5-144 5-189 8-43	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay Form-C relay Form-C relay 12-24, 3-13-13-13-13-13-13-13-13-13-13-13-13-13	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-252-272-275-274
settings specifications	5-143 5-194 5-191, 5-194 2-18 5-143 5-190 8-43 5-190 2-17 5-143 5-209 8-43 5-209 2-19 5-144 5-189 8-43	actual values clearing Modbus Modbus registers settings specifications via COMTRADE via EnerVista software OUTPUTS contact outputs control power critical failure relay Fast Form-C relay Form-A relay Form-C relay 12-24, 3-13-13-13-13-13-13-13-13-13-13-13-13-13	6-285-25, 7-2B-6B-23, B-335-702-21B-64-25-2722-252-272-275-274

OVERCURRENT CURVES		PHASE OVERVOLTAGE	
definite time	5-169	FlexLogic operands	5-144
FlexCurves	5-169	logic	
I2T	5-169	Modbus registers	B-44
IAC	5-168	settings	5-207
IEC	5-167	specifications	
IEEE	5-165	PHASE ROTATION	5-101
OVERCURRENT DISTURBANCE MONITORIN	G 8-3	PHASE TIME OVERCURRENT	
OVERFREQUENCY		see entry for PHASE TOC	
FlexLogic operands	5-144	PHASE TOC	
logic		FlexLogic operands	5-145
settings		logic	
specifications	2-19	settings	
OVERFRQUENCY		specifications	
Modbus registers	B-43	PHASE UNDERVOLTAGE	
OVERVOLTAGE		FlexLogic operands	5-145
auxiliary	2-19 5-211	logic	
negative sequence		Modbus registers	
negative-sequence		settings	
neutral		specifications	
phase		PHASOR MEASUREMENT UNIT	2-10
pilase	2-10, 3-207	actual values	6 20
		PHONE NUMBER FOR SUPPORT	
		PMU	1-2
P		see entry for SYNCHROPHASOR	
PANEL CUTOUT	3-1, 3-2	POWER METERING	D 47
PARALLEL REDUNDANCY PROTOCOL		Modbus registers	
actual values		specifications	
explained		values	6-19
settings	5-29	POWER SUPPLY	0.40
specifications	2-26	description	
PARITY	5-26	low range	
PASSWORD SECURITY		specifications	2-24
FlexLogic operands	5-148	POWER SYSTEM	
PASSWORDS		Modbus registers	B-36
bypass authentication	5-21	PREFERENCES	
changing	4-29	Modbus registers	B-31
for settings templates		PROCESS BUS	
lost password	5-8	overview	3-13
Modbus		PRODUCT INFORMATION	
Modbus registers		PRODUCT SETUP	5-8, 5-19
overview		PRODUCTION TESTS	2-28
security		PROTECTION ELEMENTS	5-4
settings		PRP	
PC SOFTWARE		actual values	6-12
see entry for ENERVISTA UR SETUP		explained	5-30
PERMISSIVE FUNCTIONS	5-204	settings	5-29
PER-UNIT QUANTITY		specifications	2-26
PHASE ANGLE METERING		PU QUANTITY	5-4
PHASE CURRENT METERING		PUSHBUTTONS, USER-PROGRAMMABLE	
PHASE DIRECTIONAL OC	0-17	see USER-PROGRAMMABLE PUSHBUTTONS	
Modbus registers	D 44		
PHASE DIRECTIONAL OVERCURRENT	D-44		
FlexLogic operands	E 144	В	
		R	
logic		DANDOMNECC ALCODITUM FOR UL 7	0.0
phase A polarization		RANDOMNESS ALGORITHM FOR HI-Z REACTIVE POWER	
settings			,
specifications	2-1 <i>/</i>	REAL TIME OLDOK	2-22, 6-19
PHASE INSTANTANEOUS OVERCURRENT		REAL TIME CLOCK	5.65
see entry for PHASE IOC		Modbus registers	
PHASE IOC		settings	
FlexLogic operands	5-144	REAR TERMINAL ASSIGNMENTS	
logic		RECLOSER CURVES	. 5-114, 5-169
specifications	2-17	REDUNDANCY	
PHASE MEASUREMENT UNIT		PRP actual values	
see entry for SYNCHROPHASOR		PRP explained	
		settings	
		specifications	2-26

RELAY ACTIVATION	4-28	Self-test errors	7-11
RELAY ARCHITECTURE	5-139	SELF-TESTS	
RELAY MAINTENANCE	7-3	description	7-6
RELAY NAME		error messages	
RELAY NOT PROGRAMMED	1-18	FlexLogic operands	
REMOTE DEVICES		Modbus registers	
actual values	6-6	SENSITIVE DIRECTIONAL POWER	
device ID		actual values	6-23
error messages		characteristic	
FlexLogic operands		FlexLogic operands	
Modbus registers	2 14 D 22 D 70 D 75	logic	
settings		Modbus registers	
statistics			
		settings	
REMOTE DPS INPUTS	6.5	specifications	
actual values		SERIAL NUMBER	0-3
settings	5-277	SERIAL PORTS	5 0/
REMOTE INPUTS	0.4	settings	
actual values		SETTING GROUPS 5-145,	5-162, 5-217, B-42
FlexLogic operands		SETTINGS TEMPLATES	
Modbus registers		description	
settings		editing	
specifications	2-23	enabling	
REMOTE OUTPUTS		Modbus registers	
DNA-1 bit pair		password protection	
Modbus registers		removing	
UserSt-1 bit pair		viewing	
REPLACEMENT MODULES		SETTINGS, CHANGING	4-27
REQUIREMENTS FOR INSTALLATION		SIGNAL SOURCES	
RESETTING	5-8, 5-148, 5-278	description	5-5
REVISION HISTORY	H-1	metering	
RF IMMUNITY	2-28	settings	5-102
RFI, CONDUCTED	2-28	SIGNAL TYPES	1-3
RMS CURRENT	2-22	SINGLE LINE DIAGRAM	2-1, 2-2
RMS VOLTAGE	2-22	SITE LIST, CREATING	4-1
ROLLING DEMAND	5-75	SNTP PROTOCOL	
RS232		accuracy	2-26
configuration	1-9	error messages	
specifications		Modbus registers	
wiring		settings	
RS422	= ==	SOFTWARE	
configuration	3-33	installation	1-!
timing		see entry for ENERVISTA UR SETUP	
two-channel application		SOFTWARE ARCHITECTURE	1-4
with fiber interface		SOFTWARE. PC	
RS485		see entry for EnerVista UR Setup	
description	3-24	SOURCE FREQUENCY	6-21
specifications		SOURCE TRANSFER SCHEMES	5 20/
RTD INPUTS	2-20	SOURCES	5-20-
actual values	6.26	description	5 6
Modbus registers		example use of	
•		•	
settings		metering	
specifications	2-23	Modbus registers	
		settings	
		SPECIFICATIONS	
S		SPECTRAL ANALYSIS ALGORITHM FOR HI	
		STANDARD ABBREVIATIONS	
SBO		STATUS INDICATORS	,
SELECT BEFORE OPERATE	5-53	STORAGE TEMPERATURE	
SELECTOR SWITCH		SUB-HARMONIC STATOR GROUND FAULT	
actual values	6-7	FlexLogic operands	5-146
application example	5-223	SUMMATOR	
FlexLogic operands	5-145	Modbus registers	
logic		SUPPORT, TECHNICAL	
Modbus registers		SURGE IMMUNITY	
settings		SYMMETRICAL COMPONENTS METERING	6-15
specifications			
timina			

SYNCHROCHECK		TRACEABILITY	
actual values6	6-10, 6-23, 6-25	data	4-11, 4-12
FlexLogic operands		overview	4-10
logic	5-232	rules	4-12
Modbus registers	B-20, B-77	TRACKING FREQUENCY	6-23, B-49
settings	5-229, 5-230	TRANSDUCER I/O	
specifications	2-20	actual values	6-26
SYNCHROPHASORS		settings	5-286, 5-287
actual values	6-25, 6-26	specifications	2-23
clearing PMU records	7-2	wiring	3-2 ⁻
commands	7-3, 7-5	TRIP BUS	
FlexLogic operands		FlexLogic operands	5-147
phase measurement unit triggering		Modbus registers	
phasor measurement configuration5-124, 5-125		settings	
5-136, 5-137	,, 0 .20, 0 .00,	TRIP LEDs	
phasor measurement unit	5-118 5-123	TROUBLE INDICATOR	
phasor measurement unit calibration		THOOBEL HUDIO/HOH	1 10, 7
phasor measurement unit recording			
•			
test values		U	
SYSTEM FREQUENCY			
SYSTEM REQUIREMENTS		UL APPROVAL	2-29
SYSTEM SETUP	5-99	UNAUTHORIZED ACCESS	
		commands	5-25
		resetting	7-2
T		UNDERFREQUENCY	
•		FlexLogic operands	5-147
TARGET MESSAGES	7-6	logic	5-225
TARGET SETTING	5-5	settings	
TARGETS MENU		specifications	
TCP PORT NUMBER		UNDERVOLTAGE	
TECHNICAL SUPPORT		auxiliary	2-18
TELEPROTECTION		phase	
actual values	6.5	UNDERVOLTAGE CHARACTERISTICS	
clearing counters		UNEXPECTED RESTART ERROR	
•		UNIT NOT PROGRAMMED	
FlexLogic operands			,
logic		UNPACKING THE RELAY	
Modbus registers		UNRETURNED MESSAGES ALARM	
overview		UPDATING ORDER CODE	7-3
settings 5-9		URPC	
specifications		see entry for ENERVISTA UR SETUP	
TEMPERATURE MONITOR	,	USER-DEFINABLE DISPLAYS	
TERMINALS	3-7	example	
TESTING		invoking and scrolling	5-87
force contact inputs	5-293	Modbus registers	
force contact outputs	5-294	settings	5-87, 5-89
lamp test	7-3	specifications	2-2′
self-test error messages	7-6	USER-PROGRAMMABLE LEDs	
synchrophasors	5-295	custom labeling	4-22
THD METERING	2-22, 6-22	defaults	
analog channel correspondence		description	
THEORY OF OPERATION		Modbus registers	
THERMAL DEMAND CHARACTERISTIC		specifications	
THERMAL MODEL		USER-PROGRAMMABLE PUSHBUTTONS	= -
Modbus registers	R-47	FlexLogic operands	5-140
THERMAL OVERLOAD PROTECTION	D 41	Modbus registers	
Modbus registers	B 46	settings	
settings		specifications	2-2
specifications		USER-PROGRAMMABLE SELF TESTS	D 01
TIME OVEROUPDENT	1-2	Modbus registers	
TIME OVERCURRENT		settings	
see PHASE, NEUTRAL, and GROUND TOC en		USERST-1 BIT PAIR	5-278
TIMERS	5-155		
TOC			
ground	5-186	V	
neutral	5-176	•	
phase	5-170	VAR-HOURS	2-22. 6-20
specifications	2-17	VIBRATION TESTING	

VIRTUAL INPUTS	
actual values	6-4
commands	7-1
FlexLogic operands	5-148
logic	
Modbus registers	B-9, B-65
settings	5-271
VIRTUAL OUTPUTS	
actual values	6-6
FlexLogic operands	5-148
Modbus registers	
settings	
VOLTAGE BANKS	
VOLTAGE DEVIATIONS	2-28
VOLTAGE ELEMENTS	5-204
VOLTAGE HARMONICS	6-22
VOLTAGE METERING	
Modbus registers	B-16
specifications	2-22
values	6-18
VOLTAGE RESTRAINT CHARACTERISTIC	5-170
VT FUSE FAILURE	
logic	5-261
Modbus registers	B-55
settings	5-260

VT INPUTS	. 3-12, 5-6, 5-100
VTFF	
FlexLogic operands	5-146
see VT FUSE FAILURE	
W	
WARNINGS	1-1
WARRANTY	H-7
WATT-HOURS	
WATTMETRIC ZERO-SEQUENCE DIRECTION	,
actual values	6-25
FlexLogic operands	
Modbus registers	
settings	
specifications	
WEB SERVER PROTOCOL	
WEBSITE	
WEDOTTE	
Z	

ZERO SEQUENCE CORE BALANCE3-12